

FEATURES

- Ceramic / thermoset molded package
- Patent pending
- Smallest in the industry
- No lead frame surface mount design eliminates
skewing of leads and coplanarity issues
- Minimum path length for RF
- Up to 7 GHz switching frequencies
- Ability to switch fast pulses with rise times of 40 pico seconds or less
- Available with BGA
- Internal magnetic shield standard
- Very low profile
- Gold plated leads for high conductivity RF path
- Low thermal offset typical $1 \mu \mathrm{~V}$
- TCE matching of all internal components
- Insulation resistance typical 1014 ohms
- 3 Volt option available

DESCRIPTION

The MEDER CRF Reed Relay Series is a low-profile device made with a ceramic case that exactly matches the thermal coefficient of expansion of the Reed Switch glass and the reed lead to eliminate any potential packaging stress. Capable of switching up to 7 GHz with $<40 \mathrm{ps}$ rise times for digital operations, this leadless 50 Ohm reed relay is the smallest in the industry and switches into the billions of operations.

This Relay has $1 \mu \mathrm{~V}$ typical thermal offset voltage. Measuring only $8.6 \mathrm{~mm} \times 4.4 \mathrm{~mm} \times 3.4 \mathrm{~mm}$, the leadless design eliminates skewing of leads and coplanarity issues.

APPLICATIONS

- Test and measurement
- Medical Equipment
- Telecommunications
- High frequency applications

PCB LAYOUT

PAD LAYOUT
(Bottom View)

7 GHz High Frequency Reed Relay for 50Ω Impedance

DIMENSIONS (with BGA)
*All dimensions in mm (inch)

PAD / PCB LAYOUT (Bottom View)

POST REFLOW

Höhe: max.

ORDER INFORMATION

Part Number Example

CRF05-1AS
05 is the nominal voltage
1A is the contact form
\mathbf{S} is the solder ball option

Series	Nominal Voltage	Contact Form	Option
CRF	05-	1A	\mathbf{x}
Options			S^{*}

* Solder Ball Option (non-BGA part number is CRF05-1A)

COIL DATA

Contact Form	Switch Model	Coil Voltage		Coil Resistance			Pull-In Voltage	Drop-Out Voltage	Nominal coil Power
All Data at $20^{\circ} \mathrm{C}$ *		VDC		Ω			VDC	VDC	mW
		Nom.	Max.	Min.	Typ.	Max.	Max.	Min.	Typ.
1 A	80	5	7.5	135	150	165	3.75	0.75	167
1 A	80	3	5	63	70	77	2.25	0.45	129

* the pull-in / drop-out voltages and coil resistance will change at the rate $0,4 \%$ per ${ }^{\circ} \mathrm{C}$

7 GHz High Frequency Reed Relay for 50Ω Impedance

RELAY DATA

All Data at $\mathbf{2 0}^{\circ} \mathrm{C}$	Switch Model \rightarrow Contact Form \rightarrow	Contact 80 Form A			
Contact Ratings	Conditions	Min.	Typ.	Max.	Units
Contact Ratings	Any DC combination of V \& A not to exceed their individual max.'s.			10	W
Switching Voltage	DC or peak AC			170	V
Switching Current	DC or peak AC			0.5	A
Carry Current	DC or peak AC			0.5	A
Bulk Resistance	Through all plated material on substrate		200	350	$\mathrm{m} \Omega$
Static Contact Resistance	w/ 0.5 V \& 50 mA		75	100	$\mathrm{m} \Omega$
Dynamic Contact Resistance	Measured w/ 0.5 V \& 50 mA		100	150	$\mathrm{m} \Omega$
Insulation Resistance (100 Volts applied)	Across Contact Contact to coil and shield	$\begin{aligned} & 10^{10} \\ & 10^{13} \end{aligned}$	$\begin{aligned} & 10^{12} \\ & 10^{14} \end{aligned}$		Ω
Breakdown Voltage	Across Contact Coil to contact	$\begin{gathered} 210 \\ 1500 \end{gathered}$			VDC
Operate Time incl. Bounce	Measured w/ nominal voltage			0.1	ms
Release Time	No coil suppression			0.02	ms
Capacitance (@ 10 kHz)	Across Contact Contact to coil and shield		$\begin{aligned} & 0.1 \\ & 0.7 \end{aligned}$		pF
Life Expectancies					
Switching 5V-10mA	DC $<10 \mathrm{pF}$ stray cap.		1000		10^{6} Cycles
For other load requirements, semeser	the life test section on P. 120.				
Environmental Data					
Shock Resistance	1/2 Sine wave duration for 11 ms			50	g
Vibration Resistance	From 10-2000 Hz			10	g
Ambient Temperature	$10^{\circ} \mathrm{C} /$ minute max. allowable	-40		125	${ }^{\circ} \mathrm{C}$
Storage Temperature	$10^{\circ} \mathrm{C} /$ minute max. allowable	-55		125	${ }^{\circ} \mathrm{C}$
Soldering Temperature	5 sec . dwell			260	${ }^{\circ} \mathrm{C}$
Material of Case	Themoset / Ceramic				
Material of pads	Au plated				

Insertion Loss:

Insertion loss tested to 7 GHz for the CRF Reed Relay. Horizontal full scale: 7.0 GHz . Vertical scale: $10 \mathrm{~dB} /$ div referenced from the 0 mark.

Copper Wire Insertion Loss:

Insertion loss tested to 7 GHz for the CRF Reed Relay but with the internal Reed Switch replaced with a bare copper wire. Horizontal full scale: 7.0 GHz. Vertical scale: $10 \mathrm{~dB} / \mathrm{div}$ referenced from the 0 mark.

VSWR:

Voltage Standing Wave Ratio (VSWR) tested to 6.5 GHz for the CRF Reed Relays. Horizontal full scale: 6.5 GHz . Vertical scale: 1.0/div referenced from the bottom line 1.0 mark.

Isolation:

Isolation tested to 7 GHz for the CRF Reed Relay. Horizontal full scale: 7.0 GHz. Vertical scale: $10 \mathrm{~dB} / \mathrm{div}$ referenced from the 0 mark.

7 GHz High Frequency Reed Relay for 50Ω Impedance

Return Loss:

Return loss tested to 6.5 GHz for the CRF Reed Relay. Horizontal full scale: 6.5 GHz . Vertical scale: $10 \mathrm{~dB} /$ div referenced from the 0 mark.

Smith Chart:

Shows a Smith Chart plotted for frequencies to 4 GHz . The second dotted circle starting from the right is the 50 Ohm impedance point.

Characteristic Impedance:

Represents the characteristic impedance going through the CRF Reed Relay. Waves 1 through 5 depict calibration points. Horizontal full scale: 750 ps . Vertical scale: $150 \mathrm{mUnit} / \mathrm{div}$ referenced from the 0 unit mark. The vertical scale measures the reflection coefficient.

1 - Short Before Relay
2 - Open Contacts
3-Close Contacts
4 - Closed Contacts - Shorted
5 - Closed Contacts - 50 Ohm

