
 
 

 

8-bit   
Microcontrollers 
 
Application Note 
 
 
 

Rev. 7801A-AVR-06/08 

 
AVR146: Lithium-Ion Battery Charging via USB 

with ATmega16/32U4 

Features 
• Fully Functional Design for Charging Lithium-Ion Batteries 
• High Accuracy Measurement with 10-bit A/D Converter 
• Modular “C” Source Code 
• Easily Adjustable Battery and Charge Parameters 
• Analog Inputs for Reading Battery ID and Temperature 
• USB CDC class for user interface  

1 Introduction 
This application note is based on the ATmega16/32U4 and focuses on how to use 
the EVK527 evaluation kit to charge Lithium-Ion (Li-Ion) batteries using USB 
connection as power supply. 

The USB CDC class offers an easy interface to display charge parameters. 

This application note is derived from: 

AVR458: Charging Lithium-Ion Batteries with ATAVRBC100 

The firmware is written entirely in C language (using IAR® Systems Embedded 
Workbench) and is easy to port to other AVR® microcontrollers. 

  
 



 

2 AVR146 

2 Description 
This document describes an application running on the EVK527 evaluation kit. The 
EVK527 is dedicated to ATmega16/32U4. 

The USB offers a 5V power supply on the VBUS pin. The available current range is 
from 100mA to 500mA. This is enough to charge a Li-Ion battery cell. 

A Li-Ion cell needs a precise control of voltage and current during charge. 

ATmega16/32U4 offers a USB full speed interface, PWM channels and 10 bit-ADC 
channels. All these features are used to perform a Li-Ion battery charger via USB. 

Figure 2-1. Hardware Description. 

 

For a user friendly interface, all charging parameters (charging status, battery voltage, 
charge current, battery temperature…) are displayed on the PC without the use of 
measurement tools. 

After the USB enumeration, a virtual communication port is declared (see Fig1.2). A 
HyperTerminal window connected to this communication port displays charging 
parameters. The communication port is virtual therefore HyperTerminal port settings 
(speed, parity…) are not taken into account. The user can select the default 
configuration. 

 

EVK527 PC 

USB Link 

Battery 

7801A-AVR-06/08 



 AVR146
 

Figure 2-2. Device Manager Window. 

 

2.1 Displaying Charging Parameters on the PC 
The application performs a continuous update of parameters displayed on the PC. If 
no battery is detected and identified, the charger is not started. The State of Charge is 
only available in Constant Voltage Charge stage (see §3.2.3). 

When HyperTerminal is running, the user must push the HWB button to start sending 
information to the PC. 

Figure 2-3. User interface after a battery detected. 

 

VARTA EASY PACK 550mAh 

Batt voltage = 3.80V 

Batt current = 100mA 

Batt temperature = 26° 

 

Charging stage: CONSTANT VOLTAGE CHARGE 

State of Charge:   60% (full charge =100%) 

 
 

 3

7801A-AVR-06/08 



 

4 AVR146 
7801A-AVR-06/08 

3 Theory of Operation 
Battery charging is made possible by a reversible chemical reaction that restores 
energy in a chemical system. Depending on the chemicals used, the battery will have 
certain characteristics. A detailed knowledge of these characteristics is required in 
order to avoid inflicting damage to the battery. 

3.1 Li-Ion Battery Technology 
Lithium-Ion batteries have the highest energy/weight and energy/space ratios of 
modern rechargeable batteries (See Reference 1 on page 34). It is currently the 
fastest growing battery system on the market, with end applications such as notebook 
computers, cell phones, portable media players, Personal Digital Assistants (PDA), 
power tools and medical devices. 

Compared to traditional rechargeable batteries, Li-Ion batteries have low internal 
resistance, high cycle life, fast charge time, low self-discharge, low toxicity and no 
maintenance requirements. For example, lithium-ion cells with cobalt cathodes hold 
twice the energy of a nickel-based battery and four-times that of lead acid. Lithium-ion 
is a low maintenance system, an advantage that most other chemistries cannot claim. 
There is no memory effect with lithium-ion and the battery does not require scheduled 
cycling to prolong its life. Lithium-ion has a low self-discharge and is environmentally 
friendly. Disposal causes minimal harm. 

Drawbacks of Li-Ion batteries include low tolerance of overcharge and the need for 
embedded protection circuitry. An electrical short can result in a large current flow, a 
temperature rise and thermal runaway in which flaming gases are vented. 

3.1.1 Safety 

Lithium-ion batteries are safe, provided certain precautions are met when charging 
and discharging. In addition, battery manufacturers ensure a high level of reliability by 
adding three layers of protection, as follows: 

1. The amount of active material is limited to achieve a workable equilibrium of 
energy density and safety. 

2. Various safety mechanisms are included within each cell. 
3. An electronic protection circuit is added inside the battery pack. 
 

Cell protection devices work as follows: 

• A PTC/NTC (positive/negative temperature coefficient) device acts as a protection 
to inhibit high current surges. 

• The CID (circuit interrupt device) opens the electrical path if an excessively high 
charge voltage raises the internal cell pressure. 

• The safety vent allows a controlled release of gas in the event of a rapid increase 
in cell pressure. 



 AVR146
 

 5

7801A-AVR-06/08 

The electronic protection circuit works as follows: 

• A solid-state switch is opened if the charge voltage of any cell reaches a given 
threshold. 

• A fuse cuts the current flow if the skin temperature of the cell approaches 90°C 
(194°F). 

• The current path is cut when cell voltage drops below a given threshold. This is in 
order to prevent the battery from over-discharging. 

 

Today, lithium-ion is one of the most successful and safe battery chemistries 
available with billions of cells being produced every year. 

3.2 Charging Li-Ion Batteries 
There is only one way to charge lithium-based batteries. Manufacturers of Lithium-Ion 
cells have very strict guidelines in charge procedures and the packs should be 
charged as per the manufacturers "typical" charge technique. 

Li-Ion batteries are charged using constant voltage (after having reached the nominal 
charge voltage), with current limiter to avoid overheating in the initial stage of the 
charging process. Charging is terminated when the charge current drops below a 
threshold set by the manufacturer. Several parameters are monitored during the 
charge: charge time, battery temperature… The battery takes damage from 
overcharging and may explode if overcharged. 

3.2.1 Safety 

Static electricity or a faulty charger may destroy the battery's protection circuit and 
turn solid-state switches to a permanent ON position. This may happen without the 
user knowing. A battery with a faulty protection circuit may function normally but does 
not provide protection against abuse. 

Consumer grade lithium-ion batteries cannot be charged below 0°C (32°F). If charged 
at cold temperatures, battery packs may appear to be charging normally but chemical 
reactions inside the cells may cause permanent damage and can compromise the 
safety of the pack. 

The battery will become more vulnerable to failure if subjected to impact, crush or 
high rate charging. 

The battery must remain cool. A battery pack that gets hot during charge should not 
be used. 

3.2.2 Priming & Charge Intervals 

Unlike many other types of rechargeable batteries, Lithium-Ion batteries do not need 
priming. The first charge of a Li-Ion battery is no different than the 10th or the 100th 
charge. 

Lithium-ion batteries may be – and should be – charged often. The battery lasts 
longer with partial rather than full discharges. Full discharges should be avoided 
because of wear. 

The battery loses capacity due to aging, whether used or not. 



 

6 AVR146 

3.2.3 Charge Stages 

Lithium-Ion battery charge follows three stages: 

1. Prequalification current: Charging of a Li-Ion battery starts with a test of battery 
voltage. If the voltage is under a defined threshold (PREQUAL_VOLTAGE), the 
charge starts with a fixed low current. 

2. Constant current. The charge continues with applying constant current to the 
battery. The size of the charge current is battery-dependent and given by the 
manufacturer. This stage is complete when battery voltage has reached the 
threshold given by the manufacturer. 

3. Constant voltage. After battery threshold voltage has been reached the charger will 
switch from supplying constant current to supplying constant voltage. This stage is 
complete when charge current has dropped below the threshold given by the 
manufacturer. 

 

The below figure illustrates voltage and current of a lithium-ion battery during 
charging. 

Figure 3-1. Charge stages and limits of a VARTA™ EasyPack 550mAh 

 
 

In the figure above, “Overcharge” is the level at which cell protection circuitry cuts in 
and opens a solid-state switch and discontinues the charge current path. After this, 
battery voltage typically needs to drop several hundred millivolts before the current 
path is restored. “Overdischarge” is the level at which the current path is cut in order 
to prevent the battery from over-discharging.  

7801A-AVR-06/08 

Vbatt 
4.2V 

3V 

100mA 

260mA 

10mA 

CONSTANT CURRENT CHARGE CONSTANT VOLTAGE CHARGE 
t 

Voltage/Current 

OVERCHARGE VOLTAGE LIMIT 

OVERDISCHARGE VOLTAGE LIMIT 

Ibatt 

ICUTOFF 



 AVR146
 

 7

7801A-AVR-06/08 

3.3 VARTA™ battery 

3.3.1 Typical Charge Characteristics 

Battery specifications should always be verified from manufacturer’s data sheets. 
Below is a summary of typical lithium-ion battery charge characteristics. Actual 
parameters may vary. 

Table 3-1. Typical Charge Characteristics 
Parameter Typical Value 

Charge time 3 hours 

Charge current 1 C1 

Charge efficiency 99.9 % 

Charge current threshold 0.03 C1 

Charge voltage 4.20 V 

Charge voltage tolerance (per cell) ± 0.05 V 

Temperature range 0 … +45 °C 

Humidity range 65 ± 20 RH 

1. C corresponds to the typical Rated capacity value (see Table 3.2) 

3.3.2 Typical Battery Characteristics 

The table below summarises manufacturer’s data for the batteries types used in this 
application. Other types of batteries may be used, but may require adjustments to 
software and/or hardware. 

Table 3-2. Manufacturer’s data for VARTA™ EasyPack range of lithium-ion batteries 

Parameter EZPack 
S-3.7V 

EZPack 
M-3.7V 

EZPack 
L-3.7V 

EZPack 
XL-3.7V Unit 

Rated capacity (typical) 550 750 1000 2000 mAh 

Nominal voltage 3.70 V 

Operating voltage range 2.75 … 4.20 V 

Charge voltage 4.20 V 

Charge voltage tolerance ± 50 mV 

Charge current 520 720 955 955 mA 

Charge cut-off time 3 3 3 4 hours 

Charge cut-off current 10 14 19 38 mA 

RID1 (resistor ID) 3.9 6.8 10 24 kΩ 

NTC 10 kΩ 

B-value2 3435 K 

Overcharge detection 4.35 V 

Overdischarge detection 2.20 V 

1. RID: Battery internal resistor identifies the capacity of battery connected. 
2. B value is used in temperature formula. 
 



 

8 AVR146 

3.3.3 Electrical pinout 

This application uses a particular type of lithium-ion batteries and all configurations 
presented here are based on manufacturer’s data. Other lithium-ion batteries may 
naturally be used but it is up to the user to look up battery data from manufacturer’s 
data sheets and make sure necessary adjustments are made to firmware and 
hardware. 

The figure below illustrates connection pads of the lithium-ion batteries used in this 
application. 

Figure 3-2. Connection pads of a VARTA™ EasyPack cell. 

 

The battery is connected to the battery charger as follows. 

Table 3-3. Connecting battery to charger 
Battery Connector Charger Connector Note 

- (minus) BATTERY-  

NTC NTC/RID Battery temperature measurement 

ID SCL RID, Battery identification resistor 

+ (plus) BATTERY+  
 

3.4 VBUS Supply Voltage 

USB powered applications fall into one of the three following categories: 

• Low-Power Bus The low power bus powered functions derive all their power from 
VBUS and must not draw more than 1 unit load (100mA) according to the USB 
standard. It must also be able to work between the VBUS voltage of 4.40V and 
5.25V.  

• High-Power Bus The high power bus powered functions derive all their power 
from VBUS and cannot draw more than 100mA until it has been configured. Once 
configured, it can draw up to 5 unit loads (500mA) by requesting it in its descriptor. 
At full load, it must be able to work between the VBUS voltage of 4.75V and 
5.25V.  

7801A-AVR-06/08 



 AVR146
 

• Self-Power Self powered functions can draw up to 100mA from VBUS and the 
rest from another source.  

 

The current to power the EVK527 and to charge the battery comes from VBUS. The 
EVK527 must limit the charge current if needed. 

An easy solution is to modify the I charge parameter in the lookup table.  

For example, a 550mAh battery allows a 260mA charging current. A modification of 
this parameter to 90mA (for example) allows connecting the charger on a Low Power 
Bus, knowing that the EVK527 consumption with an 8MHz oscillator is about 10mA. 
In this case, the prequalification current must also be limited to 90mA. 

3.5 EVK527 Revision 
The EVK527 Rev1.0.0 must be updated as follows: 

• The shunt resistor must be connected between PF0 and PF1 to use the differential 
input mode. PF0 must replace PD4 and SP6 must be “without solder” (different of 
default configuration).  

• Gate pin and Source pins of Q1A must be disconnected. 
• R6 and R7 new values are 13kOhms 
• R3 new value is 1Ohm 
Schematics given in §6 don’t show these modifications. 

3.6 Buck converter 
A buck converter is integrated on EVK527 to control the battery voltage and the 
battery current. The switch is controlled by the High speed PWM output. 

Figure 3-2. Buck converter schematic. 

 

 

 

BATTERY 

 9

7801A-AVR-06/08 



 

10 AVR146 

3.6.1 PWM frequency 

The PWM speed for the PWM is programmed to the maximum (64MHz). The source 
clock is the PLL output (96MHz) used both by USB and PWM. 

A postscaler offers a 1.5 division for the PLL signal: 96MHz/1.5 = 64MHz (see 
PLLTM1 and PLLTM0 in PLLFREQ register). 

The result on the PWM output signal is a 250kHz frequency: 

64MHz / 256 = 250kHz 

Where 256 is the size in bit of the in OCR4A compare register used in Timer 4. 

Figure 3-2. PWM output signal. 

 

PWM  
output ton 

 

t 

toff 

 

The software controls the battery voltage/current in modifying the duty cycle of PWM 
output. If ton increases, the battery voltage/current receives a more important energy 
load. 

7801A-AVR-06/08 



 AVR146
 

4 Battery Charger Software 

4.1 Scheduler  
A scheduler is implemented to call indefinitely defined tasks. Before starting this 
infinite loop, init functions are called. 

There are three tasks. Each task is called after the end of the previous one (no pre-
emption). 

Figure 4-1. Scheduler 
 

Scheduler Init:
Usb_task_init()
CDC_task_init()
Batt_task_init()

Scheduler task:
Usb_task()
CDC_task()
Batt_task()

 

4.2 List of files 
The firmware is written in C language using IAR Systems Embedded Workbench®, 
version 5.10. Since the firmware has been written entirely in C, it should not be a 
difficult task to port it to other AVR C-compilers. Some compiler specific details may, 
however, need to be rewritten. 

In the table below are listed the files that are relevant to the compiler project. 

Table 4-1. Project files for CDC application (see IAR EW workspace file ) 
File Type Note 

cdc_task.c C source code 

cdc_task.h Header file 
CDC task and CDC task init functions 

main.c C source code 

main.h Header file 
Main program / Program entry point 

power_drv.c C source code 

power_drv.h Header file 
Power management low level driver 

scheduler.c C source code 

scheduler.h Header file 
Scheduler routines 

start_boot.c C source code 

start_boot.h Header file 

Boot functions 
 

time.c C source code 

time.h Header file 
Functions for timing 

 11

7801A-AVR-06/08 



 

12 AVR146 
7801A-AVR-06/08 

File Type Note 

cdc_task.c C source code 

cdc_task.h Header file 
CDC task and CDC task init functions 

main.c C source code 

main.h Header file 
Main program / Program entry point 

uart_lib.c C source code 

uart_lib.h Header file 
This file provides a minimal VT100 
terminal access 

uart_usb_lib.c C source code 

uart_usb_lib.h Header file 
UART USB functions 

usb_descriptor.c C source code 

usb_descriptor.h Header file 
USB parameters that identify the 
application 

usb_device_task.c C source code 

usb_device_task.h Header file 
USB device controller 

usb_drv.c C source code 

usb_drv.h Header file 
USB driver routines 

usb_standard_request.c C source code 

usb_standard_request.h Header file 
USB device enumeration requests 

usb_specific_request.c C source code 

usb_specific_request.h Header file 
User call-back functions 

usb_task.c C source code 

usb_task.h Header file 

Usb task and Usb init task functions 
 

 

 

Table 4-2. Project files for battery module (see IAR EW workspace file ) 
File Type Note 

ADC.c C source code 

ADC.h Header file 
Functions related to A/D converter 

Batt_task.c C source code 

Batt_task.h Header file 
Batt task and Batt init task functions 

battery.c C source code 

battery.h Header file 

Battery-specific definitions and 
functions related to battery control & 
data acquisition 

chargefunc.c C source code 

chargefunc.h Header file 
Charge functions 

LIIONcharge.c C source code 

LIIONcharge.h Header file 
Charge state function for Li-Ion 
batteries 

menu.c C source code 

menu.h Header file 
State machine definitions 

PWM.c C source code 

PWM.h Header file 
Functions related to generating pulse-
width modulated output 



 AVR146
 

 13

7801A-AVR-06/08 

File Type Note 

statefunc.c C source code 

statefunc.h Header file 
Functions related to the states defined 
in menu file 

 

 

4.3 Overview 
The firmware integrates all functions required to charge a lithium-ion battery.  

Table 4-3. Memory requirements of firmware (IAR without optimization) 
Build option Memory Approximate value 

CODE (Flash) 13900 bytes 

DATA (SRAM) 1109 bytes Debug 

XDATA (EEPROM) 2 bytes 
 

4.4 State Machine 
A state machine is implemented in battery task. This state machine is rather simple 
and uses function pointers. It simply looks up the address of the next function to 
execute and then jumps to that function. The flow chart of the state machine is 
illustrated in the figure below. 

Figure 4-2. Flow chart of main function, including the state machine 

ADC measurements update
+

Uart state machine

Look up address for Current State

Jump to function of Current State

Look up address for Next State

Set Current State = Next State

State function
Next State

 
Upon return, the state machine expects the function to indicate the next state as a 
return argument. The recognised return codes are described in the table below. 

Table 4-4. State machine codes (see source code, menu.h) 
Label Related Function Description 

INIT Initialize() Entry state 

BATCON BatteryControl() Check hardware and batteries 



 

14 AVR146 
7801A-AVR-06/08 

Label Related Function Description 

PREQUAL Charge() Raise battery voltage, safety check 

PREQUAL_CTRL Charge() Waiting end of PREQUAL 

SLEEP Sleep() Low power consumption mode 

CCURRENT Charge() Charge with constant current 

CCURRENT_CTRL Charge() Waiting end of CCURRENT 

CVOLTAGE Charge() Charge with constant voltage 

CVOLTAGE_CTRL Charge() Waiting end of CVOLTAGE 

ENDCHARGE Charge() End of successful charge 

DISCHARGE Discharge() Go to BATCON state (ready for further 
implementation) 

ERROR Error() Resolve error, if possible 
State functions are described in the following sections. 

4.4.1 Initialize() 

The initialisation function is the first state function that will be executed after device 
reset. The flow chart of the function is shown in the figure below. 

Figure 4-3. Flow chart of initialisation function 

 

The initialisation function always exits with the same return code, pointing to the state 
function for battery control. 

4.4.2 BatteryControl() 

The battery control function verifies that jumpers are set correctly and then checks to 
see if there are any enabled batteries present that require charging. The program flow 
is illustrated in the figure below. 



 AVR146
 

Figure 4-4. Flow chart of battery control function 

 

4.4.3 Charge() 

The charge function contains the charging algorithm divided into stages. For this 
application, it has four stages: 

• Prequalification - during which the battery is charged with a constant current 
until a sufficient charge voltage is reached. If this happens within a given time 
limit, the battery is considered good and the charger may continue on the 
next stage. If time runs out before the voltage is reached, or battery 
temperature goes out of limits, the battery is considered bad and charging is 
halted. 

• Constant current charge - during which the battery is charged with a higher, 
battery-specific current until the battery voltage reaches its maximum. If this 
happens within the battery’s maximum charge time limit, the charger goes to 
the next stage. If the time limit expires, or battery temperature goes out of 
limits, the battery is considered bad and charging is halted. 

• Constant voltage charge – during which the battery is charged at the 
maximum battery voltage until the charge current drops below a battery-
specific cut-off limit, or the maximum charge time limit expires. Here too, 
charging is halted if battery temperature goes out of limits. 

• End charge – in which the charger decides whether to go into the sleep state, 
or to attempt a charge of the other battery. 

ChargeParameters and HaltParameters are key variables of this function. The 
program flow of this state function is illustrated in the figure below. 

 

 

 

 15

7801A-AVR-06/08 



 

16 AVR146 

Figure 4-5. Flow chart of the charge state function 

Charge()

What is the current 
state?

Set charge current to the 
defined prequalification 

current.
(BAT_CURRENT_PREQUAL)

Set charge current to the 
battery's maximum current.

(BattData.MaxCurrent)

Set charge voltage to the 
defined maximum.

(BAT_VOLTAGE_MAX)

ST_PREQUAL

ST_CCURRENT ST_CVOLTAGE

ST_ENDCHARGE

Set voltage limit to defined 
prequalification voltage.

(BAT_VOLTAGE_PREQUAL)

Set ST_CCURRENT as the 
next desired state.

Set voltage limit to the defined 
maximum.

(BAT_VOLTAGE_MAX)

Flag that charging should halt 
once voltage reaches limit or 

time runs out, and that timeout 
means that battery is worn 

out.

Set minimum and maximum 
temperature to defined limits.
(BAT_TEMPERATURE_MIN 

& MAX)

Start PWM output.

Start charge timer with 
defined limit.

(BAT_TIME_PREQUAL)

Next state is 
ST_PREQUAL_CTRL

Return next state to 
batt_task().

Set ST_CVOLTAGE as the 
next desired state.

Start charge timer with 
the battery's maximum 

charge time.
(BattData.MaxTime)

Next state is 
ST_CCURRENT_CTRL

Set ST_ENDCHARGE as the 
next desired state.

Set current limit to the 
battery's cutoff limit.

(BattData.MinCurrent)

Flag that charging should halt 
once current sinks below limit, 

or time runs out.

Next state is 
ST_CVOLTAGE_CTRL

Stop PWM output.

Flag battery as charged.

Is the other battery 
enabled?

Set ST_BATCON as 
next state.

Set ST_SLEEP as next 
state.

YES

NO

See Figure 4.6 for 
ST_PREQUAL_CTRL

ST_CCURRENT_CTRL
ST_VOLTAGE_CTRL

 

7801A-AVR-06/08 



 AVR146
 

Figure 4-6. End of charge state function. 

Charge()

What is the current 
state?

Call ConstantCurrent() Call ConstantCurrent() Call ConstantVoltage()

ST_PREQUAL_CTRL

ST_CCURRENT_CTRL ST_CVOLTAGE_CTRL

Return next state to 
batt_task().

 

 

 

 

4.4.4 Discharge() 

This function has not been implemented. 

4.4.5 Sleep() 

The application enters sleep mode when all batteries have been fully charged. It 
wakes up at regular intervals to check the current status of the batteries. Sleep mode 
is terminated as soon as any battery requires charging. 

Sleep mode is illustrated in the flow chart below. 

Figure 4-7. Flow chart of sleep function 

 

 

 

 17

7801A-AVR-06/08 



 

18 AVR146 

4.4.6 Error() 

Program flow is diverted here when an error has occurred. Program execution will exit 
the error handler when all sources of error have been cleared. 

The program flow is illustrated in the figure below. 

Figure 4-8. Flow chart of error handler 

 

 

4.5 Charging Control Functions 
These functions are called by Charge() after all parameters have been set. 

4.5.1 Constant Current/Voltage 

These two functions are similar, apart from what ADC measurements they try to keep 
within limits. Therefore, only the flow chart for ConstantCurrent() is illustrated in the 
figure below. They both make use of the variable ChargeParameters. 

 

7801A-AVR-06/08 



 AVR146
 

Figure 5-3. Flow chart for ConstantCurrent() 

ConstantCurrent()

Charging of battery 
inhibited?

Were we stopped by 
Master MCU 

earlier?

Stop timers.

Drop PWM output to 
zero.

YES

NO

Start timers
again.

YES

Current below 
hysteresis?

Remove flag that Master 
MCU stopped the 

charging.

Current above 
hysteresis?

Increment PWM 
duty cycle.

YES

NO

Decrement PWM 
duty cycle.

YES

NO

Return next state.

Wait for ADC 
conversions to 

complete.

HaltNow()

NO

 
 

 

 19

7801A-AVR-06/08 



 

20 AVR146 
7801A-AVR-06/08 

4.5.2 Charge Halt Determination 

Charge halt is determined by HaltNow(). This function is called by ConstantCurrent() 
and ConstantVoltage() every time they loop, to decide if a stage of charging is done. 

With the variable HaltParameters the user can specify at what terms the charging 
should be halted, and if an error should be flagged if for example the time limit 
expires. An error flag will also result in ST_ERROR being set as the next state, 
thereby aborting the charge. If no errors are flagged, the next desired state, set earlier 
in Charge(), will apply. 

Lastly, the function checks if temperature is within limits, if the battery is OK and if 
mains voltage is above minimum. Should any of these tests fail, the next state is set 
to an appropriate error handler (ST_ERROR, ST_INIT or ST_SLEEP) and charging is 
aborted. 



 AVR146
 

Figure 5-4. Flow chart for HaltNow() part 1. 

 

 21

7801A-AVR-06/08 



 

22 AVR146 

Figure 5-5. Flow chart for HaltNow() part 2 

 

7801A-AVR-06/08 



 AVR146
 

Figure 5-6. Flow chart for HaltNow() part 3 

2

Halt on timeout?

Charging timer run 
out?

YES

NO

YES

Set Halt flag.

Flag battery as worn 
out?

NO

Stop PWM output.

YES

Disable battery and flag 
it as worn out.

Flag battery exhaustion 
error and set 

ST_ERROR as next 
state.

3

NO

 

 23

7801A-AVR-06/08 



 

24 AVR146 

Figure 5-7. Flow chart for HaltNow() part 4 

3

Battery temperature 
too cold or hot?

Set Halt flag.

Flag a battery 
temperature error and 

set ST_ERROR as next 
state.

YES

BatteryCheck() OK?

NO

Stop PWM output.

NO

Set Halt flag.

Set ST_INIT as next 
state.

Is mains voltage 
OK?

YES

Stop PWM output.

Set Halt flag.

Set ST_SLEEP as next 
state.

NO

Return Halt flag.

YES

 

4.6 Other Functions 

4.6.1 A/D Conversion 

The A/D converter uses the multiplexer to read in data from several channels. At the 
end of a conversion the ADC Interrupt Service Routine (ISR) is called, as illustrated in 
the flow chart below. After the ISR is complete program execution will return to 
normal. For all MUX values, the ADC reference voltage is the 2.56V internal 
reference.  

7801A-AVR-06/08 



 AVR146
 

Figure 5-8. Flow chart of ADC interrupt service routine 
ADC_ISR()

Disable ADC interrupt

MUX channel?

3/ Save NTC reading 4/ Save RID reading

Set next MUX = 0b100100 Set next MUX = 0b001001

0b1001000b100011

1/ Format and save IBAT 2/ Format and save VIN

Update averaged IBAT Update supple voltage flag

Set next MUX = 0b100011Update ADC flag

Set next MUX = 0b000000

Update MUX

ELSE

0b001001 0b000000

Return from interrupt

Set Flag:
 End of ADC loop

 

4.7 Implementation 
This section describes how to configure, create and download the software. 

4.7.1 Configuration 

The most important compile-time constants are discussed in the table below. See file 
battery.h for more program constants. 

 25

7801A-AVR-06/08 



 

26 AVR146 
7801A-AVR-06/08 

Table 5-1. Battery-related compile-time constants (see source file battery.h) 
Label Description 

CELL_VOLTAGE_SAFETY 
In case unmatched batteries are to be charged, this constant 
is subtracted from CELL_VOLTAGE_MAX for every extra cell 
in the battery, ie. BAT_CELL_NUMBER – 1. 

CELL_VOLTAGE_MAX The voltage at which a cell should be charged. 

CELL_VOLTAGE_LOW The lowest voltage at which a cell is considered charged. 
Charging will start when voltage drops below this level. 

CELL_VOLTAGE_MIN 
The lowest voltage at which charging may be initiated. 
Should generally be set to the voltage limit under which 
further discharge of batteries will cause damage. 

CELL_VOLTAGE_PREQUAL The voltage to which a cell should be charged to during 
prequalification. 

BAT_TEMPERATURE_MAX The highest battery temperature allowed. Charging will stop / 
not start if above this. 

BAT_TEMPERATURE_MIN The lowest battery temperature allowed. Charging will stop / 
not start if below this. 

BAT_CURRENT_PREQUAL Charge current during prequalification mode. 

BAT_CURRENT_HYST Charge current hysteresis. 

BAT_VOLTAGE_HYST Charge voltage hysteresis. 

BAT_VOLTAGE_PREQUAL Target voltage during prequalification stage. If this voltage is 
not achieved the battery will be marked as worn out. 

BAT_TIME_PREQUAL Maximum amount of time to spend in prequalification stage. 

DEF_BAT_CAPACITY Default battery capacity. 

DEF_BAT_CURRENT_MAX Default maximum charge current. 

DEF_BAT_TIME_MAX Default maximum charge time. 

DEF_BAT_CURRENT_MIN Default cut-off charge current. 

ALLOW_NO_RID 
If defined, batteries without RID (or not matching the lookup-
table) will cause the charger to use the battery defaults. 
Otherwise, charge is halted. 

RID[ ].Low and RID[ ].High Assume RID resistance match if value within these limits. 

RID[ ].Capacity Battery capacity for given RID. 

RID[ ].Icharge Charge current for given RID. 

RID[ ].tCutOff Maximum charge time for given RID. 

RID[ ].IcutOff Charge termination current for given RID. 

NTC[ ] Temperature look-up table. 
 

 

 

 

 



 AVR146
 

4.7.2 Compilation 

Both IAR and GCC project are available. The GCC project can use an external 
makefile (see Makefile in \gcc\default) or use the options defined in AVR Studio 
project. 

 

Table 5-2. Compiler configuration 
Section Tab Field Value 

Processor 
configuration 

ATmega16/32U4 

Target 
Memory 
model 

Small 

Data stack 0x100 

Return 
address 
stack 

32 
General 
Options 

System 

Enable bit 
definitions 
… 

None 

C/C++ 
Compiler Language Require 

prototypes 
Selected 

Output Format Other: ubrof8 

Linker Extra 
Options 

Command 
Line 

-y(CODE) 
-Ointel-extended,(DATA)=$EXE_DIR$\$PROJ_FNAME$_data.hex 

-Ointel-extended,(XDATA)=$EXE_DIR$\$PROJ_FNAME$_eeprom.hex 
 

4.7.3 Programming 

The compiled code is conveniently downloaded to the target device using             
AVR Studio® and a debugger or programming tool of choice, such as the JTAGICE 
mkII. 

Note that the compiled code is ready to contain EEPROM data if needed. This feature 
is only for further development. Answer OK when AVR Studio asks if EEPROM 
contents should be loaded. This is illustrated in the figure below. 

Figure 5-9. Loading initialised data to EEPROM 

 

The program expects the use of the internal oscillator and that the clock signal is not 
prescaled. Some fuse bits must be programmed to ensure proper program execution. 
The fuse bit settings that deviate from the default factory configuration are listed in the 
table below. 

 27

7801A-AVR-06/08 



 

28 AVR146 
7801A-AVR-06/08 

 

Table 5-3. Non-default fuse bit settings 
 

Fuse Bit Setting Description 

CKDIV8 1 (unprogrammed) Do not divide clock by eight 

CKSEL3…0 0010 Use internal oscillator 
 

On the EVK527 Rev1.0.0, the JTAG pins and Joystick buttons share the same IOs. It 
is the reason of the CDC key pressed application removal. 

The HWB button is used to start the sending of data to the HyperTerminal.  

After the download of software with AVR Studio, the ATmega16/32U4 bootloader is 
erased. If a download is needed by using FLIP (ATMEL ISP), a download of 
bootloader software (with AVR Studio) is needed. 



 AVR146
 

5 EVK527 Rev1.0.0 Schematics 

Figure 6-1. Page 1/5 (Schematics Rev3.0.0 corresponds to Board Rev1.0.0) 

 

 29

7801A-AVR-06/08 



 

30 AVR146 

Figure 6-2. Page 2/5 

 

 

 

7801A-AVR-06/08 



 AVR146
 

Figure 6-3. Page 3/5 

 

 

 

 31

7801A-AVR-06/08 



 

32 AVR146 

Figure 6-4. Page 4/5 

 

 

 

7801A-AVR-06/08 



 AVR146
 

Figure 6-5. Page 5/5 
 

 
 

 

 

 33

7801A-AVR-06/08 



 

34 AVR146 
7801A-AVR-06/08 

6 References 
1. “What’s the best battery?”. Retrieved April 3, 2007, from Battery University: 

http://www.batteryuniversity.com/partone-3.htm 
 

2. “Lithium-ion safety concerns”. Retrieved April 3, 2007, from Battery University: 
http://www.batteryuniversity.com/partone-5B.htm 
 

3. “Charging lithium-ion batteries”. Retrieved April 3, 2007, from Battery University: 
http://www.batteryuniversity.com/partone-12.htm 
 

4. “VARTA™ EasyPack” datasheet: 
550mAh 

http://www2.varta-
microbattery.com/en/mb_data/documents/promotion_varta_easypack/688819.pdf 
 750mAh 
http://www2.varta-
microbattery.com/en/mb_data/documents/promotion_varta_easypack/688820.pdf 
 1000mAh 
http://www2.varta-
microbattery.com/en/mb_data/documents/promotion_varta_easypack/688821.pdf 
 2000mAh 
http://www2.varta-
microbattery.com/en/mb_data/documents/promotion_varta_easypack/688822.pdf 
 
5. “ATmega32U4”. Available from Atmel web site: 

http://www.atmel.com/products/avr/ 

http://www.batteryuniversity.com/partone-3.htm
http://www.batteryuniversity.com/partone-5B.htm
http://www.batteryuniversity.com/partone-12.htm
http://www2.varta-microbattery.com/en/mb_data/documents/promotion_varta_easypack/688819.pdf
http://www2.varta-microbattery.com/en/mb_data/documents/promotion_varta_easypack/688819.pdf
http://www2.varta-microbattery.com/en/mb_data/documents/promotion_varta_easypack/688820.pdf
http://www2.varta-microbattery.com/en/mb_data/documents/promotion_varta_easypack/688820.pdf
http://www2.varta-microbattery.com/en/mb_data/documents/promotion_varta_easypack/688821.pdf
http://www2.varta-microbattery.com/en/mb_data/documents/promotion_varta_easypack/688821.pdf
http://www2.varta-microbattery.com/en/mb_data/documents/promotion_varta_easypack/688822.pdf
http://www2.varta-microbattery.com/en/mb_data/documents/promotion_varta_easypack/688822.pdf
http://www.atmel.com/products/avr/


 

 
 
 
 

Headquarters  International   

Atmel Corporation 
2325 Orchard Parkway 
San Jose, CA 95131 
USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 487-2600 

 

 Atmel Asia 
Room 1219 
Chinachem Golden Plaza 
77 Mody Road Tsimshatsui 
East Kowloon 
Hong Kong 
Tel: (852) 2721-9778 
Fax: (852) 2722-1369 

 
 
 
 
 
 
Product Contact 

 

Atmel Europe 
Le Krebs 
8, Rue Jean-Pierre Timbaud 
BP 309 
78054 Saint-Quentin-en-
Yvelines Cedex 
France 
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11 

 

Atmel Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chuo-ku, Tokyo 104-0033 
Japan 
Tel: (81) 3-3523-3551 
Fax: (81) 3-3523-7581 
 

 Web Site 
www.atmel.com 

 

Technical Support 
avr@atmel.com 

 

Sales Contact 
www.atmel.com/contacts 
 
 
 

 Literature Request 
www.atmel.com/literature 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND 
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED 
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, 
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the 
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any 
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, 
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 
 
 
 
©2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, AVR Studio® and others are registered 
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 

 

8080A-AVR-09/07 


	1 Introduction
	2 Description
	2.1 Displaying Charging Parameters on the PC

	3 Theory of Operation
	3.1 Li-Ion Battery Technology
	3.1.1 Safety

	3.2 Charging Li-Ion Batteries
	3.2.1 Safety
	3.2.2 Priming & Charge Intervals
	3.2.3 Charge Stages

	3.3 VARTA™ battery
	3.3.1 Typical Charge Characteristics
	3.3.2 Typical Battery Characteristics
	3.3.3 Electrical pinout

	3.4 VBUS Supply Voltage
	3.5 EVK527 Revision
	3.6 Buck converter
	3.6.1 PWM frequency


	4 Battery Charger Software
	4.1 Scheduler 
	4.2 List of files
	4.3 Overview
	4.4 State Machine
	4.4.1 Initialize()
	4.4.2 BatteryControl()
	4.4.3 Charge()
	4.4.4 Discharge()
	4.4.5 Sleep()
	4.4.6 Error()

	4.5 Charging Control Functions
	4.5.1 Constant Current/Voltage
	4.5.2 Charge Halt Determination

	4.6 Other Functions
	4.6.1 A/D Conversion

	4.7 Implementation
	4.7.1 Configuration
	4.7.2 Compilation
	4.7.3 Programming


	5 EVK527 Rev1.0.0 Schematics
	6 References

