

TMP type

TM type

UL File No.: E43028

CSA File No.: LR26550

- High switching capacity - 55 A inrush, 15 A steady state inductive load (1 Form A)
- Particularly suitable for air conditioners, dish washers, microwave ovens, ranges, central cleaning systems, copiers, facsimiles, etc.
- Two types available
"TM" type for direct chassis mounting
"TMP" type for PC board mounting
- TV-rated types available
- TÜV also approved

SPECIFICATIONS

Contact

Arrangement			1 Form A, 1 Form B, 1 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			$30 \mathrm{~m} \Omega$
Contact material			Silver alloy
Rating (resistive load)	Maximum switching power		3,750 VA
	Maximum switching voltage		250 V AC
	Max. switching current		15A
Expected life (min. operations)	Mechanical (at 180 cpm .)		5×10^{6}
	Electrical (at 20 cpm .)	1 Form A (Inrush 55 A, Steady 15 A 250 VAC $\cos \varphi=0.7$)	10^{5}
		$\begin{aligned} & 1 \text { Form B, } 1 \text { Form C } \\ & (15 A 250 \text { VAC, } \\ & \cos \varphi=1) \end{aligned}$	5×10^{5}
Coil			
Nominal operating power		DC type	1.2 W
		AC type	1.4 VA (50 Hz)/1.3 VA (60 Hz)
Minimum operating power		DC type	0.77 W
		AC type	$0.90 \mathrm{VA}(50 \mathrm{~Hz}) / 0.84 \mathrm{VA}(60 \mathrm{~Hz})$

Remarks

${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{* 3}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu$ s according to JEC-212-1981
${ }^{* 4}$ Excluding contact bounce time
${ }^{* 5}$ For the AC coil types, the operate/release time will differ depending on the phase.
${ }^{* 6}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 8}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 9}$ Refer to 6. Usage, transport and storage conditions NOTES (Page 8)

Characteristics

Maximum operating speed			20 cpm .
Initial insulation resistance ${ }^{* 1}$			Min. $100 \mathrm{M} \Omega$ at 500 V DC
Initial breakdown voltage*2	Between open contacts		1,500 Vrms
	Between contacts and coil		2,000 Vrms
Surge voltage between contacts and coil*3			Min. 5,000 V
Operate time*4 (at $20^{\circ} \mathrm{C}$) (at nominal voltage)			Approx. 10 ms*5
Release time(without diode) ${ }^{\star 4}$ (at $20^{\circ} \mathrm{C}$) (at nominal voltage)			Approx. 2 ms*5
Temperature rise (at $50^{\circ} \mathrm{C}$) (resistive)			Max. $70^{\circ} \mathrm{C}$
Shock resistance		Functional*6	$98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive ${ }^{* 7}$	$980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*8	$88.2 \mathrm{~m} / \mathrm{s}^{2}\{9 \mathrm{G}\}$, 10 to 55 Hz at double amplitude of 1.5 mm
		Destructive	$117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 2.0 mm
Conditions for operation, transport and storage*9 (Not freezing and condensing at low temperature)		Ambient temp.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}+14^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$
		Humidity	5 to 85\%R.H.
Unit weight			44 g 1.55 oz

TYPICAL APPLICATIONS ORDERING INFORMATION

Air conditioners, microwave ovens, load management equipment, copiers, process control equipment

Ex. JA	- TM	DC12V	P
Contact arrangement	Mounting classification	Coil voltage	Classification
1c: 1 Form C 1a: 1 Form A 1b: 1 Form B	TM: Solder Terminal TMP: Solder Teminal and PCB Teminal	$\begin{aligned} & \text { DC } 6,12,24 \mathrm{~V} \\ & \text { AC } 6,12,24,115 \mathrm{~V} \end{aligned}$	Nil: Standard type P: Up-graded contact rating type (See next page)

(Notes) 1. For UL/CSA recognized types, add suffix UL/CSA.
2. Standard packing Carton: 20 pcs.; Case: 200 pcs.

COIL DATA

DC Type at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Nominal voltage	Pick-up voltage $($ max. $)$	Drop-out* $($ min. $)$	Coil resistance, $\mathrm{W}(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power	Maximum allowable voltage (at $\left.60^{\circ} \mathrm{C}\right)$
6 VDC	4.8 VDC	$0.6\left(0.3^{*}\right) \vee \mathrm{DC}$	30	200	1.2 W	6.6 V DC
12	9.6	$1.2\left(0.6^{*}\right)$	120	100	1.2	13.2
24	19.2	$2.4\left(1.2^{*}\right)$	480	50	1.2	26.4

AC Type at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Nominal voltage	Pick-up voltage (max.)	$\begin{array}{\|c} \text { Drop-out }{ }^{*} \text { voltage } \\ (\text { min. }) \end{array}$	Coil resistance, W ($\pm 10 \%$)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$		Nominal operating power		Maximum allowable voltage (at $60^{\circ} \mathrm{C}$)
6 V AC	4.8 V AC	1.8 V AC	-	50 Hz	60 Hz	50 Hz	60 Hz	6.6 V DC
				233	217	1.4 VA	1.3 VA	
12	9.6	3.6	-	117	108	1.4 VA	1.3 VA	13.2
24	19.2	7.2	-	58	54	1.4 VA	1.3 VA	26.4
115	92	34.5	-	12	11	1.4 VA	1.3 VA	126.5

* Drop-out voltage for 1 Form B type is 5% of nominal voltage.

NOTES

1. The range of coil current for $A C$ relay is $\pm 15 \%(60 \mathrm{~Hz})$. For DC relay it is $\pm 10 \%$ at $20^{\circ} \mathrm{C}$.
2. The JA relay will operate in a range from 80% to 110% of the nominal coil voltage. It is however, recommended that the relay be used in the range of 85% to 110% of the nominal coil voltage, with the temporary voltage variation taken into consideration.
3. When the operating voltage of AC relays drops below 80% of the nominal coil voltage. The relay will generate a consider able amount of heat which is not recommended for maximum efficiency.
4. The coil resistance of DC types is the measured value of the coil at a temperature of $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. If the coil temperature changes by $\pm 1^{\circ} \mathrm{C}$. The measured value of the coil resis tance should be increased or decreased by 0.4%.

ADDITIONAL SERIES

1. Following up-graded contact rating types recognized by UL are available. (For use in office appliances)

Contact arrangement	$P \quad$ Suffix
(Ex. JA 1a-TM DC12V-P)	
1 Form C A	25 A 250 V AC, 1 HP 125, 250 V AC
1 Form B	25 A 250 V AC, 1 HP 125, 250 V AC

2. TV-Rated Series

Contact Suffix arrangement	UL	CSA
	TV	TV
1 Form A	TV-5	TV-5

DIMENSIONS

Remarks

Above dimensions are for 1 Form C type. For 1 Form A type, NC terminal is removed For 1 Form B type, NO terminal is removed.

Schematic (Bottom view)

1 Form A

1 Form B

1 Form C

Terminals-187" quick connect terminals for coil and $.250^{\prime \prime}$ for contacts

Mounting hole location

Tolerance: $\pm 0.1 \pm .004$

TMP

General tolerance: $\pm 0.3 \pm .012$

Remarks

Above dimensions are for 1 Form C type. For 1 Form A type, NC terminal is removed For 1 Form B type, NO terminal is removed.

Schematic

Terminals-PC board terminals for coils and .250" quick connect terminals for contacts

REFERENCE DATA

1. Maximum value for switching capacity (Common for 1a, 2b, and 1c)

3.-(2) Coil temperature rise (1a-DC type) Point measured: Inside the coil Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

2. Life curve (Common for 1a, 1b, and 1c)

4.-(1) Operate time (1a-AC type)
3.-(1) Coil temperature rise (1a-AC type) Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

4.-(2) Operate time (1a-DC type)

5.-(1) Release time (1a-AC type)

5.-(2) Release time (1a-DC type)

For Cautions for Use

