Panasonic ideas for life

RoHS Directive compatibility information

 http://www.mew.co.jp/ac/e/environment/
FLAT/VERTICAL TYPE HIGH POWER BIFURCATED CONTACT
 HN RELAYS (AHN)

FEATURES

1. Slim and compact size 20% smaller (width and height) than existing model* (with the condition of screw terminal socket for DIN rail) *Compared with our HC/HJ relay.
2. High-capacity and high reliability Max. switching current:
16 A (for 1 Form C type at AC load) Uses gold-flashed contacts for highly reliable contact (for 2 Form C type).
3. Environmentally friendly

Cadmium-free contacts and lead-free solder are used.
4. Slim screw terminal socket and PC board terminal socket
Utilizes relay-securing hook for easy relay removal.
One-touch relay removal possible.
Terminal sockets with finger protect function available.
5. Full lineup

We added a TM type that can be built into devices.

TYPICAL APPLICATIONS

Control panels
Power supply units
Molding machines
Machine tools
Welding equipment
Agricultural equipment Office equipment Vending machines Communications equipment Amusement machines, etc.

ORDERING INFORMATION

[^0](VDE under application for TM type.)

TYPES

1. Plug-in type

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
5V DC	AHN12005	AHN22005
6V DC	AHN12006	AHN22006
12 V DC	AHN12012	AHN22012
24 V DC	AHN12024	AHN22024
48 V DC	AHN12048	AHN22048
100 V DC	AHN120X0	AHN220X0
110 V DC	AHN120X1	AHN220X1
12 V AC	AHN11012	AHN21012
24 V AC	AHN11024	AHN21024
$100 / 110 \mathrm{~V}$ AC	AHN110X0	AHN210X0
$110 / 120 \mathrm{~V} \mathrm{AC}$	AHN110X1	AHN210X1
$200 / 220 \mathrm{~V}$ AC	AHN110Y0	AHN210Y0
$220 / 240 \mathrm{~V} \mathrm{AC}$	AHN110Y2	AHN210Y2

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.

3. Plug-in type (with diode)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
5V DC	AHN12205	AHN22205
6V DC	AHN12206	AHN22206
12V DC	AHN12212	AHN22212
$24 V$ DC	AHN12224	AHN22224
$48 V$ DC	AHN12248	AHN22248
100V DC	AHN122X0	AHN222X0
110V DC	AHN122X1	AHN222X1

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.
2. Plug-in type (with LED indication)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
5V DC	AHN12105	AHN22105
6V DC	AHN12106	AHN22106
12 V DC	AHN12112	AHN22112
24 V DC	AHN12124	AHN22124
48 V DC	AHN12148	AHN22148
100V DC	AHN121X0	AHN221X0
110 V DC	AHN121X1	AHN221X1
12 V AC	AHN11112	AHN21112
24 V AC	AHN11124	AHN21124
$100 / 110 \mathrm{~V}$ AC	AHN111X0	AHN211X0
$110 / 120 \mathrm{~V}$ AC	AHN111X1	AHN211X1
$200 / 220 \mathrm{~V}$ AC	AHN111Y0	AHN211Y0
$220 / 240 \mathrm{~V}$ AC	AHN111Y2	AHN211Y2
Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.		

4. Plug-in type (with diode and LED indication)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
5V DC	AHN12305	AHN22305
6V DC	AHN12306	AHN22306
12V DC	AHN12312	AHN22312
$24 V$ DC	AHN12324	AHN22324
$48 V$ DC	AHN12348	AHN22348
100V DC	AHN123X0	AHN223X0
110V DC	AHN123X1	AHN223X1

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.

5. TM type

Coil voltage	1 Form A
	Part No.
5 V DC	AHN36005
6 V DC	AHN36006
12 V DC	AHN36012
24 V DC	AHN36024
48 V DC	AHN36048
100 V DC	AHN360X0
110 V DC	AHN360X1
12 V AC	AHN35012
24 V AC	AHN35024
$100 / 110 \mathrm{~V} \mathrm{AC}$	AHN350X0
$110 / 120 \mathrm{~V} \mathrm{AC}$	AHN350X1
$200 / 220 \mathrm{~V}$ AC	AHN350Y0
$220 / 240 \mathrm{~V} \mathrm{AC}$	AHN350Y2

Note: Packing quantity; Carton: 50 pcs, Case: 500 pcs.

6. Accessories

Type	No. of poles		Item
Screw terminal socket	1-pole	HN1 screw terminal socket	Part No.
		HN1 screw terminal socket (Finger protect type)	AHNA11
	2-pole	HN2 screw terminal socket	AHNA11P
		HN2 screw terminal socket (Finger protect type)	AHNA21
PC board terminal socket	1-pole	HN1 PC board terminal socket	AHNA21P
	2-pole	HN2 PC board terminal socket	AHNA13

[^1]
- Specifications

Item		Performance					
Type		HN1 screw terminal socket	HN1 screw terminal socket (Finger protect type)	HN1 PC board terminal socket	HN2 screw terminal socket	HN2 screw terminal socket (Finger protect type)	HN2 PC board terminal socket
Contact arrangement		1 Form C			2 Form C		
Max. continuous current (Ambient temperature:$\left.-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+158^{\circ} \mathrm{F}\right)$		16A*	10A	10A	5A	5A	5A
Initial breakdown voltage	Between open contacts	1, 000 Vrms for 1 min . (Detection current: 10 mA)					
	Between contact sets	-			3, 000 Vrms for 1 min . (Detection current: 10 mA)		
	Between contact and coil	5, 000 Vrms for 1 min . (Detection current: 10 mA)					
Initial insulation resistance		$1,000 \mathrm{M} \Omega$ between each terminal (500V DC)					

* When using with current of 16 A (for HN1 screw terminal socket), the maximum ambient temperature is $50^{\circ} \mathrm{C}$.

When using between $50^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$, please reduce by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.
Notes: 1. In order to prevent breakage and disfiguring, the screw tightening torque for the terminal socket should be within the range of 0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$. 2. When attaching the terminal socket directly to a chassis, please use the metric coarse thread screw. - AHNA11 and AHNA21: M3 $\times 16$, - AHNA11P and AHNA21P: M3 $\times 30$

RATING

1. Coil data
1) DC coils

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal coil current $[\pm 20 \%]$	Coil resistance (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$70 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$15 \% \mathrm{~V}$ or more of nominal voltage (Initial)	106.4 mA	47Ω [$\pm 10 \%$]	0.53W	$170 \% \mathrm{~V}$ of nominal voltage
6V DC			88.2 mA	$68 \Omega[\pm 10 \%]$		
12 V DC			44.4 mA	$270 \Omega[\pm 10 \%]$		
24V DC			22.0 mA	1,090 Ω [$\pm 10 \%$]		
48 V DC			11.0 mA	$4,350 \Omega[\pm 10 \%]$		
100 V DC			5.3 mA	18,870 ${ }^{\text {[}} \pm 10 \%$]		
110V DC			4.8 mA	22,830 Ω [$\pm 10 \%$]		

2) AC coils $(50 / 60 \mathrm{~Hz})$

Coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal coil current [$\pm 20 \%$]		Nominal operating power		Max. Allowable voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			50 Hz	60 Hz	50 Hz	60 Hz	
12 V AC	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	93 mA	75 mA	$\begin{aligned} & \text { Approx. } \\ & 1.1 \text { to } 1.4 \mathrm{~V} \mathrm{~A} \end{aligned}$	Approx.$0.9 \text { to } 1.2 \mathrm{~V} \mathrm{~A}$	$140 \% \mathrm{~V}$ of nominal voltage
24 V AC			46.5 mA	37.5 mA			
100/110V AC			11.0/13.0mA	9.0/10.6mA			
110/120V AC			10.0/11.8mA	$8.2 / 9.7 \mathrm{~mA}$			
200/220V AC			$5.5 / 6.5 \mathrm{~mA}$	$4.5 / 5.3 \mathrm{~mA}$			
220/240V AC			$5.0 / 5.9 \mathrm{~mA}$	4.1/4.8mA			

2. Specifications (Plug-in Standard type and TM type)

Characteristics	Item		Specifications		
Contact	Arrangement		1 Form C	2 Form C	1 Form A (TM type)
	Initial contact resistance, max		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgSnO_{2} type	Au-flashed AgNi type	AgSnO_{2} type
Rating	Nominal switching capacity (resistive load)		10A 250V AC, 10A 30V DC	5A 250V AC, 5A 30V DC	16A 250V AC, 16A 30V DC
	Max. switching power (resistive load)		4,000VA, 300W	1,250VA, 150W	4,000VA, 480W
	Max. switching voltage		$250 \mathrm{~V} \mathrm{AC}, \mathrm{30V} \mathrm{DC}$		
	Max. switching current		16A (at AC load), 10A (at DC load)	5A	16A
	Nominal operating power		0.53W, 0.9VA		
	Min. switching capacity (Reference value)*		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$	1mA 1V DC	100mA 5V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.		
	Breakdown voltage (Initial)	Between open contacts	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)		
		Between contact sets	-	3,000 Vrms for 1 min . (Detection current: 10mA.)	-
		Between contact and coil	5,000 Vrms for 1 min . (Detection current: 10mA.)		
	Temperature rise (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)				
	Operate time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{* 2}$		Max. 15ms (Nominal voltage applied to the coil, excluding contact bounce time.)		
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)*2		Max. 5ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)/ Max. 20ms (with diode)		
Mechanical characteristics	Shock resistance	Functional	Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pu	of sine wave: 6 ms.$)$	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)		
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm		
Expected life	Mechanical		AC: Min. 107; DC: Min. 2×10^{7} (at 300 cpm)		
	Electrical (resistive load)		Min. 10^{5} (at 20 cpm)		Min. 10^{5} (at 10 cpm)
Conditions	Conditions for operation, transport and storage ${ }^{{ }^{3}}$ (Not freezing and condensing at low temperature)		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)		
	Max. Operating speed		20 cpm (at rated load)		10 cpm (at rated load)
Unit weight			Approx. $19 \mathrm{~g} \mathrm{}$.	Approx. 17 g .60 oz	Approx. $19 \mathrm{~g} \mathrm{}$.

Notes: *1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
*2 For the AC coil types, the operate/release time will differ depending on the phase.
*3 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

REFERENCE DATA

1-(1). Max. switching capacity (1 Form C and 1 Form A)

1-(2). Max. switching capacity (2 Form C)

2-(1). Coil temperature rise (1 Form C/AC and 1 Form A/AC types)
Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

2-(2). Coil temperature rise (1 Form C/DC and 1 Form A/DC types)
Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

2-(3). Coil temperature rise (2 Form C/AC type) Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

2-(4). Coil temperature rise (2 Form C/DC type) Measured portion: Inside the coil
Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

DIMENSIONS (Unit mm inch)

1. Plug-in type 1 Form C

External dimensions

Dimension :
Max. 1mm . 039 inch:
1 to 3 mm 039 to
Min. 3mm . 118 inch:
$\pm 0.3+.012$

Schematic (Bottom view)
Standard type

With LED AC type
With LED DC type

With Diode type

External dimensions

Schematic (Bottom view) Standard type

Max. 1 mm .039 inch:
Tolerance
$\pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch:

With Diode and LED type

2. Plug-in type 2 Form C

3. TM type 1 Form A

Notes: 1. When mounting the TM type, since the cover is made from polycarbonate, please use a washer in order to prevent damage, deformation, and loosening.
2. Suitable tightening torque is 0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$.

External dimensions

Dimension
Tolerance Max. 1 mm .039 inch: $\quad \pm 0.1 \pm .004$ 1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$ Min. 3mm . 118 inch: $\pm 0.3 \pm .012$
4. HN1 Screw terminal socket

5. HN1 Screw terminal socket (Finger protect type)

Note: Use rod or plate terminals, etc. (You cannot use Y -shape or round terminals.)

6. HN2 Screw terminal socket

7. HN2 Screw terminal socket (Finger protect type)

8. HN1 PC board terminal socket

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Dimension :
Tolerance
Max. 1mm . 039 inch: $\quad \pm 0.1 \pm .004$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$

9. HN2 PC board terminal socket

NOTES

1. Coil operating power

To ensure proper operation, the voltage applied to both terminals of the coil should be $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$) the rated operating voltage of the coil.
Also, be aware that the pick-up and dropout voltages will fluctuate depending on the ambient temperature and operating conditions.

2. LED indications

The light of the light emitting diode is what displays operation. If voltage remains after relay dropout, the LED might illuminate briefly.

3. Switching lifetime

The switching lifetime is defined under the standard test condition specified in the JIS C 5442(*2) standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to 95° F, humidity 25 to 75% R.H.). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase,ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
2) High-frequency load-operating When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.
Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity
4. Direct mount type (TM type)

If the current to the connection terminal will exceed 10 A , we recommend connecting with solder. If you are going to use a tab terminal when the current will exceed 10 A , make sure to verify the temperature rise on the receptacle side under actual conditions before using.
5. Conditions for operation, transport and storage

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below. Temperature and humidity range for usage, transport, and storage

(3) Atmospheric pressure: 86 to 106 kPa

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

3) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
6. About the relay-securing hook

- Screw terminal socket

1) Installation of the securing hook is easily performed by pressing upward in the direction of the arrows.

2) Removal of the securing hook is easily performed by releasing the hook and pressing down, as shown in the figure.

- Screw terminal socket
(Finger protect type)

1) Install the securing hook by pressing the parts with arrows after inserting the relay.

2) Removal of the relay is easily performed by pressing the parts with arrows.

- PC board terminal socket

1) Installation of the securing hook is easily performed by pressing upward in the direction of the arrows.

2) Removal of the securing hook is easily performed by releasing the hook and pressing down, as shown in the figure.

* To prevent damage and deformity, please use the relay-securing hook at 10 N or less.

7. Diode characteristics

1) Reverse breakdown voltage:

Min. 1,000V (with diode type)
Min. 400V (with diode and LED indication type)

8. Diode type

Since the diode inside the relay coil are designed to absorb the counter emf, the element may be damaged if a large surge, etc., is applied to the diode. If there is the possibility of a large surge voltage from the outside, please implement measures to absorb it.

9. Installation

If you will be installing adjacent to other relays, please keep a distance of at least 5 mm from the relay.

For Cautions for Use, see Relay Technical Information.

[^0]: Note: Products conform to UL/C-UL and VDE, as standard.

[^1]: Notes: 1. Packing quantity: 10pcs. (Carton), 100pcs. (Case)
 2. Products conform to UL/C-UL, as standard.

