
101 Innovation Drive
San Jose, CA 95134
www.altera.com

DSP Builder Handbook Volume 2: DSP Builder Standard
Blockset

Document Version: 1.0
Document Date: June 2010

HB_DSPB_STD-1.0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

Contents

Section Revision Dates

Section I. DSP Builder Standard Blockset User Guide

About This Section
Revision History . iii

Chapter 1. About DSP Builder
Release Information . 1–1
Device Family Support . 1–1
Memory Options . 1–1
Features . 1–2
General Description . 1–3

High-Speed DSP with Programmable Logic . 1–3
Interoperability with the Advanced Blockset . 1–3

Chapter 2. Getting Started
Design Flow . 2–1
Creating the Amplitude Modulation Model . 2–4

Create a New Model . 2–4
Add the Sine Wave Block . 2–5
Add the SinIn Block . 2–6
Add the Delay Block . 2–7
Add the SinDelay and SinIn2 Blocks . 2–8
Add the Mux Block . 2–9
Add the Random Bitstream Block . 2–9
Add the Noise Block . 2–10
Add the Bus Builder Block . 2–11
Add the GND Block . 2–11
Add the Product Block . 2–11
Add the StreamMod and StreamBit Blocks . 2–12
Add the Scope Block . 2–13
Add a Clock Block . 2–14

Simulating the Model in Simulink . 2–15
Compiling the Design . 2–16
Performing RTL Simulation . 2–17
Adding the Design to a Quartus II Project . 2–20

Creating a Quartus II Project . 2–20
Add the DSP Builder Design to the Project . 2–21

Chapter 3. Design Rules and Procedures
DSP Builder Naming Conventions . 3–1
Using a MATLAB Variable . 3–2
Fixed-Point Notation . 3–2

Binary Point Location in Signed Binary Fractional Format . 3–3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–iv

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

Bit Width Design Rule . 3–4
Data Width Propagation . 3–4

Tapped Delay Line . 3–5
Arithmetic Operation . 3–6

Frequency Design Rules . 3–8
Single Clock Domain . 3–8
Multiple Clock Domains . 3–9
Using Clock and Clock_Derived Blocks . 3–10
Clock Assignment . 3–11
Using the PLL Block . 3–14

Using Advanced PLL Features . 3–15
Timing Semantics Between Simulink and HDL Simulation . 3–16

Simulink Simulation Model . 3–16
HDL Simulation Models . 3–16
Startup & Initial Conditions . 3–17
DSP Builder Global Reset Circuitry . 3–17
Reference Timing Diagram . 3–18

Signal Compiler and TestBench Blocks . 3–19
Design Flows for Synthesis, Compilation and Simulation . 3–19

Hierarchical Design . 3–20
Goto and From Block Support . 3–21
Create Black Box and HDL Import . 3–22
Using a MATLAB Array or .hex File to Initialize a Block . 3–22
Comparison Utility . 3–22
Adding Comments to Blocks . 3–22
Adding Quartus II Constraints . 3–23
Displaying Port Data Types . 3–24
Displaying the Pipeline Depth . 3–24
Updating HDL Import Blocks . 3–24
Analyzing the Hardware Resource Usage . 3–25
Loading Additional ModelSim Commands . 3–27
Making Quartus II Assignments to Block Entity Names . 3–27

Chapter 4. Using MegaCore Functions
Installing MegaCore Functions . 4–1
Updating MegaCore Function Variation Blocks . 4–2
Design Flow Using MegaCore Functions . 4–2

Adding the MegaCore Function in the Simulink Model . 4–2
Parameterizing the MegaCore Function Variation . 4–3
Generating the MegaCore Function Variation . 4–3
Connecting the MegaCore Function Variation Block to the Design . 4–3
Simulating the MegaCore Function Variation in the Model . 4–3

MegaCore Function Design Example . 4–3
Creating a New Simulink Model . 4–3
Adding the FIR Compiler Function . 4–4
Parameterizing the FIR Compiler Function . 4–5
Generating the FIR Compiler Function Variation . 4–5
Adding Stimulus and Scope Blocks . 4–5
Simulating the Design in Simulink . 4–8
Compiling the Design . 4–9
Performing RTL Simulation . 4–10

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

v

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

MegaCore Functions Design Issues . 4–13
Simulink Files Associated with a MegaCore Function . 4–13
Simulating MegaCore Functions That Have a Reset Port . 4–14
Setting the Device Family for MegaCore Functions . 4–14

Chapter 5. Using HIL
HIL Design Flow . 5–1
HIL Requirements . 5–2
HIL Design Example . 5–3
Burst and Frame Modes . 5–6

Using Burst Mode . 5–7
Using Frame Mode . 5–8

Troubleshooting HIL Designs . 5–10
Fails to Load the Specified Quartus II Project . 5–10
No Inputs Found From the Quartus II Project . 5–10
No Outputs Found From the Quartus II Project . 5–10
HIL Design Stays in Reset During Simulation . 5–10
HIL Compilation Appears to Hang . 5–10
Scan JTAG Fails to Find Correct Cable or Device . 5–10

Chapter 6. Performing SignalTap II Logic Analysis
SignalTap II Design Flow . 6–1
SignalTap II Nodes . 6–2
SignalTap II Trigger Conditions . 6–2

SignalTap II Example Designs . 6–2
Opening the Design Example . 6–3
Adding the Configuration and Connector Blocks . 6–3
Specifying the Nodes to Analyze . 6–5
Turning On the SignalTap II Option in Signal Compiler . 6–6
Specifying the Trigger Levels . 6–7
Performing SignalTap II Analysis . 6–7

Chapter 7. Using the Interfaces Library
Avalon-MM Interface . 7–1
Avalon-MM Interface Blocks . 7–2

Avalon-MM Slave Block . 7–2
Avalon-MM Master Block . 7–4
Wrapped Blocks . 7–5

Avalon-MM Write FIFO . 7–6
Avalon-MM Read FIFO Buffer . 7–7

Avalon-MM Interface Blocks Design Example . 7–8
Adding Avalon-MM Blocks to the Design Example . 7–8
Verifying the Design . 7–11
Running Signal Compiler . 7–12
Instantiating the Design in SOPC Builder . 7–12
Compiling the Quartus II Project . 7–14
Testing the DSP Builder Block from Software . 7–15

Avalon-MM FIFO Design Example . 7–16
Opening the Design Example . 7–16
Compiling the Design . 7–17
Instantiating the Design in SOPC Builder . 7–18

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–vi

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

Avalon-ST Interface . 7–20
Avalon-ST Packet Formats . 7–21
Avalon-ST Packet Format Converter . 7–22

Chapter 8. Using Black Boxes for HDL Subsystems
Implicit Black Box Interface . 8–1
Explicit Black-Box Interface . 8–1

HDL Import Design Example . 8–1
Importing Existing HDL Files . 8–2
Simulating the HDL Import Model using Simulink . 8–4

Subsystem Builder Design Example . 8–6
Creating a Black Box System . 8–6
Building the Black-Box SubSystem Simulation Model . 8–8
Simulating the Subsystem Builder Model . 8–11
Adding VHDL Dependencies to the Quartus II Project and ModelSim . 8–11
Simulate the Design in ModelSim . 8–12

Chapter 9. Using Custom Library Blocks
Creating a Custom Library Block . 9–1

Creating a Library Model File . 9–2
Building the HDL Subsystem Functionality . 9–2
Defining Parameters Using the Mask Editor . 9–3
Linking the Mask Parameters to the Block Parameters . 9–4
Making the Library Block Read Only . 9–4
Adding the Library to the Simulink Library Browser . 9–5

Synchronizing a Custom Library . 9–6

Chapter 10. Adding a Board Library
Creating a New Board Description . 10–1

Predefined Components . 10–1
Component Types . 10–1

Component Description File . 10–2
Example Component Description File . 10–3

Board Description File . 10–4
Header Section . 10–4
Board Description Section . 10–4

Building the Board Library . 10–6

Chapter 11. Using the State Machine Library
Using the State Machine Table Block . 11–2
Using the State Machine Editor Block . 11–7
Integration with Source Control Systems . 12–1
HDL Import . 12–2
MegaCore Functions . 12–2
Memory Initialization Files . 12–2
Exporting HDL . 12–2

Using Exported HDL . 12–4
Migration of DSP Builder (Standard Blockset) Files to a New Location . 12–4
Integration of Multiple Models in a Top-Level Quartus II Project . 12–5

Design Example . 12–6

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

vii

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

Troubleshooting Issues . 13–1
Signal Compiler Cannot Checkout a Valid License . 13–1

Verifying That Your DSP Builder Licensing Functions Properly . 13–2
Verifying That the LM_LICENSE_FILE Variable Is Set Correctly . 13–3
Verifying the Quartus II Path . 13–3
If You Still Cannot Get a License . 13–4

Loop Detected While Propagating Bit Widths . 13–4
The MegaCore Functions Library Does Not Appear in Simulink . 13–4
The Synthesis Flow Does Not Run Properly . 13–5

Check the Software Paths . 13–5
DSP Development Board Troubleshooting . 13–5
SignalTap II Analysis Appears to Hang . 13–5
Error if Output Block Connected to an Altera Synthesis Block . 13–5
Warning if Input/Output Blocks Conflict with clock or aclr Ports . 13–6
Wiring the Asynchronous Clear Signal . 13–6
Error Issues when a Design Includes Pre-v7.1 Blocks . 13–6
Creating an Input Terminator for Debugging a Design . 13–6
A Specified Path Cannot be Found or a File Name is Too Long . 13–7
Incorrect Interpretation of Number Format in Output from MegaCore Functions 13–7
Simulation Mismatch For FIR Compiler MegaCore Function . 13–7
Simulation Mismatch After Changing Signals or Parameters . 13–7
Unexpected Exception Error when Generating Blocks . 13–7
VHDL Entity Names Change if a Model is Modified . 13–8
Algebraic Loop Causes Simulation to Fail . 13–8
Parameter Entry Problems in the DSP Block Dialog Box . 13–9
DSP Builder System Not Detected in SOPC Builder . 13–9
MATLAB Runs Out of Java Virtual Machine Heap Memory . 13–9
ModelSim Fails to Invoke From DSP Builder . 13–9
Unexpected End of File Error When Comparing Simulation Results . 13–10

Section II. DSP Builder Standard Blockset Libraries

About This Section
Revision History . iii

Chapter 1. AltLab Library
BP (Bus Probe) . 1–2
Clock . 1–2
Clock_Derived . 1–3
Display Pipeline Depth . 1–4
HDL Entity . 1–4
HDL Import . 1–5
HDL Input . 1–7
HDL Output . 1–8
HIL (Hardware in the Loop) . 1–9
Quartus II Global Project Assignment . 1–11
Quartus II Pinout Assignments . 1–11
Resource Usage . 1–12
Signal Compiler . 1–13
SignalTap II Logic Analyzer . 1–14
SignalTap II Node . 1–15
Subsystem Builder . 1–15
TestBench . 1–17

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–viii

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

VCD Sink . 1–18

Chapter 2. Arithmetic Library
Barrel Shifter . 2–2
Bit Level Sum of Products . 2–3
Comparator . 2–5
Counter . 2–6
Differentiator . 2–8
Divider . 2–9
DSP . 2–10
Gain . 2–15
Increment Decrement . 2–17
Integrator . 2–19
Magnitude . 2–20
Multiplier . 2–21
Multiply Accumulate . 2–23
Multiply Add . 2–25
Parallel Adder Subtractor . 2–27
Pipelined Adder . 2–29
Product . 2–31
SOP Tap . 2–33
Square Root . 2–35
Sum of Products . 2–36

Chapter 3. Complex Type Library
Butterfly . 3–2
Complex AddSub . 3–4
Complex Conjugate . 3–6
Complex Constant . 3–8
Complex Delay . 3–9
Complex Multiplexer . 3–10
Complex Product . 3–11
Complex to Real-Imag . 3–13
Real-Imag to Complex . 3–14

Chapter 4. Gate & Control Library
Binary to Seven Segments . 4–2
Bitwise Logical Bus Operator . 4–3
Case Statement . 4–5
Decoder . 4–7
Demultiplexer . 4–8
Flipflop . 4–10
If Statement . 4–11
LFSR Sequence . 4–14
Logical Bit Operator . 4–16
Logical Bus Operator . 4–17
Logical Reduce Operator . 4–19
Multiplexer . 4–20
Pattern . 4–22
Single Pulse . 4–23

Chapter 5. Interfaces Library
Avalon-MM Master . 5–3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

ix

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

Avalon-MM Slave . 5–6
Avalon-MM Read FIFO . 5–9
Avalon-MM Write FIFO . 5–11
Avalon-ST Packet Format Converter . 5–12

PFC Data Flow . 5–15
Packet Format Description . 5–15
Packet Mapping . 5–17

Multi-Packet Mapping . 5–17
Error Handling . 5–18

Avalon-ST Sink . 5–18
Avalon-ST Source . 5–20

Chapter 6. IO & Bus Library
AltBus . 6–2
Binary Point Casting . 6–4
Bus Builder . 6–5
Bus Concatenation . 6–7
Bus Conversion . 6–8
Bus Splitter . 6–9
Constant . 6–10
Extract Bit . 6–12
Global Reset . 6–13
GND . 6–13
Input . 6–14
Non-synthesizable Input . 6–15
Non-synthesizable Output . 6–16
Output . 6–17
Round . 6–18
Saturate . 6–20
VCC . 6–21

Chapter 7. Rate Change Library
Multi-Rate DFF . 7–1
PLL . 7–3
Tsamp . 7–4

Chapter 8. Simulation Library
External RAM . 8–1
Multiple Port External RAM . 8–3

Chapter 9. Storage Library
Delay . 9–2
Down Sampling . 9–3
Dual-Clock FIFO . 9–4
Dual-Port RAM . 9–7
FIFO Buffer . 9–10
LUT (Look-Up Table) . 9–11
Memory Delay . 9–13
Parallel To Serial . 9–14
ROM . 9–16
Serial To Parallel . 9–18
Shift Taps . 9–20
Single-Port RAM . 9–21

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–x

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

True Dual-Port RAM . 9–24
Up Sampling . 9–28

Chapter 10. State Machine Functions Library
State Machine Editor . 10–1
State Machine Table . 10–3

Design Rule Checks . 10–5

Chapter 11. Boards Library
Board Configuration . 11–1

PLL Output Clocks . 11–1
ADC Control Signals . 11–2

Cyclone II DE2 Board . 11–2
Cyclone II EP2C35 DSP Board . 11–3
Cyclone II EP2C70 DSP Board . 11–4
Cyclone III EP3C25 Starter Board . 11–6
Cyclone III EP3C120 DSP Board . 11–6

Setting Up the Mezzanine Card Test Designs . 11–9
Stratix EP1S25 DSP Board . 11–11
Stratix EP1S80 DSP Board . 11–13
Stratix II EP2S60 DSP Board . 11–14
Stratix II EP2S180 DSP Board . 11–15
Stratix II EP2S90GX PCI Express Board . 11–17
Stratix III EP3SL150 DSP Board . 11–18

Setting Up the Mezzanine Card Test Designs . 11–20

Chapter 12. MegaCore Functions Library

Chapter 13. Design Examples
Amplitude Modulation . 13–3
HIL Frequency Sweep . 13–3
Switch Control . 13–4
Avalon-MM Interface . 13–4
Avalon-MM FIFO . 13–4
HDL Import . 13–5
Subsystem Builder . 13–5
Custom Library . 13–5
State Machine Table . 13–5
CIC Interpolation (3 Stages x75) . 13–6
CIC Decimation (3 Stages x75) . 13–6
Convolution Interleaver Deinterleaver . 13–6
IIR Filter . 13–6
32 Tap Serial FIR Filter . 13–6
MAC based 32 Tap FIR Filter . 13–7
Color Space Converter . 13–7
Farrow Based Resampler . 13–7
CORDIC, 20 bits Rotation Mode . 13–8
Imaging Edge Detection . 13–8
Quartus II Assignment Setting Example . 13–8
SignalTap II Filtering Lab . 13–8
SignalTap II Filtering Lab with DAC to ADC Loopback . 13–9
Cyclone II DE2 Board . 13–9
Cyclone II EP2C35 DSP Board . 13–9

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

xi

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

Cyclone II EP2C70 DSP Board . 13–9
Cyclone III EP3C25 Starter Board . 13–9
Cyclone III EP3C120 DSP Board (LED/PB) . 13–9
Cyclone III EP3C120 DSP Board (7-Seg) . 13–10
Cyclone III EP3C120 DSP Board (HSMC A) . 13–10
Cyclone III EP3C120 DSP Board (HSMC B) . 13–10
Stratix EP1S25 DSP Board . 13–10
Stratix EP1S80 DSP Board . 13–10
Stratix II EP2S60 DSP Board . 13–11
Stratix II EP2S180 DSP Board . 13–11
Stratix II EP2S90GX PCI Express Board . 13–11
Stratix III EP3SL150 DSP Board (LED/PB) . 13–11
Stratix III EP3SL150 DSP Board (7-Seg) . 13–11
Stratix III EP3SL150 DSP Board (HSMC A) . 13–11
Stratix III EP3SL150 DSP Board (HSMC B) . 13–12
Combined Blockset Example . 13–12

Chapter 14. Categorized Block List
AltLab . 14–1
Arithmetic . 14–1
Complex Type . 14–2
Gate & Control . 14–2
Interfaces . 14–3
IO & Bus . 14–3
Rate Change . 14–4
Simulation Blocks Library . 14–4
State Machine Functions . 14–4
Storage . 14–4
Boards . 14–5

Additional Information
How to Contact Altera . Info–1
Typographic Conventions . Info–1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–xii

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

Section Revision Dates

The following table shows the revision dates for the sections in this volume.

Section Version Date Part Number

DSP Builder Standard Blockset User Guide 1.0 June 2010 HB_DSPA_STD_UG-1.0

DSP Builder Standard Blockset Libraries 1.0 June 2010 HB_DSPA_STD_LIB-1.0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

xiv Section Revision Dates

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Section I. DSP Builder Standard Blockset User Guide

Document Version: 1.0
Document Date: June 2010

HB_DSPA_STD_UG-1.0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

About This Section

Revision History
The following table shows the revision history for this section.

Date Version Changes Made

June 2010 1.0 First published.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

iv About This Section
Revision History

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

1. About DSP Builder

Release Information
Table 1–1 provides information about this release of DSP Builder.

Device Family Support
DSP Builder supports the following Altera® device families:

■ Arria™ GX

■ Arria II GX

■ Cyclone®

■ Cyclone II

■ Cyclone III.

■ Stratix®

■ Stratix GX

■ Stratix II

■ Stratix II GX

■ Stratix III

■ Stratix IV

Memory Options
A number of the blocks in the Storage library allow you to choose the required
memory block type. In general, DSP Builder lists all supported memory block types as
options although some may not be available for all device families.

Table 1–2 on page 1–1 shows the device families that support each memory block
type.

Table 1–1. DSP Builder Release Information

Item Description

Version 10.0

Release Date June 2010

Ordering Code IPT-DSPBUILDER

Table 1–2. Supported Memory Block Types

Memory Block Type Device Family

M144K Stratix IV, Stratix III, Arria II GX

M9K Stratix IV, Stratix III, Cyclone III, Arria II GX

MLAB Stratix IV, Stratix III, Arria II GX

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–2 Chapter 1: About DSP Builder
Features

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

f For more information about each memory block type, refer to the Quartus II Help.

Features
DSP Builder standard blockset supports the following features:

■ Links The MathWorks MATLAB (Signal Processing ToolBox and Filter Design
Toolbox) and Simulink software with the Altera® Quartus® II software.

■ Generates VHDL testbench and controls Quartus II compilation.

■ Provides a variety of fixed-point arithmetic and logical operators for use with the
Simulink software.

■ Enables rapid prototyping using Altera DSP development boards.

■ Supports the SignalTap® II logic analyzer—an embedded signal analyzer that
probes signals from the Altera device on the DSP board and imports the data into
the MATLAB workspace to ease visual analysis.

■ Allows HDL import of VHDL or Verilog HDL design entities and HDL defined in
a Quartus II project file.

■ Supports hardware-in-the loop (HIL) to enable FPGA hardware accelerated
cosimulation with Simulink.

■ Supports Avalon® Memory-Mapped (Avalon-MM) interfaces including user
configurable blocks, which you can use to build custom logic that works with the
Nios® II processor and other SOPC Builder designs.

■ Supports Avalon Streaming (Avalon-ST) interfaces including an Packet Format
Converter block and configurable Avalon-ST sink and Avalon-ST source blocks.

■ Allows you to instance Altera DSP MegaCore® functions in a DSP Builder design
model.

■ Supports tabular and graphical state machine editing.

f For information about new features and errata in this release, refer to the DSP Builder
Release Notes and Errata.

M-RAM Stratix II GX, Stratix II, Stratix GX, Stratix, Arria GX

M4K Stratix II GX, Stratix II, Stratix GX, Stratix, Arria GX, Cyclone II, Cyclone

M512 Stratix II GX, Stratix II, Stratix GX, Stratix, Arria GX

Table 1–2. Supported Memory Block Types

Memory Block Type Device Family

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: About DSP Builder 1–3
General Description

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

General Description
Digital signal processing (DSP) system design in Altera programmable logic devices
(PLDs) requires both high-level algorithm and hardware description language (HDL)
development tools.

The Altera DSP Builder integrates these tools by combining the algorithm
development, simulation, and verification capabilities of The MathWorks MATLAB
and Simulink system-level design tools with VHDL and Verilog HDL design flows,
including the Altera Quartus II software.

DSP Builder shortens DSP design cycles by helping you create the hardware
representation of a DSP design in an algorithm-friendly development environment.

You can combine existing MATLAB functions and Simulink blocks with Altera
DSP Builder blocks and Altera intellectual property (IP) MegaCore functions to link
system-level design and implementation with DSP algorithm development. In this
way, DSP Builder allows system, algorithm, and hardware designers to share a
common development platform.

The DSP Builder Signal Compiler block reads Simulink Model Files (.mdl) that
contain other DSP Builder blocks and MegaCore functions. Signal Compiler then
generates the VHDL files and Tcl scripts for synthesis, hardware implementation, and
simulation.

High-Speed DSP with Programmable Logic
Programmable logic offers compelling performance advantages over dedicated DSP
processors. Think of programmable logic as an array of elements, each of which you
can configure as a complex processor routine.

You can link these routines together in serial (the same way that a DSP processor
executes them), or connect them in parallel. When connected in parallel, they give
many times better performance than standard DSP processors by executing hundreds
of instructions at the same time.

Algorithms that benefit from this improved performance include forward-error
correction (FEC), modulation and demodulation, and encryption.

Interoperability with the Advanced Blockset
DSP Builder includes an optional advanced blockset.

f For more information about the advanced blockset, refer to Volume 3: DSP Builder
Advanced Blockset in the DSP Builder Handbook.

f For more information about the differences between the standard and advanced
blocksets and about design flows that combine both blocksets, refer to Volume 1:
Introduction to DSP Builder in the DSP Builder Handbook.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–4 Chapter 1: About DSP Builder
General Description

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

2. Getting Started

This chapter describes the design flow and a tutorial.

Design Flow
When using DSP Builder, you start by creating a Simulink design model in the
MathWorks software. After you have created your model, you can compile directly in
the Quartus II software, output VHDL files for synthesis and Quartus II compilation,
or generate files for VHDL simulation.

DSP Builder generates VHDL and does not generate Verilog HDL. However, after you
have created a Quartus II project, you can use the quartus_map command in the
Quartus II software to run a simulation netlist flow that generates files for Verilog
HDL simulation.

f For information about this flow, refer to the Quartus II help.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–2 Chapter 2: Getting Started
Design Flow

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Figure 2–1 shows the system-level design flow using DSP Builder.

The design flow involves the following steps:

1. Use the MathWorks software to create a model with a combination of Simulink
and DSP Builder blocks.

1 Separate The DSP Builder blocks in your design from the Simulink blocks
by Input and Output blocks from the DSP Builder IO and Bus library.

2. Include a Clock block from the DSP Builder AltLab library to specify the base
clock for your design, which must have a period greater than 1ps but less than 2.1
ms.

1 If no base clock exists in your design, DSP Builder creates a default clock
with a 20ns real-world period and a Simulink sample time of 1. You can
derive additional clocks from the base clock by adding Clock_Derived
blocks.

Figure 2–1. System-Level Design Flow

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–3
Design Flow

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

3. Set a discrete (no continuous states) solver in Simulink. Choose a Fixed-step solver
type if you are using a single clock domain or a Variable-step type if you use
multiple clock domains.

To set the solver options, click Configuration Parameters on the Simulation menu
to open the Configuration Parameters dialog box and select the Solver page
(Figure 2–2).

f For detailed information about solver options, refer to the description of
the “Solver Pane” in the Simulink Help.

4. Simulate your model in Simulink using a Scope block to monitor the results.

5. Run Signal Compiler to setup RTL simulation and synthesis.

6. Perform RTL simulation. DSP Builder supports an automated flow for the
ModelSim software (using the TestBench block). You can also use the generated
VHDL for manual simulation in other simulation tools.

7. Use the output files generated by the DSP Builder Signal Compiler block to
perform RTL synthesis. Alternatively, you can synthesize the VHDL files manually
using other synthesis tools.

8. Compile your design in the Quartus II software.

9. Download to a hardware development board and test.

For an automated design flow, the Signal Compiler block generates VHDL and Tcl
scripts for synthesis in the Quartus II software. The Tcl scripts let you perform
synthesis and compilation automatically in the MATLAB and Simulink environment.
You can synthesize and simulate the output files in other software tools without the
Tcl scripts. In addition, the Testbench block generates a testbench and supporting
files for VHDL simulation.

Figure 2–2. Configuration Parameters for Simulation

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–4 Chapter 2: Getting Started
Creating the Amplitude Modulation Model

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

f For information about controlling the DSP Builder design flow using Signal
Compiler, refer to “Design Flows for Synthesis, Compilation and Simulation” on
page 3–19.

f For more information about the blocks in the DSP Builder blockset, refer to the DSP
Builder Standard Blockset Libraries section in volume 2 of the DSP Builder Handbook.

Creating the Amplitude Modulation Model
This tutorial uses an amplitude modulation design example, singen.mdl, to
demonstrate the DSP Builder design flow.

The amplitude modulation design example is a modulator that has a sine wave
generator, a quadrature multiplier, and a delay element. Each block in the model is
parameterizable. When you double-click a block in the model, a dialog box displays
where you can enter the parameters for the block. Click the Help button in these
dialog boxes to view help for a specific block.

This tutorial assumes the following points:

■ You are using a PC running Windows XP.

■ You are familiar with the MATLAB, Simulink, Quartus II, and ModelSim®
software and the software is installed on your PC in the default locations.

■ You have basic knowledge of the Simulink software.

f For information about using the Simulink software, refer to the Simulink
Help.

You can use the singen.mdl model file in <DSP Builder install
path>\DesignExamples\Tutorials\GettingStartedSinMdl or you can create your
own amplitude modulation model.

To create the amplitude modulation model, follow these instructions.

Create a New Model
To create a new model, follow these steps:

1. Start the MATLAB software.

2. On the File menu, point to New, and click Model to create a new model window.

3. In the new model window, on the File menu click Save.

4. Browse to a directory, your working directory, to save the file. This tutorial uses
the working directory <DSP Builder install
path>\DesignExamples\Tutorials\GettingStartedSinMdl\my_SinMdl.

5. Type the file name into the File name box. This tutorial uses the name singen.mdl.

6. Click Save.

7. Click the MATLAB Start button. Point to Simulink and click Library Browser.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–5
Creating the Amplitude Modulation Model

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Add the Sine Wave Block
To add the Sine Wave block, follow these steps:

1. In the Simulink Library Browser, click Simulink and Sources to view the blocks in
the Sources library.

2. Drag and drop a Sine Wave block into your model.

3. Double-click the Sine Wave block in your model to display the Block Parameters
dialog box (Figure 2–3).

4. Set the Sine Wave block parameters (Table 2–1).

Figure 2–3. 500-kHz, 16-Bit Sine Wave Specified in the Sine Wave Dialog Box

Table 2–1. Parameters for the Sine Wave Block

Parameter Value

Sine type Sample based

Time simulation time

Amplitude 2^15–1

Bias 0

Samples per period 80

Number of offset examples 0

Sample time 25e-9

Interpret vector parameters a 1-D On

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–6 Chapter 2: Getting Started
Creating the Amplitude Modulation Model

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

5. Click OK.

1 For information about how you can calculate the frequency., refer to the
equation in “Frequency Design Rules” on page 3–8.

Add the SinIn Block
To add the SinIn block, follow these steps:

1. In the Simulink Library Browser, expand the Altera DSP Builder Blockset folder
to display the DSP Builder libraries (Figure 2–4).

2. Select the IO & Bus library.

Figure 2–4. Altera DSP Builder Folder in the Simulink Library Browser

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–7
Creating the Amplitude Modulation Model

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

3. Drag and drop the Input block from the Simulink Library Browser into your
model. Position the block to the right of the Sine Wave block.

If you are unsure how to position the blocks or draw connection lines, refer to the
completed design (Figure 2–7 on page 2–14).

1 You can use the Up, Down, Right, and Left arrow keys to adjust the position
of a block.

4. Click the text under the block icon in your model. Delete the text Input and type
the text SinIn to change the name of the block instance.

5. Double-click the SinIn block in your model to display the Block Parameters
dialog box.

6. Set the SinIn block parameters (Table 2–2).

7. Click OK.

8. Draw a connection line from the right side of the Sine Wave block to the left side
of the SinIn block by holding down the left mouse button and dragging the
cursor between the blocks.

1 Alternatively, you can select a block, hold down the Ctrl key and click the
destination block to automatically make a connection between the two
blocks.

Add the Delay Block
To add the Delay block, follow these steps:

1. Select the Storage library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop the Delay block into your model and position it to the right of the
SinIn block.

3. Double-click the Delay block in your model to display the Block Parameters
dialog box (Figure 2–5).

4. Type 1 as the Number of Pipeline Stages for the Delay block.

Table 2–2. Parameters for the SinIn Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 16

Specify Clock Off

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–8 Chapter 2: Getting Started
Creating the Amplitude Modulation Model

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

5. Click the Optional Ports tab and set the parameters (Table 2–3).

6. Click OK.

7. Draw a connection line from the right side of the SinIn block to the left side of the
Delay block.

Add the SinDelay and SinIn2 Blocks
To add the SinDelay and SinIn2 blocks, follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop two Output blocks into your model, positioning them to the right
of the Delay block.

3. Click the text under the block symbols in your model. Change the block instance
names from Output and Output1 to SinDelay and SinIn2.

4. Double-click the SinDelay block in your model to display the Block Parameters
dialog box.

5. Set the SinDelay block parameters (Table 2–4).

Figure 2–5. Setting the Downsampling Delay

Table 2–3. Parameters for the Delay Block.

Parameter Value

Clock Phase Selection 01

Use Enable Port Off

Use Synchronous Clear port Off

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–9
Creating the Amplitude Modulation Model

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

6. Click OK.

7. Repeat steps 4 to 6 for the SinIn2 block setting the parameters (Table 2–5).

8. Draw a connection line from the right side of the Delay block to the left side of the
SinDelay block.

Add the Mux Block
To add the Mux block, follow these steps:

1. Select the Simulink Signal Routing library in the Simulink Library Browser.

2. Drag and drop a Mux block into your design, positioning it to the right of the
SinDelay block.

3. Double-click the Mux block in your model to display the Block Parameters dialog
box.

4. Set the Mux block parameters (Table 2–6).

5. Click OK.

6. Draw a connection line from the bottom left of the Mux block to the right side of
the SinDelay block.

7. Draw a connection line from the top left of the Mux block to the line between the
SinIn2 block.

8. Draw a connection line from the SinIn2 block to the line between the SinIn and
Delay blocks.

Add the Random Bitstream Block
To add the Random Bitstream block, follow these steps:

Table 2–4. Parameters for the SinDelay Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 16

External Type Inferred

Table 2–5. Parameters for the SinIn2 Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 16

External Type Inferred

Table 2–6. Parameters for the Mux Block

Parameter Value

Number of Inputs 2

Display Options bar

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–10 Chapter 2: Getting Started
Creating the Amplitude Modulation Model

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

1. Select the Simulink Sources library in the Simulink Library Browser.

2. Drag and drop a Random Number block into your model, positioning it
underneath the Sine Wave block.

3. Double-click the Random Number block in your model to display the Block
Parameters dialog box.

4. Set the Random Number block parameters (Table 2–7).

5. Click OK.

6. Rename the Random Noise block Random Bitstream.

Add the Noise Block
To add the Noise block, follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop an Input block into your model, positioning it to the right of the
Random Bitstream block.

3. Click the text under the block icon in your model. Rename the block Noise.

4. Double-click the Noise block to display the Block Parameters dialog box.

5. Set the Noise block parameters (Table 2–8).

1 The dialog box options change to display only the relevant options when
you select a new bus type.

6. Click OK.

7. Draw a connection line from the right side of the Random Bitstream block to
the left side of the Noise block.

Table 2–7. Parameters for the Random number Block

Parameter Value

Mean 0

Variance 1

Initial seed 0

Sample time 25e–9

Interpret vector parameters as 1-D On

Table 2–8. Parameters for the Noise Block

Parameter Value

Bus Type Single Bit

Specify Clock Off

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–11
Creating the Amplitude Modulation Model

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Add the Bus Builder Block
The Bus Builder block converts a bit to a signed bus. To add the Bus Builder
block, follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Bus Builder block into your model, positioning it to the right
of the Noise block.

3. Double-click the Bus Builder block in your model to display the Block
Parameters dialog box.

4. Set the Bus Builder block parameters (Table 2–9).

5. Click OK.

6. Draw a connection line from the right side of the Noise block to the top left side of
the Bus Builder block.

Add the GND Block
To add the GND block, follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a GND block into your model, positioning it underneath the Noise
block.

3. Draw a connection line from the right side of the GND block to the bottom left side
of the Bus Builder block.

Add the Product Block
To add the Product block, follow these steps:

1. Select the Arithmetic library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Product block into your model, positioning it to the right of the
Bus Builder block and slightly above it. Leave enough space so that you can
draw a connection line under the Product block.

3. Double-click the Product block to display the Block Parameters dialog box.

4. Set the Product block parameters (Table 2–10).

Table 2–9. Parameters for the Bus Builder Block

Parameter Value

Bus Type Signer Integer

[number of bits].[] 2

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–12 Chapter 2: Getting Started
Creating the Amplitude Modulation Model

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

1 The bit width parameters are set automatically when you select Inferred
bus type. The parameters in the Optional Ports and Settings tab of this
dialog box can be left with their default values.

5. Click OK.

6. Draw a connection line from the top left of the Product block to the line between
the Delay and SinDelay blocks.

Add the StreamMod and StreamBit Blocks
To add the StreamMod and StreamBit blocks, follow these steps:

1. Select the IO & Bus library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop two Output blocks into your model, positioning them to the right
of the Product block.

3. Click the text under the block symbols in your model. Change the block instance
names from Output and Output1 to StreamMod and StreamBit.

4. Double-click the StreamMod block to display the Block Parameters dialog box.

5. Set the StreamMod block parameters (Table 2–11).

6. Click OK.

7. Double-click the StreamBit block to display the Block Parameters dialog box
(Figure 2–6).

Table 2–10. Parameters for the Product Block

Parameter Value

Bus Type Inferred

Number of Pipeline Stages 0

Table 2–11. Parameters for the StreamMod Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 19

External Type Inferred

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–13
Creating the Amplitude Modulation Model

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

8. Set the StreamBit block parameters (Table 2–12).

9. Draw connection lines from the right side of the Product block to the left side of
the StreamMod block, and from the right side of the Bus Builder block to the
left side of the StreamBit block.

Add the Scope Block
To add the Scope block, follow these steps:

1. Select the Simulink Sinks library in the Simulink Library Browser.

2. Drag and drop a Scope block into your model and position it to the right of the
StreamMod block.

3. Double-click the Scope block and click the Parameters icon to display the
‘Scope’ parameters dialog box.

4. Set the Scope parameters (Table 2–13).

Figure 2–6. Set a Single-Bit Output Bus

Table 2–12. Parameters for the StreamBit Block

Parameter Value

Bus Type Single Bit

External Type Inferred

Table 2–13. Parameters for the Scope Block

Parameter Value

Number of axes 3

Time range auto

Tick labels bottom axis only

Sampling Decimation 1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–14 Chapter 2: Getting Started
Creating the Amplitude Modulation Model

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

5. Click OK.

6. Close the Scope.

7. Make connections to connect the complete your design as follows:

a. From the right side of the Mux block to the top left side of the Scope block.

b. From the right side of the StreamMod block to the middle left side of the
Scope block.

c. From the right side of the StreamBit block to the bottom left of the Scope
block.

d. From the bottom left of the Product block to the line between the Bus
Builder block and the StreamBit block.

Figure 2–7 shows the required connections.

Add a Clock Block
To add a Clock block, follow these steps:

1. Select the AltLab library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Clock block into your model.

3. Double-click on the Clock block to display the Block Parameters dialog box.

4. Set the Clock parameters (Table 2–14).

Figure 2–7. Amplitude Modulation Design Example

Table 2–14. Parameters for the Clock Block

Parameter Value

Real-World Clock Period 20

Period Unit: ns

Simulink Sample Time 2.5e–008

Reset Name aclr

Reset Type Active Low

Export As Output Pin Off

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–15
Simulating the Model in Simulink

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

1 A clock block is required to set a Simulink sample time that matches the
sample time specified on the Sine Wave and Random Bitstream blocks.
If no base clock exists in your design, a default clock with a 20ns real-world
period and a Simulink sample time of 1 is automatically created.

5. Save your model.

Simulating the Model in Simulink
To simulate your model in the Simulink software, follow these steps:

1. Click Configuration Parameters on the Simulation menu to display the
Configuration Parameters dialog box and select the Solver page (Figure 2–8 on
page 2–15).

2. Set the parameters (Table 2–15).

f For detailed information about solver options, refer to the description of
the Solver Pane in the Simulink Help.

3. Click OK.

Table 2–15. Configuration Parameters for the singen Model

Parameter Value

Start time 0.0

Stop time 4e–6

Type Fixed-step

Solver discrete (no continuous states)

Figure 2–8. Configuration Parameters

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–16 Chapter 2: Getting Started
Compiling the Design

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

4. Start simulation by clicking Start on the Simulation menu.

5. Double-click the Scope block to view the simulation results.

6. Click the Autoscale icon (binoculars) to auto-scale the waveforms.

Figure 2–9 shows the scaled waveforms.

Compiling the Design
To create and compile a Quartus II project for your DSP Builder design, and to
program your design onto an Altera FPGA, add a Signal Compiler block by
following these steps:

1. Select the AltLab library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Signal Compiler block into your model.

3. Double-click the Signal Compiler block in your model to display the Signal
Compiler dialog box (Figure 2–10).

The dialog box allows you to set the target device family. For this tutorial, you can
use the default Stratix device family.

4. Click Compile.

Figure 2–9. Scope Simulation Results

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–17
Performing RTL Simulation

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

5. When the compilation completes successfully, click OK.

6. Click Save on the File menu to save your model.

Performing RTL Simulation
To perform RTL simulation with the ModelSim software, add a TestBench block, by
following these steps:

1. Select the AltLab library from the Altera DSP Builder BlockSet folder in the
Simulink Library Browser.

2. Drag and drop a TestBench block into your model.

3. Double-click on the new TestBench block.

The Testbench Generator dialog box appears (Figure 2–11).

Figure 2–10. Signal Compiler Block Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–18 Chapter 2: Getting Started
Performing RTL Simulation

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

4. Ensure that Enable Test Bench generation is on.

Figure 2–11. Testbench Generator Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–19
Performing RTL Simulation

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

5. Click the Advanced tab (Figure 2–12).

6. Turn on the Launch GUI option. This option causes the ModelSim GUI to launch
when you invoke the ModelSim simulation.

7. Click Generate HDL to generate a VDHL-based testbench from your model.

8. Click Run Simulink to generate Simulink simulation results for the testbench.

9. Click Run ModelSim to load your design into ModelSim.

Your design simulates with the output displaying in the ModelSim Wave window.
The testbench initializes all your design registers with a pulse on the aclr input
signal.

10. All waveforms initially show using digital format in the ModelSim Wave window.
Change the format of the sinin, sindelay and streammod signals to analog.

1 In ModelSim 6.4a, you can right-click to display the popup menu, point to
Format and click on Analog (Automatic). The user interface commands
may be different in other versions of ModelSim.

Figure 2–12. Testbench Generator Dialog Box Advanced Tab

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–20 Chapter 2: Getting Started
Adding the Design to a Quartus II Project

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

11. Click Zoom Full on the right button pop-up menu in the ModelSim Wave window.
The simulation results display as an analog waveform (Figure 2–13).

The introductory DSP Builder tutorial is complete. The next section shows how you
can add a DSP Builder design to a new or existing Quartus II project.

Subsequent chapters in this user guide provide examples that illustrate some of the
additional design features supported by DSP Builder.

Adding the Design to a Quartus II Project
DSP Builder uses the Quartus II project created by the Signal Compiler block. This
section describes how to add your design to a new or existing Quartus II project.

Before you follow these steps, ensure that your design is compiled with the Signal
Compiler block (“Compiling the Design” on page 2–16).

Creating a Quartus II Project
To create a new Quartus II project:

1. Start the Quartus II software.

2. Click New Project Wizard on the File menu in the Quartus II software and specify
the working directory for your project. For example, D:\MyQuartusProject.

Figure 2–13. Analog Display

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Getting Started 2–21
Adding the Design to a Quartus II Project

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

3. Specify the name of the project. For example, NewProject and the name of the
top-level design entity for the project.

1 The name of the top-level design entity typically has the same name as the
project.

4. Click Next to display the Add Files page. There are no files to add for this tutorial.

5. Click Next to display the Family & Device Settings page and check that the
required device family is selected. This should normally be the same device family
as specified for Signal Compiler in “Compiling the Design” on page 2–16.

6. Click Finish to close the wizard and create the new project.

1 When you specify a directory that does not already exist, a message asks if
the specified directory should be created. Click Yes to create the directory.

Add the DSP Builder Design to the Project
To add your DSP Builder design to the project in the Quartus II software:

1. On the View menu in the Quartus II software, point to Utility Windows and click
Tcl Console to display the Tcl Console.

2. Run the singen_add.tcl script that can be found in the <DSP Builder install
path>\DesignExamples\Tutorials\GettingStartedSinMdl directory by typing
the following command in the Tcl Console window:

source <install path>/DesignExamples/Tutorials/GettingStar
tedSinMdl/singen_add.tcl

1 You must use / separators instead of \ separators in the command path
name used in the Tcl console window. You can use a relative path if you
organize your design data with the DSP Builder and Quartus II designs in
subdirectories of the same design hierarchy.

An example instantiation is added to your Quartus II project.

3. Click the Files tab in the Quartus II software.

4. Right-click singen.mdl and click Select Set as Top-Level Entity.

5. Compile the Quartus II design by clicking Start Compilation on the Processing
menu.

1 You can copy the component declaration from the example file for your
own code.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–22 Chapter 2: Getting Started
Adding the Design to a Quartus II Project

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

3. Design Rules and Procedures

This chapter discusses the following topics:

■ “DSP Builder Naming Conventions”

■ “Using a MATLAB Variable”

■ “Fixed-Point Notation”

■ “Bit Width Design Rule”

■ “Frequency Design Rules”

■ “Timing Semantics Between Simulink and HDL Simulation”

■ “Signal Compiler and TestBench Blocks”

■ “Hierarchical Design”

■ “Goto and From Block Support”

■ “Create Black Box and HDL Import”

■ “Using a MATLAB Array or .hex File to Initialize a Block”

■ “Comparison Utility”

■ “Adding Comments to Blocks”

■ “Adding Quartus II Constraints”

■ “Displaying Port Data Types”

■ “Displaying the Pipeline Depth”

■ “Updating HDL Import Blocks”

■ “Analyzing the Hardware Resource Usage”

■ “Loading Additional ModelSim Commands”

■ “Making Quartus II Assignments to Block Entity Names”

DSP Builder Naming Conventions
DSP Builder generates VHDL files for simulation and synthesis. When there are
blocks or ports in your model that share the same VHDL name, they are given unique
names in the VHDL to avoid name clashes. However, clock and reset ports are never
renamed, and an error issues if they do not have unique names. Avoid name clashes
on other ports, to avoid renaming of the top-level ports in the VHDL.

All DSP Builder port names must comply with the following naming conventions:

■ VHDL is not case sensitive. For example, the input port MyInput and MYINPUT is
the same VHDL entity.

■ Avoid using VHDL keywords for DSP Builder port names.

■ Do not use illegal characters. VHDL identifier names can contain only a - z, 0 - 9,
and underscore (_) characters.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–2 Chapter 3: Design Rules and Procedures
Using a MATLAB Variable

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

■ Begin all port names with a letter (a - z). VHDL does not allow identifiers to begin
with non-alphabetic characters or end with an underscore.

■ Do not use two underscores in succession (__) in port names because it is illegal in
VHDL.

1 White spaces in the names for the blocks, components, and signals are converted to an
underscore when DSP Builder converts the Simulink model file (.mdl) into VHDL.

Using a MATLAB Variable
You can specify many block parameters (such as bit widths and pipeline depth) by
entering a MATLAB base workspace or masked subsystem variable. You can then set
these variables on the MATLAB command line or from a script. DSP Builder evaluates
the variable and passes its value to the simulation model files. DSP Builder ensures
that the parameters are in the required range.

1 Although DSP Builder no longer restricts parameters to 51 bits, MATLAB evaluates
parameter values to doubles, which restricts the possible values to 51-bit numbers
expressible by a double.

f For information about which values are parameterizable, refer to the DSP Builder
Standard Blockset Libraries section in volume 2 of the DSP Builder Handbook or to the
block descriptions, which you can access with the Help command in the right button
pop-up menu for each block.

Fixed-Point Notation
Figure 3–1 describes the fixed-point notation that I/O formats use in the DSP Builder
block descriptions.

Table 3–1. Fixed-Point Notation

Description Notation
Simulink-to-HDL Translation

(1), (2)

Signed binary:
fractional (SBF)
representation; a
fractional number

[L].[R] where: [L] is the number of bits to the left of
the binary point and the MSB is the
sign bit

[R] is the number of bits to the right
of the binary point

A Simulink SBF signal A[L].[R] maps in VHDL to
STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

Signed binary;
integer (INT)

[L] where: [L] is the number of bits of the
signed bus and the MSB is the sign
bit

A Simulink signed binary signal A[L] maps to
STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

Unsigned binary;
integer (UINT)

[L] where: [L] is the number of bits of the
unsigned bus

A Simulink unsigned binary signal A[L] maps to
STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–3
Fixed-Point Notation

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Figure 3–1 graphically compares the signed binary fractional, signed binary, and
unsigned binary number formats.

Binary Point Location in Signed Binary Fractional Format
For hardware implementation, you must cast Simulink signals into the desired
hardware bus format. Therefore, convert floating-point values to fixed-point values.

This conversion is a critical step for hardware implementation because the number of
bits required to represent a fixed-point value plus the location of the binary point
affects both the hardware resources and the system accuracy.

Choosing a large number of bits gives excellent accuracy—the fixed-point result is
almost identical to the floating-point result—but consumes a large amount of
hardware. You must design for the optimum size and accuracy trade-off. DSP Builder
speeds up your design cycle by enabling simulation with fixed-point and
floating-point signals in the same environment.

The Input block casts floating-point Simulink signals of type double into fixed-point
signals. DSP Builder represents the fixed-point signals in the following signed binary
fractional (SBF) format:

■ [number of bits].[]—represents the number of bits to the left of the binary point
including the sign bit.

Single bit integer
(BIT)

[1] where: the single bit can have values 1 or 0 A Simulink single bit integer signal maps to
STD_LOGIC

Notes to Table 3–1:

(1) STD_LOGIC_VECTOR and STD_LOGIC are VHDL signal types defined in the (ieee.std_logic_1164.all and ieee.std_logic_signed.all IEEE
library packages).

(2) For designs in which unsigned integer signals are used in Simulink, DSP Builder translates the Simulink unsigned bus type with width w into a
VHDL signed bus of width w + 1 where the MSB bit is set to 0.

Table 3–1. Fixed-Point Notation

Description Notation
Simulink-to-HDL Translation

(1), (2)

Figure 3–1. Number Format Comparison

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–4 Chapter 3: Design Rules and Procedures
Bit Width Design Rule

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

■ [].[number of bits]—represents the number of bits to the right of the binary point.

In VHDL, DSP Builder types the signals as STD_LOGIC_VECTOR.

For example, DSP Builder represents the 4-bit binary number 1101 as:

Simulink This signed integer is interpreted as –3

VHDL This signed STD_LOGIC_VECTOR is interpreted as –3

If you change the location of the binary point to 11.01, that is, two bits on the left side
of the binary point and two bits on the right side, DSP Builder represents the numbers
as:

Simulink This signed fraction is interpreted as –0.75

VHDL This signed STD_LOGIC_VECTOR is interpreted as –3

From a system-level analysis point of view, multiplying a number by –0.75 or –3 is
very different, especially when looking at the bit width growth. In the first case, the
multiplier output bus grows on the most significant bit (MSB), in the second case, the
multiplier output bus grows on the least significant bit (LSB).

In both cases, the binary numbers are identical. However, the location of the binary
point affects how a simulator formats the representation of the signal. For complex
systems, you can adjust the binary point location to define the signal range and the
area of interest.

f For more information about number systems, refer to AN 83: Binary Numbering
Systems.

Bit Width Design Rule
You must specify the bit width at the source of the datapath. DSP Builder propagates
this bit width from the source to the destination through all intermediate blocks. Some
intermediate DSP Builder blocks must have a bit width specified, while others have
specific bit width growth rules which are described in the documentation for each
block.

Some blocks which allow bit widths to be specified optionally, have an Inferred
type setting that allows a growth rule to be used. For example, in the amplitude
modulation tutorial design (Chapter 2, Getting Started) the SinIn and SinDelay
blocks have a bit width of 16. Therefore, a bit width of 16 is automatically assigned to
the intermediate Delay block.

Data Width Propagation
You can specify the bit width of many Altera blocks in the Simulink design. However,
you do not need to specify the bit width for all blocks. If you do not specify explicitly
the bit width, DSP Builder assigns a bit width during the Simulink-to-VHDL
conversion by propagating the bit width from the source of a datapath to its
destination.

Some intermediate DSP Builder blocks must have a specified bit width, while others
have specific bit width growth rules that the documentation for each block describes.
Some blocks, which allow bit widths to be specified optionally, allow use of a growth
rule—the Inferred type setting.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–5
Bit Width Design Rule

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Figure 3–2 illustrates bit-width propagation.

The fir3tapsub.mdl design is a 3-tap finite impulse response (FIR) filter and has the
following attributes:

■ The input data signal is an 8-bit signed integer bus

■ The output data signal is a 20-bit signed integer bus

■ Three Delay blocks build the tapped delay line

■ The coefficient values are {1.0000, -5.0000, 1.0000}, a Gain block performs the
coefficient multiplication

Figure 3–3 shows the RTL representation of fir3tapsub.mdl created by Signal
Compiler.

Tapped Delay Line
The bit width propagation mechanism starts at the source of the datapath, in this case
at the Input block, which is an 8-bit input bus. This bus feeds the register U0, which
feeds U1, which feeds U2. DSP Builder propagates the 8-bit bus in this register chain
where each register is eight bits wide (Figure 3–4).

Figure 3–2. 3-Tap FIR Filter

Figure 3–3. 3-Tap FIR Filter in Quartus II RTL View

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–6 Chapter 3: Design Rules and Procedures
Bit Width Design Rule

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Arithmetic Operation
Figure 3–5 shows the arithmetic section of the filter, that computes the output yout:

where c[i] are the coefficients and x[k - i] are the data.

This design requires three multipliers and one parallel adder. The arithmetic
operations increase the bus width in the following ways:

■ Multiplying a b in SBF format (where l is left and r is right) is equal to:

[la].[ra] [lb].[rb]

The bus width of the resulting signal is:

([la] + [lb]).([ra] + [rb])

■ Adding a + b + c in SBF format (where l is left and r is right) is equal to:

[la].[ra] + [lb].[rb] + [lc].[rc]

The bus width of the resulting signal is:

(max([la], [lb], [lc]) + 2).(max([ra], [rb], [rc]))

The parallel adder has three input buses of 14, 16, and 14 bits. To perform this
addition in binary, DSP Builder automatically sign extends the 14-bit busses to 16 bits.
The output bit width of the parallel adder is 18 bits, which covers the full resolution.

Figure 3–4. Tap Delay Line in Quartus II Version RTL Viewer

yout k x k i– c i

i 0=

2

=

Figure 3–5. 3-Tap FIR Filter Arithmetic Operation in Quartus II Version RTL Viewer

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–7
Bit Width Design Rule

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

The following options can change the internal bit width resolution and therefore
change the size of the hardware required to perform the function that Simulink
describes:

■ Change the bit width of the input data.

■ Change the bit width of the output data. The VHDL synthesis tool removes any
unused logic.

■ Insert a Bus Conversion block to change the internal signal bit width.

Figure 3–6 shows how you can use Bus Conversion blocks to control internal bit
widths.

In Figure 3–6, the output of the Gain block has 4 bits removed. Port data type display
is enabled in this example and shows that the inputs to the Delay blocks are of type
INT_8 but the outputs from the Bus Conversion blocks are of type INT_6.

1 You can also achieve bus conversion by inserting an AltBus, Round, or Saturate
block.

The RTL view illustrates the effect of this truncation. The parallel adder required has a
smaller bit width and the synthesis tool reduces the size of the multiplier to have a
9-bit output (Figure 3–7).

Figure 3–6. 3-Tap Filter with BusConversion to Control Bit Widths

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–8 Chapter 3: Design Rules and Procedures
Frequency Design Rules

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

f For more information, refer to “Fixed-Point Notation” on page 3–2.

Frequency Design Rules
This section describes the frequency design rules for single and multiple clock
domains.

Single Clock Domain
If your design does not contain a PLL block or Clock_Derived block, DSP Builder
uses synchronous design rules to convert a Simulink design into hardware. All DSP
Builder registered blocks (such as the Delay block) operate on the positive edge of the
single clock domain, which runs at the system sampling frequency.

The clock pin is not graphically displayed in Simulink unless you use the Clock
block. However, when DSP Builder converts your design to VHDL it automatically
connects the clock pin of the registered blocks (such as the Delay block) to the single
clock domain of the system.

The default clock pin is named clock and there is also a default active-low reset pin
named aclr.

By default, Simulink does not graphically display the clock enable and reset input
pins of the DSP Builder registered blocks. When DSP Builder converts a design to
VHDL, it automatically connects these pins. You can access and drive these optional
ports by checking the appropriate option in the Block Parameters dialog box.

1 Simulink issues a warning if you are using an inappropriate solver for your model.
You should set the solver options to fixed-step discrete when you are using a single
clock domain.

For Simulink simulation, all DSP Builder blocks (including registered DSP Builder
blocks) use the sampling period specified in the Clock block. If there is no Clock
block in your design, the DSP Builder blocks use a sampling frequency of 1. You can
use the Clock block to change the Simulink sample period and the hardware clock
period.

Figure 3–7. 3-Tap Filter with BusConversion to Control Bit Widths in Quartus II RTL Viewer

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–9
Frequency Design Rules

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Multiple Clock Domains
A DSP Builder model can operate using multiple Simulink sampling periods. You can
specify the clock domain in some DSP Builder block sources, such as the Counter
block. You can also specify the clock domain in DSP Builder rate change blocks such
as Tsamp.

When using multiple sampling periods, DSP Builder must associate each sampling
period to a physical clock domain that can be available from an FPGA PLL or a clock
input pin. Therefore, the top-level DSP Builder model must contain DSP Builder rate
change blocks such as PLL or Clock_Derived.

You can use a PLL block to synthesize additional clock signals from a reference clock
signal. These internal clock signals are multiples of the system clock frequency.

f Refer to “Using the PLL Block” on page 3–14 for more information.

If your design contains the PLL block, Clock or Clock_Derived blocks, the DSP
Builder registered blocks operate on the positive edge of one of the block’s output
clocks.

1 You must set a variable-step discrete solver in Simulink when you are using multiple
clock domains.

To ensure a proper hardware implementation of a DSP Builder design using multiple
clock domains, consider the following points:

■ Do not use DSP Builder combinational blocks for rate transitions to ensure that the
behavior of the DSP Builder Simulink model is identical to the generated RTL
representation.

Figure 3–8 illustrates an incorrect use of the DSP Builder Logical Bit
Operator (NOT) block.

■ Two DSP Builder blocks can operate with two different sampling periods.
However for most DSP Builder blocks, the sampling period of each input port and
each output port must be identical.

Although this rule applies most of the DSP Builder blocks, there are some
exceptions such as the Dual-Clock FIFO block where the sampling period of the
read input port is expected to be different than the sampling period of the write
input port.

Figure 3–8. Example of Incorrect Usage: Mixed Sampling Rate on a NOT Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–10 Chapter 3: Design Rules and Procedures
Frequency Design Rules

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

■ For a datapath using mixed clock domains, the design may require additional
register decoupling around the register that is between the domains.

This requirement is especially true when the source data rate is higher than the
destination register, in other words, when the data of a register is toggling at the
higher rate than the register’s clock pin (Figure 3–9).

Figure 3–10 shows a stable hardware implementation.

Using Clock and Clock_Derived Blocks
DSP Builder maps the Clock and Clock_Derived blocks to two hardware device
input pins; one for the clock input, and one for the reset input for the clock domain. A
design may contain zero or one Clock block and zero or more Clock_Derived
blocks.

If you use Clock_Derived blocks, and there is only one system clock, you must
generate an appropriate clock signal for connection to the hardware device input pins
for the derived clocks.

Figure 3–9. Data Toggling Faster than Clock

Figure 3–10. Stable Hardware Implementation

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–11
Frequency Design Rules

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

The Clock block defines the base clock domain, and Clock_Derived blocks define
other clock domains. DSP Builder specifies sample times in terms of the base clock
sample time. If there is no Clock block, DSP Builder uses a default base clock, with a
Simulink sample time of 1, and a hardware clock period of 20 s.

This feature is available across all device families that DSP Builder supports. If no
Clock block is present, the design uses a default clock pin named clock and a
default active-low reset pin named aclr.

The Signal Compiler block assigns a clock buffer and a dedicated clock-tree to
clock-signal input pin automatically to maintain minimum clock skew. If your design
contains more Clock and Clock_Derived blocks than there are clock buffers
available, non dedicated routing resources route the clock signals.

Clock Assignment
DSP Builder identifies registered DSP Builder blocks such as the Delay block and
implicitly connects the clock, clock enable, and reset signals in the VHDL design for
synthesis. When your design does not contain a Clock block, Clock_Derived
block, or PLL block, all the registered DSP Builder block clock pins connect to a single
clock domain (signal clock in VHDL).

Define clock domains by the clock source blocks: the Clock block, the
Clock_Derived block and the PLL block.

The Clock block defines the base clock domain. You can specify its Simulink sample
time and hardware clock period directly. If there is no Clock block, there is a default
base clock with a Simulink sample time of 1. You can use the Clock_Derived block
to define clock domains in terms of the base clock. DSP Builder specifies the sample
time of a derived clock as a multiple and divisor of the base clock sample time.

The PLL block maps to a hardware PLL. You can use it to define multiple clock
domains with sample times specified in terms of the PLL input clock. Use the PLL
input clock either as the base clock or a derived clock.

Each clock domain has an associated reset pin. The Clock block and each of the
Clock_Derived blocks have their own reset pin, the name of which is in the block's
parameter dialog box. The clock domains of the PLL block share the reset pin of the
PLL block's input clock.

When your design contains clock source blocks, DSP Builder implicitly connects the
clock pins of all the registered blocks to the appropriate clock pin or PLL output. DSP
Builder also connects the reset pins of the registered blocks to the top-level reset port
for the block's clock domain.

DSP Builder blocks fall into the following clocking categories:

■ Combinational blocks—the output always changes at the same sample time slot as
the input.

■ Registered blocks—the output changes after a variable number of sample time
slots.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–12 Chapter 3: Design Rules and Procedures
Frequency Design Rules

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Figure 3–11 illustrates DSP Builder block combinational behavior.

The Magnitude block translates as a combinational signal in VHDL. DSP Builder
does not add clock pins to this function.

Figure 3–12 illustrates the behavior of a registered DSP block. In the VHDL netlist,
DSP Builder adds clock pin inputs to this function. The Delay block, with the Clock
Phase Selection parameter equal to 100, is converted into a VHDL shift register with a
decimation of three and an initial value of zero.

For feedback circuitry (the output of a block fed back into the input of a block), a
registered block must be in the feedback loop. Otherwise, DSP Builder creates an
unresolved combinational loop (Figure 3–13).

Figure 3–11. Magnitude Block: Combinational Behavior

Figure 3–12. Delay Block: Registered Behavior

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–13
Frequency Design Rules

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Use the PLL block and assign different sampling periods on registered DSP Builder
blocks to design multirate designs.

Alternatively, use a single clock domain with clock enable and the following design
rules to design multirate designs without the DSP Builder PLL block:

■ The fastest sample rate is an integer multiple of the slower sample rates. The Clock
Phase Selection field in the Block Parameters dialog box specifies the values for
the Delay block.

■ The Clock Phase Selection box accepts a binary pattern string to describe the
clock phase selection. DSP Builder processes each digit or bit of this string
sequentially on every cycle of the fastest clock. When a bit is equal to one, DSP
Builder enables the block; when a bit is equal to zero, DSP Builder disables the
block.

Table 3–2 shows some examples of typical clock phase selections.

Figure 3–13. Feedback Loop

Table 3–2. Clock Phase Selection Example

Phase Description

1 The Delay block is always enabled and captures all data passing through the block
(sampled at the rate 1).

10 The Delay block is enabled every other phase and every other data (sampled at the
rate 1) passes through.

0100 The Delay block is enabled on the 2nd phase out of 4 and only the 2nd data out of 4
(sampled at the rate 1) passes through. The data on phases 1, 3, and 4 does not pass
through the Delay block.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–14 Chapter 3: Design Rules and Procedures
Frequency Design Rules

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Figure 3–14 compares the scopes for the Delay block operating at a one quarter rate
on the 1000 and 0100 phases, respectively.

Using the PLL Block
DSP Builder maps the PLL block to the hardware device PLL. The number of PLL
internal clock outputs that each device family supports depends on the specific device
packaging.

f For information about the built-in PLLs, refer to the device handbook for the device
family you are targeting.

Figure 3–15 shows an example of multiple-clock domain support using the PLL block.

Figure 3–14. 1000 as Opposed to 0100 Phase Delay

Figure 3–15. MultipleClockDelay.mdl

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–15
Frequency Design Rules

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Figure 3–16 shows the clock setting configuration for the PLL block in the design
example MultipleClockDelay.mdl. Output clock PLL_clk0 is set to 800 ns, and
output clock PLL_clk1 is set to 100 ns.

Datapath A (green in Figure 3–15) operates on output clock PLL_clk0 and datapath
B (red in Figure 3–15) operates on output clock PLL_clk1. Specify these clocks by
setting the Specify Clock option and enter the clock name in the Block Parameter
dialog box for each input block.

In this design, the Sample time parameters for the Sine Wave a block and Sine
Wave b block are set explicitly to 1e-006 and 1e-007, so that DSP Builder provides
data to the input blocks at the rate at which they sample.

Using Advanced PLL Features
The DSP Builder PLL block supports the fundamental multiplication and division
factor for the PLL. If you want to use other PLL features (such as phase shift, duty
cycle), use a separate Quartus II project with the following method:

■ Create a new Quartus II project and use the MegaWizard™ Plug-In to configure
the ALTPLL block.

■ Add the DSP Builder .mdl file to the Quartus II project as a source file.

■ Create a top-level design that instantiates your ALTPLL variation and your DSP
Builder design.

Figure 3–16. PLL Setting

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–16 Chapter 3: Design Rules and Procedures
Timing Semantics Between Simulink and HDL Simulation

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Timing Semantics Between Simulink and HDL Simulation
DSP Builder uses Simulink to simulate the behavior of hardware components.
However, there are some fundamental differences between the step-based simulation
in Simulink and the event-driven simulation that VHDL and Verilog HDL designs
use.

This section describes the timing semantics that DSP Builder uses for translating
between the Simulink and HDL environments.

Simulink Simulation Model
To ensure correlation between the HDL and Simulink simulation, you must use a
discrete fixed or variable-step solver in Simulink.

1 Use a fixed-step solver for a single clock domain design or a variable-step solver for
multiple-clock domain designs.

Configure the solver timing mode in the Configuration Parameters dialog box from
the Simulation menu in Simulink. Each step is a discrete unit of simulation. DSP
Builder quantizes the clock in an idealized manner as a cycle counter.

At the beginning of each step, Simulink provides each block with inputs that you
know. DSP Builder evaluates functions and propagates the resultant outputs in the
current step. The outputs of your model are the results of all these computations.

For all steps, Simulink blocks produce output signals. Outputs varying based on
inputs received in the same step are referred to as direct feedthrough. Some DSP
Builder blocks may include direct feedthrough outputs, depending on the
parameterization of each block.

HDL Simulation Models
DSP Builder drives hardware simulation with a clock signal and the available input
stimuli. The TestBench block’ s testbench script feeds input signals to the HDL
simulator that maintain correlation between the HDL and Simulink simulation.

Simulation models in the DSP Builder libraries evaluate their logic on positive clock
edges. To avoid any timing conflicts, external inputs transition on negative clock
edges. DSP Builder updates registered outputs on positive clock edges. The
TestBench block-generated inputs arrive on negative clock edges, causing an
apparent half-cycle delay in the arrival of output (Figure 3–17 on page 3–18).

1 The HDL simulation in ModelSim should run over the same time as the Simulink
simulation. Generally DSP Builder aligns the timing so that ModelSim simulation
finishes at the end of the stimulus data. However, occasionally when using multiple
clocks, the rounding calculation that aligns the clock signals may set ModelSim
simulation to run for one additional clock cycle (on the fastest clock). You may receive
an unexpected end of file error message because there is no stimulus data for
this extra cycle.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–17
Timing Semantics Between Simulink and HDL Simulation

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Startup & Initial Conditions
The testbench includes a global reset for each clock domain. All blocks (except the
HDL Import and MegaCore function blocks) automatically connect any reset on the
hardware to the global asynchronous reset for the clock domain.

When a block explicitly declares an asynchronous reset, this reset is ORed with the
global reset.

A Global Reset block (SCLR), which corresponds to this hardware signal is in the
Altera DSP Builder Blockset IO & Bus library.

The global reset signal is reset before meaningful simulation. When converting from
the Simulink domain to the hardware domain, the reset period is before the Simulink
simulation begins. Therefore, in Simulink simulation, the Global Reset block
outputs only a constant zero and has no simulation behavior. Connect the hardware to
reset, and thus reset at the start of a ModelSim testbench simulation.

1 DSP blocks or MegaCore functions may have additional initial conditions or startup
states that are not automatically reset by the global reset signal.

DSP Builder Global Reset Circuitry
By default, Simulink does not graphically display the clock enable and reset input
pins on DSP Builder registered blocks. When DSP Builder converts a design to HDL, it
automatically connects the implied clock enable and reset pins.

If you turn on the optional ports in the Block Parameters dialog box for each of the
DSP Builder registered blocks, you can access and drive the clock enable and reset
input pins graphically in the Simulink software.

In the HDL domain, the registered DSP Builder blocks uses an asynchronous reset, as
this behavioral VHDL code example shows:

process(CLOCK, RESET)
begin

if RESET = '1' then
dout <= (others => '0');

else if CLOCK'event and CLOCK = '1' then
dout <= din;

end if;
end

In addition, when targeting a development board, the Block Parameters dialog box
for the DSP Board configuration block typically includes a Global Reset Pin selection
box where you can choose from a list of pins that correspond to the DIP and
push-button switches.

The reset logic polarity can be either active-high or active-low. When you select
active-low, the value of the reset signal in Simulink simulation is still 0 for inactive
and 1 for active. However, DSP Builder inserts a NOT gate on the input pin in the
generated hardware. The value of the reset signal in simulation is therefore the value
as it exists across the internal design, rather then the value at the input pin.

Quartus® II synthesis interprets this reset as an asynchronous reset, and uses an input
of the logic element look-up table to instantiate the function. The HDL simulates
correctly in this case because the testbench produces the reset input as required.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–18 Chapter 3: Design Rules and Procedures
Timing Semantics Between Simulink and HDL Simulation

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Reference Timing Diagram
Figure 3–17 shows the timing relationships in a hypothetical case where a register is
fed by the output of a counter. The counter output begins at 10—the value is 10 during
the first Simulink clock step.

This timing is not true when crossing clock domains. For example, Figure 3–18 shows
the timing delays in a design with a derived clock that has half the base clock period.
In general, DSP Builder is not cycle-accurate when crossing clock domains.

Figure 3–17. Single-Clock Timing Relationships

Figure 3–18. Multiple-Clock Timing Relationships

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–19
Signal Compiler and TestBench Blocks

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Signal Compiler and TestBench Blocks
The Signal Compiler block uses Quartus II synthesis to convert a Simulink design
into synthesizable VHDL including generation of a VHDL testbench and other
supporting files for simulation and synthesis.

Signal Compiler assumes that your design complies with the Simulink rules and
that any variables and inherited variables propagate through the whole design.

You should always run a simulation in Simulink before running Signal Compiler.
The simulation updates all variables in your design (including workspace variables
and inherited parameters), sets up certain blocks (such as the memory blocks, and
inputs from and outputs to workspace blocks), and also traps any design errors that
do not comply with Simulink rules.

The Input and Output blocks map to input and output ports in VHDL and mark the
edge of the generated system. Typically, you connect these blocks to the Simulink
simulation blocks for your testbench. An Output block should not connect to another
Altera block. If you connect more Altera blocks (that map to HDL), empty ports are
created and the HDL does not compile for synthesis.

f For more information about the Input and Output blocks, refer to the IO & Bus
Library chapter of the DSP Builder Reference Manual.

Design Flows for Synthesis, Compilation and Simulation
You can use the Signal Compiler and Testbench blocks to control your design
flow for synthesis, compilation, and simulation. DSP Builder supports the following
flows:

■ Automatic flow—allows you to control the entire design process in the MATLAB
or Simulink environment with the Signal Compiler block. With this flow, your
design compiles inside a temporary Quartus II project. The results of the synthesis
and compilation display in the Signal Compiler Messages box. You can also use
the automatic flow to download your design into supported development boards.

■ Manual flow—you can also add the .mdl file to an existing Quartus II project
using the <model name>_add.tcl script. This script is generated whenever the
Signal Compiler or TestBench block is run. You can use the script to add the
.mdl file and any imported HDL to your project. You can then instantiate your
design in HDL.

■ Simulation flow—if the ModelSim executable (vsim.exe) is on your path, you can
use the TestBench block to compile your design for ModelSim simulation. You
can then automatically compare the Simulink and ModelSim simulation results.

For an example that uses the Signal Compiler blocker, refer to page 2–14 of the
“Getting Started”.

f For information about the parameters for the Signal Compiler and TestBench
blocks, refer to the AltLab Library chapter of the DSP Builder Reference Manual.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–20 Chapter 3: Design Rules and Procedures
Hierarchical Design

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Hierarchical Design
DSP Builder supports hierarchical design using the Simulink Subsystem block.

DSP Builder preserves the hierarchy structure in a VHDL design and each hierarchical
level in a Simulink model file (.mdl) translates into one VHDL file.

For example, Figure 3–19 illustrates a hierarchy for a design fir3tap.mdl, which
implements two FIR filters.

f For information about naming the Subsystem block instances, refer to “DSP Builder
Naming Conventions” on page 3–1.

Figure 3–19. Hierarchical Design Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–21
Goto and From Block Support

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Goto and From Block Support
DSP Builder supports the Goto and From blocks from the Signal Routing folder in
the generic Simulink library.

You can use these blocks for large fan-out signals and to enhance the diagram clarity.

Figure 3–20 shows an example of the Goto and From blocks.

Use the Goto blocks ([ReadAddr], [WriteAddr], and [WriteEna] with the From
blocks ([ReadAddr], [WriteAddr], and [WriteEna], which connect to the dual-port
RAM blocks.

Figure 3–20. Goto & From Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–22 Chapter 3: Design Rules and Procedures
Create Black Box and HDL Import

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Create Black Box and HDL Import
You can add your own VHDL or Verilog HDL code to your design and specify which
subsystem block(s) DSP Builder should translate into VHDL. You can implement this
process—creating a black box—implicitly or explicitly.

An explicit black box uses the HDL Input, HDL Output, HDL Entity, and
Subsystem Builder blocks. For information about using these blocks to create an
explicit black box, refer to “Subsystem Builder Design Example” in Chapter 8.

An implicit black box uses the HDL Import block to instantiate the black-box
subsystem. For information about creating an implicit black box with your own HDL
code, refer to the “HDL Import Design Example” in Chapter 8.

Using a MATLAB Array or .hex File to Initialize a Block
Use a MATLAB array to specify the values entered in the LUT block or to initialize the
Dual-Port RAM, Single-Port RAM, True Dual-Port RAM, or ROM blocks. You
can also use an Intel format hexadecimal format (.hex) file to initialize a RAM or ROM
block.

If the MATLAB array data values or the values in the .hex file do not represent exactly
in the selected data type, DSP Builder rounds them and issues a warning. DSP Builder
rounds the values by expressing the number in binary format, then truncates to the
specified width, which results in rounding towards minus infinity.

For example, if the input value is –0.25 (minimally expressed in signed binary
fractional two’s compliment format as 111) and the selected target data format is
signed fractional [1].[1], DSP Builder truncates the value to 11 = –0.5. DSP
Builder rounds the value towards minus infinity to the nearest representable number.

Similarly, if you select unsigned integer data type and the value is 1.9, DSP Builder
rounds this value down to 1.

Comparison Utility
DSP Builder provides a simple utility that runs simulation comparison between
Simulink and ModelSim from the command line:

alt_dspbuilder_verifymodel('modelname.mdl', 'logfile.txt')r
A testbench GUI displays messages as DSP Builder performs the comparison. The
command returns true (1) or false (0) according to whether the simulation results
match and the output is recorded in the specified log file.

f For more information about running a comparison between Simulink and ModelSim,
refer to “Performing RTL Simulation” in Chapter 2.

Adding Comments to Blocks
You can add comments to any DSP Builder block by right-clicking on the block to
display the Block Properties dialog box and entering text in the Description field of
the dialog box (Figure 3–21 on page 3–23).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–23
Adding Quartus II Constraints

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

DSP Builder includes the comment text next to the instantiation of the block in the
generated HDL.

Adding Quartus II Constraints
You can set Quartus II global project assignments in your Simulink model by adding
Quartus II Global Project Assignment blocks from the AltLab library. Each
block sets a single global assignment but you can use multiple blocks for multiple
assignments. You can use these assignments to set Quartus II compilation directives,
such as target device or timing requirements.

f For a description of the Quartus II Global Project Assignment block, refer
to the DSP Builder Reference Manual.

You can add additional Quartus II assignments or constraints that are not supported
in DSP Builder by creating a Tcl script in your design directory. Any file named <model
name>_add_user.tcl is automatically sourced when you run Signal Compiler.

The Tcl file can include any number of Quartus II assignments with the syntax:

set_global_assignment -name <assignment> <value>

f For detailed information about Quartus II assignments, refer to the Quartus II Settings
File Reference Manual.

Figure 3–21. Adding Comments to a Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–24 Chapter 3: Design Rules and Procedures
Displaying Port Data Types

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Displaying Port Data Types
You can optionally display the Simulink and DSP Builder port data types for each of
the signals in your Simulink model by turning on Port Data Types in the Port/Signal
Displays section of the Simulink Format menu.

When you set this option, the DSP Builder internal signal type (SBF_L_R, INT_L,
UINT_L, or BIT where L, and R are the number of bit to the left and right of the binary
point) displays. For example, SBF_8_4 for a 12-bit signed binary fractional data type
with 4 fractional bits, or UINT_16 for a 16-bit unsigned integer.

Figure 3–22 shows the amplitude modulation example with port data type display
enabled.

f For more information about the DSP Builder internal signal types, refer to
“Fixed-Point Notation” on page 3–2.

Displaying the Pipeline Depth
You can optionally display the pipeline depth on the primitive blocks (such as the
Arithmetic library blocks) in your Simulink model by adding a Display Pipeline
Depth block from the AltLab library.

You can change the display mode by double-clicking on the block. When set, the
current pipeline depth displays at the top right corner of each block that adds latency
to your design (Figure 3–22). The selected mode shows on the Display Pipeline
Depth block symbol.

Updating HDL Import Blocks
The HDL Import blocks in your design may need updating if you upgrade from a
previous software version or move a design to a different workstation.

Figure 3–22. Tutorial Example Showing Port Data Types and Pipeline Depth

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–25
Analyzing the Hardware Resource Usage

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

You can use the alt_dspbuilder_refresh_hdlimport command to update
these blocks. This command checks that the referenced HDL files (or Quartus II
project) exists. If it finds the references, the HDL Import dialog box opens and a
compilation is automatically invokes to regenerate the Simulink model. If it finds
neither, but there is an existing simulation netlist, it uses this netlist for simulation.

To run the command, follow these steps:

1. Start the MATLAB or Simulink software.

2. Open a Simulink model that contains imported HDL.

3. Run the command by typing the following at the MATLAB prompt:

alt_dspbuilder_refresh_hdlimport r
You can optionally select a HDL Import block to run the command on only the
selected subsystem.

Analyzing the Hardware Resource Usage
To analyze the hardware resources required for your design with a Resource Usage
block, follow these steps:

1. Select the AltLab library from the Altera DSP Builder BlockSet folder in the
Simulink Library Browser.

2. Drag and drop a Resource Usage block into your model and double-click on
the block to open the Resource Usage dialog box.

3. Double-click on the Signal Compiler block and click Compile to recompile
your design in the Quartus II software.

The Resource Usage block updates to show a summary of the estimated logic,
RAM and DSP block usage (Figure 3–23).

The Resource Usage dialog box updates to show a detailed report of the resources
that each of the blocks require in your model that generate hardware.

Figure 3–23. Resource Usage Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–26 Chapter 3: Design Rules and Procedures
Analyzing the Hardware Resource Usage

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

For example, Figure 3–24 shows the hardware resources that the Product block
requires in the amplitude modulation example.

f The information depends on the selected device family. Refer to the device
documentation for more information.

You can also click the Timing tab and click Highlight path to highlight the critical
paths on your design.

1 When the source and destination in the dialog box are the same and a single
block is highlights, the critical path is due to the internal function or a
feedback loop. For a more complex example, the entire critical path through
your design may highlight.

Figure 3–24. Resource Usage Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Design Rules and Procedures 3–27
Loading Additional ModelSim Commands

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Loading Additional ModelSim Commands
When you import HDL as a black box, DSP Builder creates a subdirectory
DSPBuilder<model name>_import. Any Tcl script *_add_msim.tcl in this subdirectory
automatically sources when you launch ModelSim.

You should not modify the generated scripts, but you can create you own scripts such
as <user name>_add_msim.tcl, which contain additional ModelSim commands that
you want to load into ModelSim.

Making Quartus II Assignments to Block Entity Names
The VHDL entity names of the blocks in a DSP Builder design are dependent on the
block’s parameter values. Blocks of the same type and same parameterization share a
common VHDL entity.

The entity names have the following format:

<block type name>_GN<8 alphanumeric characters>

For example, a Delay block entity name:

alt_dspbuilder_delay_GNLVAGVO3B

Changing the parameterization of the block causes the entity name to change. If you
want to make an assignment to a block in the Quartus II project, and for the
assignment to remain when the block parameters change, you can use regular
expressions in the assignments.

For example, you may want to make a Preserve Registers assignment to the Delay
blocks in Figure 3–25 to prevent them from merging.

Using the Quartus II Assignment Editor and Node Finder tools, you can identify the
names of the registers and make the assignments to them. For example, if your model
is my_model, the names may be:

my_model_GN:auto_inst|alt_dspbuilder_delay_GNLVAGVO3B:Delay|alt_dsp
builder_SDelay:Delay1i|DelayLine

my_model_GN:auto_inst|alt_dspbuilder_delay_GNLVAGVO3B:Delay1|alt_ds
pbuilder_SDelay:Delay1i|DelayLine

Figure 3–25. Entity Name Assignment Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–28 Chapter 3: Design Rules and Procedures
Making Quartus II Assignments to Block Entity Names

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

These assignments prevent merging of the registers. If you change the length of the
delay, the assignments are no longer valid. However, you can edit the To field of the
assignment and use a regular expression that is still valid if the entity name changes
due to a parameter change: Replace the eight alphanumeric characters following the
GN in the block entity name with .{8}, which is a regular expression that matches any
eight characters. The targets of the assignments then become:

my_model_GN:auto_inst|alt_dspbuilder_delay_GN.{8}:Delay|alt_dspbuil
der_SDelay:Delay1i|DelayLine

my_model_GN:auto_inst|alt_dspbuilder_delay_GN.{8}:Delay1|alt_dspbui
lder_SDelay:Delay1i|DelayLine

If you want the assignment to apply to the whole block, not just the specific nodes,
you can use the following code:

my_model_GN:auto_inst|alt_dspbuilder_delay_GN.{8}:Delay

my_model_GN:auto_inst|alt_dspbuilder_delay_GN.{8}:Delay1

Figure 3–26 shows this example in the Quartus II Assignment Editor.

This type of assignment can be useful for a complicated block that contains many
registers when you want the assignment to apply to all of the registers.

Figure 3–26. Preserve Registers Assignment in the Quartus II Assignment Editor

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

4. Using MegaCore Functions

Altera provides a number of parameterizable intellectual property (IP) MegaCore
functions that you can integrate into the Simulink model of your DSP Builder designs.

1 The OpenCore Plus evaluation feature allows you to download and evaluate these
MegaCore functions in hardware and simulation prior to licensing.

Blocks represent these MegaCore functions in the MegaCore Functions library of the
Altera DSP Builder Blockset in the Simulink Library Browser.

You must parameterize and generate these MegaCore functions after you add one of
these blocks to your model.

f Refer to “MegaCore Function Design Example” on page 4–3 for an example of the
design flow using these MegaCore functions.

Installing MegaCore Functions
Altera DSP MegaCore functions install with the Quartus® II software.

f Refer to the MegaCore function user guides for information about each MegaCore
function.

You must run the DSP Builder MegaCore function setup command after installing
new MegaCore functions to update DSP Builder.

To run this setup command, follow these steps:

1. Start the MATLAB software. If MATLAB is already running, ensure you close the
Simulink library browser.

2. Use the cd command at the MATLAB prompt to change directory to the directory
where DSP Builder is installed.

3. Run the setup command by typing the following at the MATLAB prompt:

alt_dspbuilder_setup_megacore r

1 The process of building the MegaCore function blocks may take several minutes. Do
not close MATLAB before the process completes. Expect and ignore any messages of
the form “Cannot find the declaration of element 'entity'.“ when
installing a new MegaCore library.

Running this command, creates a MegaCore Functions subfolder below the Altera
DSP Builder Blockset in the Simulink Library Browser.

In this folder, there is a blue block with a version name for each of the installed
MegaCore functions.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–2 Chapter 4: Using MegaCore Functions
Updating MegaCore Function Variation Blocks

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Updating MegaCore Function Variation Blocks
Although a DSP Builder design using MegaCore function blocks from the MegaCore
Functions library can be translated by Signal Compiler into a VHDL or Verilog
HDL model, a MegaCore function variation block always uses an intermediate VHDL
file to record parameters.

These blocks may revert to their unconfigured appearance if the VHDL file that
describes the function variation is available but the simulation database (.simdb) file
is not.

Update a block if you change the version of the MegaCore function you are using. In
these cases, you can update the MegaCore function variation blocks in your design
using the alt_dspbuilder_refresh_megacore command. This command
recreates the simulation files based on the VHDL file for each MegaCore function
block in the current Simulink model.

1 A Quartus II license must be available on the machine for the command to execute
without errors.

Design Flow Using MegaCore Functions
Using MegaCore functions in the MATLAB or Simulink environment involves the
following steps:

1. Add the MegaCore function to the Simulink model and give the block a unique
name.

2. Parameterize the MegaCore function variation.

3. Generate the MegaCore function variation.

4. Connect your MegaCore function variation to the other blocks in your model.

5. Simulate the MegaCore function variation in your model.

f Refer to the appropriate MegaCore function user guide for information about the
design flow used for each MegaCore function.

Adding the MegaCore Function in the Simulink Model
Add a MegaCore function to a Simulink model by dragging a copy of the block from
the Simulink Library Browser to your design workspace like any other Simulink
block.

The default name of a MegaCore function block includes its version number. If you
add more than one copy of a block in the same model, this number is automatically
incremented to make the name unique. The correct version number still shows on the
body of the block. Altera recommends that you rename all blocks representing
MegaCore functions with a name describing their use in your design. Using unique
block names ensures that all the generated entities for the same MegaCore function in
a hierarchical design also have unique names.

After adding the block and before parameterization, save your model file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Using MegaCore Functions 4–3
MegaCore Function Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Parameterizing the MegaCore Function Variation
Double-click the MegaCore function block to open the IP Toolbench or MegaWizard
interface.

1 You can also double-click on a block to re-open and modify a previously
parameterized MegaCore function variation.

Generating the MegaCore Function Variation
Before you can connect the block to your design, generate a MegaCore function
variation after you have parameterized the MegaCore function.

Click Generate in IP Toolbench (or Finish in the MegaWizard interface) to generate
the necessary files for your MegaCore function variation.

DSP Builder also performs an additional step of optimizing your model for use in
Simulink.

Connecting the MegaCore Function Variation Block to the Design
The Simulink block now has the required input and output ports as parameterized in
IP Toolbench or the MegaWizard interface. You can connect these ports to other Altera
DSP Builder blocks in your Simulink design.

Simulating the MegaCore Function Variation in the Model
You can simulate the Simulink block representing the MegaCore function variation
like any other block from the Simulink Library Browser.

1 Ensure that the Simulink simulation engine is set to use the discrete solver by
selecting fixed-step type under Solver Options in the Configuration Parameters
dialog box.

You should reset the MegaCore function at the start of the simulation to avoid any
functional discrepancy between RTL simulation and Simulink simulation (“Startup &
Initial Conditions” on page 3–17).

MegaCore Function Design Example
This tutorial shows how to create a custom low-pass FIR filter MegaCore function
variation using the IP Toolbench interface.

1 This tutorial assumes that your PC has the Altera MegaCore IP Library.

Creating a New Simulink Model
To create a new Simulink workspace, follow these steps:

1. Start the MATLAB or Simulink software.

2. On the File menu, point to New and click Model to create a new model window.

3. Click Save on the File menu in the new model window.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–4 Chapter 4: Using MegaCore Functions
MegaCore Function Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

4. Browse to the directory in which you want to save the file. This directory becomes
your working directory. This tutorial creates and uses the working directory <DSP
Builder install path>\DesignExamples\Tutorials\MegaCore

5. Type the file name into the File name box. This tutorial uses the name
mc_example.mdl.

6. Click Save.

Adding the FIR Compiler Function
To place a FIR Compiler MegaCore function block in your design, follow these
steps:

1. On the View menu In your Simulink model window, click Library Browser. The
Simulink Library Browser displays.

2. Select the MegaCore Functions library from the Altera DSP Builder Blockset
folder in the Simulink Library Browser (Figure 4–1 on page 4–4).

3. Drag and drop a blue versioned fir_compiler_v9.0 block into your model
(Figure 4–2).

Figure 4–1. MegaCore Functions Library

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Using MegaCore Functions 4–5
MegaCore Function Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

4. Rename the block to my_fir_compiler. To rename the block, click the default
name (the text outside of the block itself) and edit the text. Naming conventions
are described in “DSP Builder Naming Conventions” on page 3–1.

Parameterizing the FIR Compiler Function
To use FIR Compiler to create a MegaCore function variation that fits the specific
needs of your design, follow these steps:

1. Double-click the my_fir_compiler block to start IP Toolbench.

2. Click Step 1: Parameterize to specify how the FIR filter should operate.

The Parameterize - FIR Compiler MegaCore function dialog box displays.

3. Use the default values, specifying a low-pass filter. Click Finish.

Generating the FIR Compiler Function Variation
After you parameterize the MegaCore function, to generate the files for inclusion in
the Simulink model and simulation, follow these steps:

1. Click Step 2: Generate in IP Toolbench.

2. The generation report lists the design files that IP Toolbench creates.

3. Click Exit.

f For more information about the FIR Compiler including a complete description of the
generated files, refer to the FIR Compiler User Guide.

The my_fir_compiler block in the Simulink model updates to show the input and
output ports for your configuration (Figure 4–3). The FIR filter is ready for you to
connect it to the rest of your Simulink design.

Adding Stimulus and Scope Blocks
To create a sample design to test the low-pass filter by feeding the filter two sine
waves (Figure 4–4 on page 4–8), follow these steps:

Figure 4–2. FIR Compiler Block Placed in Simulink Model

Figure 4–3. FIR Compiler Block in Simulink Model After Generation

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–6 Chapter 4: Using MegaCore Functions
MegaCore Function Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

1. Add two Sine Wave blocks (from the Simulink Sources library).

1 DSP Builder automatically gives the second block a unique name.

2. Use the Block Parameters dialog box to set the parameters for the Sine Wave
block (Table 4–1).

3. Repeat Step 2 for the Sine Wave1 block.

4. Connect the outputs from the Sine Wave and Sine Wave1 blocks to an Add
block (from the Simulink Math Operations library).

5. Add an Input block (from the IO & Bus library in the Altera DSP Builder
Blockset) and connect it between the Add block and the ast_sink_data pin on
the my_fir_compiler block.

6. Use the Block Parameters dialog box to set the parameters (Table 4–2).

7. Add a Constant block (from the IO & Bus library) and connect this block to both
the ast_sink_valid and ast_source_ready pins on the my_fir_compiler
block.

8. Add another Constant block (from the IO & Bus library) and connect this block
to the ast_sink_error pin on the my_fir_compiler block.

9. Use the Block Parameters dialog box to set the parameters for the Constant
block (Table 4–3).

Table 4–1. Parameters for the Sine Wave Blocks

Parameter

Value

Sine Wave Sine Wave1

Sine type Sample based Sample based

Time Use simulation time Use simulation time

Amplitude 64 64

Bias 0 0

Samples per period 200 7

Number of offset examples 0 0

Sample time 1 1

Interpret vector parameters as 1-D On On

Table 4–2. Parameters for the Input Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 8

Specify Clock Off

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Using MegaCore Functions 4–7
MegaCore Function Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

10. Repeat Step 9 for the Constant1 block.

11. Add a Single Pulse block (from the Gate & Control library in the Altera DSP
Builder Blockset) and connect it to the reset_n pin on the my_fir_compiler
block.

12. Use the Block Parameters dialog box to set the parameters (Table 4–4).

13. Add an Output block (from the IO & Bus library in the Altera DSP Builder
Blockset) to your design and connect it to the ast_source_data pin on the
my_fir_compiler block.

14. Use the Block Parameters dialog box to set the parameters (Table 4–5 on
page 4–7).

15. Add a Scope block (from the Simulink Sinks library). Use the ‘Scope’ Parameters
dialog box to configure the Scope block as a 2-input scope.

16. Connect the Scope block to the Input and Output blocks to monitor the source
noise data and the filtered output.

Figure 4–4 shows how your model looks.

Table 4–3. Parameters for the Constant Blocks

Parameter

Value

Constant Constant1

Constant Value 1 0

Bus Type Single Bit Signed Integer

[Number of Bits].[] – 2

Rounding Mode Truncate Truncate

Saturation Mode Wrap Wrap

Specify Clock Off Off

Table 4–4. Parameters for the Single Pulse Block

Parameter Value

Signal Generation Type Step Up

Delay 50

Specify Clock Off

Table 4–5. Parameters for the Output Block

Parameter Value

Bus Type Signed Integer

[number of bits].[] 18

External Type Inferred

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–8 Chapter 4: Using MegaCore Functions
MegaCore Function Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Simulating the Design in Simulink
To simulate your design, follow these steps:

1. On the Simulation menu in your model, click Configuration Parameters to
display the Configuration Parameters dialog box (Figure 4–5 on page 4–8).

2. Select the Solver page and set the parameters (Table 4–6).

Figure 4–4. Connecting Blocks to the Low-Pass Filter

Figure 4–5. Configuration Parameters: mc_example/Configuration Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Using MegaCore Functions 4–9
MegaCore Function Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

f For detailed information about solver options, refer to the description of
the Solver Pane in the Simulink Help.

3. Click OK.

4. On the Simulation menu in the simulink model, click Start. The scope output
shows the effect of the low-pass filter in the bottom window (Figure 4–6).

Check that the FIR filter block behaves as you expect and filters high-frequency
data as a low-pass filter.

1 You may need to use the Autoscale command in the Scope display to view
the complete waveforms.

Compiling the Design
To create and compile a Quartus II project for your DSP Builder design, and to
program your design onto an Altera FPGA, add a Signal Compiler block. Follow
these steps:

1. Select the AltLab library from the Altera DSP Builder Blockset folder in the
Simulink Library Browser.

2. Drag and drop a Signal Compiler block into your model.

3. Double-click the new Signal Compiler block in your model. The Signal
Compiler dialog box appears (Figure 4–7).

Table 4–6. Configuration Parameters for the singen Model

Parameter Value

Start time 0.0

Stop time 5000

Type Fixed-step

Solver discrete (no continuous states)

Figure 4–6. Simulation Output

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–10 Chapter 4: Using MegaCore Functions
MegaCore Function Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

4. Click Compile.

5. When the compilation has completed successfully, click OK.

Performing RTL Simulation
To perform RTL simulation with the ModelSim software, add a TestBench block.
Follow these steps:

1. Select the AltLab library from the Altera DSP Builder BlockSet folder in the
Simulink Library Browser.

2. Drag and drop a TestBench block into your model.

3. Double-click on the new TestBench block. The TestBench Generator dialog box
appears (Figure 4–8).

Figure 4–7. Signal Compiler Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Using MegaCore Functions 4–11
MegaCore Function Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

4. Ensure that Enable Test Bench generation is on.

5. Click the Advanced Tab (Figure 4–9).

Figure 4–8. TestBench Generator Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–12 Chapter 4: Using MegaCore Functions
MegaCore Function Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

6. Turn on the Launch GUI option to launch the ModelSim GUI if you invoke
ModelSim simulation.

7. Click Generate HDL to generate a VDHL-based testbench from your model.

8. Click Run Simulink to generate Simulink simulation results for the testbench.

9. Click Run ModelSim to simulate your design in ModelSim.

Your design loads into ModelSim and simulates with the Wave window
displaying the output.

1 All waveforms initially show using digital format in the ModelSim Wave
window.

10. Right-click the input signal in the ModelSim Wave window and click Properties
in the pop-up menu to display the Wave Properties dialog box. Click the Format
tab and change the format to Analog with height 75 and Scale 0.25.

11. Repeat Step 10 for the output signal in the ModelSim Wave window and use the
Wave Properties dialog box to change the format to Analog with height 75 and
scale 0.001.

Figure 4–9. TestBench Generator Dialog Box Advanced Tab

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Using MegaCore Functions 4–13
MegaCore Functions Design Issues

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

12. Click Zoom Full on the right button right button pop-up menu in the ModelSim
Wave window.

The ModelSim simulator now displays the input and output waveforms in analog
format (Figure 4–10).

1. Click Compare Results in the Testbench Generator dialog box to compare the
simulink results with the ModelSim-generated results. The message Exact
Match indicates that the results are identical.

2. Click OK to close the Testbench Generator dialog box.

MegaCore Functions Design Issues
This section describes some of the design issues to consider when using MegaCore
functions in a DSP Builder design.

Simulink Files Associated with a MegaCore Function
DSP Builder stores the files that support the configuration and simulation of a
MegaCore function variation in a subdirectory of the directory containing your
Simulink MDL file DSPBuilder_<design name>_import. When copying a design from
one location to another, make sure that you also copy this subdirectory.

Figure 4–10. Generated HDL for mc_example Simulated in ModelSim Simulator

Note to Figure 4–10:

(1) This waveform display format shows the input and output signals as analog waveforms.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–14 Chapter 4: Using MegaCore Functions
MegaCore Functions Design Issues

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

DSP Builder needs the following specific files to simulate a MegaCore function
variation:

■ If your MegaCore function variation is my_function, and generates in VHDL,
your design variation is in a my_function.vhd file in your design directory.

■ If your design is my_design, the simulation information is in a
DSPBuilder_my_design_import/my_function.vo.simdb file.

Simulating MegaCore Functions That Have a Reset Port
MegaCores functions that have a reset port must have a reset cycle at the start of
Simulink simulation to produce correct simulation results. The length of this reset
cycle must be of sufficient length, and depends on the particular MegaCore function
and parameterization.

For example, in Figure 4–11, DSP Builder cannot tie the reset to a constant because the
simulation does not match hardware.

You must simulate an initial reset cycle (with the step input) to replicate hardware
behavior. As in hardware, this reset cycle must be sufficiently long to propagate
through the core, which may be 50 clock cycles or more for some MegaCore functions
such as the FIR Compiler.

Additional adjustment of the reset cycles may be necessary when a MegaCore
function receives data from other MegaCore functions, to ensure that the blocks leave
the reset state in the correct order and DSP Builder delays them by the appropriate
number of cycles.

Setting the Device Family for MegaCore Functions
Most of the MegaCore functions available in DSP Builder use the IP Toolbench
interface.

Figure 4–11. MegaCore Function Design With a Reset Port

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Using MegaCore Functions 4–15
MegaCore Functions Design Issues

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

The CIC MegaCore function uses a MegaWizard user interface. This interface always
inherits the device family setting from the Signal Compiler block. If there is no
Signal Compiler block in your design, DSP Builder uses the Stratix device family
by default.

MegaCore functions that use IP Toolbench allow you to modify the device family
setting in the IP Toolbench interface.

1 The FFT, FIR Compiler, NCO, Reed Solomon Compiler, and Viterbi Compiler
MegaCore functions use IP Toolbench.

If you change the device family in Signal Compiler, you must check that any IP
Toolbench MegaCore functions have the correct device family set to ensure that the
simulation models and generated hardware are consistent.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–16 Chapter 4: Using MegaCore Functions
MegaCore Functions Design Issues

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

5. Using HIL

Adding the HIL block to your Simulink model allows you to cosimulate a Quartus II
software design with a physical FPGA board implementing a portion of that design.
You define the contents and function of the FPGA by creating and compiling a
Quartus II project. A simple JTAG interface between Simulink and the FPGA board
links the two.

The main benefits of using the HIL block are faster simulation and richer
instrumentation. The Quartus II project you embed in an FPGA runs faster than a
software-only simulation. To further increase simulation speed, the HIL block offers
frame and burst modes of data transfer that are significantly faster than single-step
mode when you use it with suitable designs.

The HIL block also makes available to the hardware a large Simulink library of sinks
and sources, such as channel models and spectrum analyzers, which can give you
greater control and observability.

This chapter explains the HIL block design flow, walks through an example using the
HIL block, and discusses the optional burst and frame data transfer modes.

HIL Design Flow
The HIL block in AltLab library of the Altera DSP Builder Blockset enables the HIL
functionality. It represents the functions implemented on your FPGA, and works
smoothly with the normal DSP Builder/Simulink work flow.

The HIL design flow comprises the following steps:

1. Create a Quartus II project that defines the functions you want to co-simulate in
hardware and use Signal Compiler block to compile the Quartus II project
through the Quartus II Fitter.

2. Add the HIL block to your Simulink model and import the compiled Quartus II
project into the HIL block. You can also connect instrumentation to your HIL block
by adding additional blocks from the Simulink Sinks and Sources libraries.

1 If the original design contains a Clock block that defines a period and
sample time that is different from the default values, you must add a Clock
block with the same values as the HIL block.

3. Specify parameters for the HIL block, including the following options:

■ The Quartus II project to define its functionality

■ The clock and reset pins

■ The reset active level

■ The input and output pin characteristics

■ The use of single-step versus burst and frame mode

4. Compile the HIL block to create a programming object file (.pof) for hardware
cosimulation.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–2 Chapter 5: Using HIL
HIL Requirements

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

5. Scan for JTAG cables and hardware devices connected to the local host or any
remotely enabled hosts.

6. Program the board that contains your target FPGA.

7. Simulate the combined software and hardware system in Simulink.

1 When using a HIL block in a Simulink model, set a fixed-step, single
tasking solver.

Figure 5–1 shows this system-level design flow using DSP Builder.

HIL Requirements
The HIL block has the following requirements:

■ An FPGA board with a JTAG interface (Stratix, Stratix II, Stratix III, Cyclone,
Cyclone II, or Cyclone III device).

■ A valid Quartus II project that contains a single clock domain from Simulink. DSP
Builder creates an internal Quartus II project when you run Signal Compiler.

■ A JTAG download cable (for example, a ByteBlasterMV™, ByteBlaster™ II,
ByteBlaster, MasterBlaster™, or USB-Blaster™ cable).

■ A maximum of one HIL block for each JTAG download cable.

Figure 5–1. System-Level Design Flow

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Using HIL 5–3
HIL Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

HIL Design Example
DSP Builder includes the following design examples in the <DSP Builder install
path>\DesignExamples\Tutorials\HIL directory that demonstrate the use and
effectiveness of HIL:

■ Imaging edge detection

■ Export example

■ Fast Fourier Transform (FFT)

■ Frequency sweep

This section shows the frequency sweep design.

1 This tutorial uses the Stratix II hardware device on an Altera Stratix II EP2S60 DSP
Development Board. However, you can also use any other supported device and
development board.

To create a frequency sweep design, follow these steps:

1. Run MATLAB, and open the model FreqSweep.mdl in the <DSP Builder install
path>\DesignExamples\Tutorials\HIL\FreqSweep directory. Figure 5–2 shows
the model.

2. Double-click the Signal Compiler block. In the dialog box that appears
(Figure 5–3 on page 5–4), click Compile.

This action creates a Quartus II project, FreqSweep.qpf, compiles your model for
synthesis, and runs the Quartus II Fitter.

Progress is indicated by status messages and a scrolling bar at the bottom of the
dialog box.

Figure 5–2. Frequency Sweep Model

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–4 Chapter 5: Using HIL
HIL Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

3. Review the Messages, then click OK to close the Signal Compiler dialog box.

4. Replace the internal functions of the frequency sweep model with an HIL block.
Open the model FreqSweep_HIL.mdl from the FreqSweep directory (step 1).

Figure 5–4 shows this model, with the HIL block in place.

Figure 5–3. Signal Compiler Dialog Box, Simple Tab

Figure 5–4. Frequency Sweep Design Model Using the HIL Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Using HIL 5–5
HIL Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

5. Double-click the frequency sweep HIL block to display the Hardware in the loop
dialog box.

6. Select the Quartus II project by browsing into the FreqSweep_dspbuilder
directory to locate the FreqSweep.qpf file.

1 The full path to this file is visible in the dialog box when you select this file.

7. Select Clock from the list of available clock pins.

1 HIL does not support multiple clock domains and only the specified signal
is the HIL clock signal. The HIL treats any other clocks in your design as
input signals.

8. Select aclr from the list of available reset pins.

9. Identify the signed ports:

■ Select the Input port and click Unsigned.

■ Select each output port (OutputCordic and OutputFilter) and click Signed.

10. Select the reset level to be Active_High.

11. Select the mode of operation by turning off Burst Mode.

12. Click Next page. to display the second page of the Hardware in the loop dialog
box.

13. Specify a value for the FPGA device and click Compile with Quartus II to
compile the HIL design.

1 If no output writes to the MATLAB command window, check that the
original Quartus II project is up-to-date and compiles with he same version
of the Quartus II software that compiles your Simulink model.

14. Click Scan Jtag to find available cables and hardware devices in the chain.

15. Select the JTAG download cable that references the required FPGA device and
click Configure FPGA to program the FPGA on the board.

16. Click Close.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–6 Chapter 5: Using HIL
Burst and Frame Modes

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

17. Simulate your design in Simulink. Figure 5–5 shows the scope display from the
finished design.

Burst and Frame Modes
The Quartus II software infrastructure that communicates with the FPGA through
JTAG—system-level debugging (SLD)—uses a serial data transfer protocol.

To maximize the throughput of this data transfer, the HIL block offers a burst mode
that buffers the stimulus data and presents it in bursts to the hardware. Burst mode
also allows a frame mode for certain types of designs.

Table 5–1 shows the advantages and disadvantages of using burst mode compared
with the normal single-step mode.

Figure 5–5. Scope Output from the FrequencySweep Model with HIL Block

Table 5–1. Comparing Single-Step and Burst Modes

Mode Advantages Disadvantages

Single step Cycle accurate simulation.

Feedback is possible outside of
the HIL block.

■ High SLD overhead.

■ No frame mode.

Burst ■ Low SLD overhead.

■ Fast HIL results.

■ Frame mode possible.

A latency is introduced on the output signals of
the HIL block making feedback loop difficult
outside the FPGA device.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Using HIL 5–7
Burst and Frame Modes

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Using Burst Mode
To activate burst mode turn on the Burst Mode option in the Hardware in the loop
dialog box (Figure 5–6).

When you set this option, you can specify the required number of data packets as the
Burst length. The HIL block sends data to the hardware in bursts of the size you
specify.

1 DSP Builder determines the size of the packet by the larger of the total input data
width or the total output data width. If the packet size multiplied by the Burst length
exceeds the preset data array, DSP Builder sets the Burst length to 1.

In the HIL model (C++), DSP Builder defines an array for storing the input and output
data to the HIL as 0x800000 byte in size. When the data record size (max of total input
bits and output bits) / 8 × burst length × 2 (for both input and output) exceeds this
number, DSP Builder resets the burst length to 1.

Figure 5–6. Setting Parameters for the HIL Block in Figure 5–8

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–8 Chapter 5: Using HIL
Burst and Frame Modes

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Simulation using burst mode works the same as single clock mode, but DSP Builder
introduces a latency of the specific packet size on the output signals of the HIL blocks.
As a consequence, feedback-loops may not work properly unless you enclose them in
the HIL block, and some intervention may be necessary when comparing or
visualizing HIL simulation results.

The HIL block uses software buffers to send and receive from the hardware, so you
can change these buffer sizes without recompiling the HIL function.

Using Frame Mode
To activate frame mode turn on the Frame Mode option in the Hardware in the loop
dialog box (Figure 5–6 on page 5–7). Frame mode builds on the burst functionality
and provides a way to partially compensate for the burst mode output delay.

To use frame mode, the following conditions must be true:

■ The HIL block works with the concept of blocks of data (frames).

■ DSP Builder provides the data frames at regular intervals.

■ There is one input synchronization and one output synchronization signal
available.

■ The latency between the input synchronization and output synchronization
signals is constant.

In frame mode, the HIL block monitors the input synchronization and output
synchronization signals and increases the output delay to align the output data
frames with the input data frames. For example, if the burst length is 1024 and the
latency 3, the delay is 1027 (1024 + 3) without frame mode or 2048 (aligned to the next
frame) with frame mode on.

The burst packet size in frame mode must be a multiple of the frame packet interval.
For example, if packets arrive every 100 clocks, you can use a frame burst size of N ×
100 clocks (N positive integer).

Figure 5–7 illustrates a DSP Builder design with a FFT MegaCore function configured
for the Stratix II target device family, with a transform length of 64 points, data
precision of 16 bits, and twiddle precision of 16 bits.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Using HIL 5–9
Burst and Frame Modes

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Figure 5–8 on page 5–9 shows the FFT design with a HIL block (and the parameters
from Figure 5–6 on page 5–7).

The FFT MegaCore function respectively uses the Avalon-ST interface signals
sink_eop and source_valid in the HIL block as the input synchronization and
output synchronization signals.

f Refer to the FFT MegaCore Function User Guide for additional information about the
input and output port signal timing.

Figure 5–7. DSP Builder Design Using the FFT MegaCore Function

Figure 5–8. Using the FFT Design With an HIL Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–10 Chapter 5: Using HIL
Troubleshooting HIL Designs

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Troubleshooting HIL Designs
This section describes various issues that you may encounter when you are using HIL
designs.

1 If the top-level of your design changes, compile and reload the Quartus II project into
HIL to ensure that all information is up-to-date.

Fails to Load the Specified Quartus II Project
HIL reads design information, such as clock, reset, and input and output ports, from
the specified Quartus II project. However, it can fail to load your project if the project
is not compiled with the Quartus II Fitter, there is a Quartus II version mismatch, or
the Quartus II project file is not up-to-date.

No Inputs Found From the Quartus II Project
This issue occurs if the DSP Builder model file contains only the internally induced
signals, such as from a counter, and also does not produce any outputs. However, HIL
simulation works correctly.

No Outputs Found From the Quartus II Project
This issue occurs if your design does not have any outputs and makes the HIL
simulation meaningless.

HIL Design Stays in Reset During Simulation
An asynchronous reset is permanently asserted for a HIL design.

Action:

Check that the reset active level matches the setting in the original design. Recompile
the HIL design after you have changed the reset level.

HIL Compilation Appears to Hang
After clicking Compile with Quartus II in the HIL Block Parameters dialog box, no
output writes to the MATLAB command window. This issue occurs if the original
Quartus II project is out-of-date or compiled by a different version of the Quartus II
software.

Scan JTAG Fails to Find Correct Cable or Device
This issue occurs if you connect the target DSP development board switch it on after
you open the HIL dialog box.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

6. Performing SignalTap II Logic Analysis

This chapter describes how to set up and run the SignalTap® II logic analyzer. In this
chapter, you analyze three internal nodes in a simple switch controller design named
switch_control.mdl. This design flow works for any of the Altera development
boards that DSP Builder supports.

f For detailed information about the supported development boards, refer to the Boards
Library chapter in the DSP Builder Standard Blockset Libraries section in volume 2 of the
DSP Builder Handbook.

In this design, an LED on the DSP development board turns on or off depending on
the state of user-controlled switches and the value of the incrementer. The design
consists of an incrementer function feeding a comparator, and four switches that feed
into two AND gates. The comparator and AND gate outputs feed an OR gate, which
feeds an LED on the DSP development board.

The SignalTap II logic analyzer captures the signal activity at the output of the two
AND gates and the incrementer of the design loads into the Altera device on the
development board. The logic analyzer retrieves the values and displays them in the
MATLAB work space.

f For more information about using the SignalTap II logic analyzer with the Quartus II
software, refer to the Quartus II Help or to Volume 3 of the Quartus II Handbook.

A SignalTap II Logic Analyzer block in DSP Builder includes the following
characteristics:

■ Has a simple, easy-to-use interface

■ Analyzes signals in the top-level design file

■ Uses a single clock source

■ Captures data around a trigger point. 88% of the data is pre-trigger and 12% of the
data is post-trigger

1 Alternatively, you can use the Quartus II software to instantiate of the SignalTap II
logic analyzer in your design. The Quartus II software supports additional features,
such as using multiple clock domains, and adjusting the percentage of data captured
around the trigger point.

SignalTap II Design Flow
Working with the SignalTap II logic analyzer in DSP Builder involves the following
flow:

1. Add a SignalTap II Logic Analyzer block to your design.

2. Specify the signals (nodes) that you want to analyze by inserting SignalTap II
Node blocks.

3. Turn on the Enable SignalTap option in the Signal Compiler dialog box.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–2 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Example Designs

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

4. Choose one of the JTAG cable ports in the Signal Compiler dialog box or the
SignalTap II Logic Analyzer dialog box.

5. Using Signal Compiler, synthesize your model, perform compilation in the
Quartus II software, and download your design into the DSP development board
(starter or professional).

6. Specify the required trigger conditions in the SignalTap II Logic Analyzer
block.

f For details of the SignalTap II Logic Analyzer and SignalTap II Node
blocks, refer to the descriptions of these blocks in the AltLab Library chapter in the DSP
Builder Standard Blockset Libraries section in volume 2 of the DSP Builder Handbook.

SignalTap II Nodes
A node represents a wire carrying a signal that travels between different logical
components of a design file. The SignalTap II logic analyzer can capture signals from
any internal device node in a design file, including I/O pins.

The SignalTap II logic analyzer can analyze up to 128 internal nodes or I/O elements.
As more it capture more signals, it uses more logic elements (LEs) or embedded
system blocks (ESBs).

Before capturing signals, assign each node to analyze to a SignalTap II logic analyzer
input channel. To assign a node to an input channel, you must connect it to a
SignalTap II Node block.

SignalTap II Trigger Conditions
The trigger pattern describes a logic event in terms of logic levels or edges. The
SignalTap II logic analyzer uses a comparison register to recognize the moment when
the input signals match the data specified in the trigger pattern.

The trigger pattern comprises a logic condition for each input signal. By default, all
signal conditions for the trigger pattern are set to Don’t Care, masking them from
trigger recognition. You can select one of the following logic conditions for each input
signal in the trigger pattern:

■ Don’t care

■ Low

■ High

■ Rising edge

■ Falling edge

■ Either edge

The SignalTap II logic analyzer triggers when it detects the trigger pattern on the
input signals.

SignalTap II Example Designs
Altera provides several example designs (Figure 6–1).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Performing SignalTap II Logic Analysis 6–3
SignalTap II Example Designs

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

You can start from the design in the original_design directory.

Alternatively, you can use the design in the completed_walkthrough directory and
go directly to “Turning On the SignalTap II Option in Signal Compiler” on page 6–6.

Opening the Design Example
Open the template switch_control.mdl design in the <DSP Builder install path>\
DesignExamples\Tutorials\SignalTap\professional\original_design directory.
(Figure 6–2).

Adding the Configuration and Connector Blocks
You must add the board configuration block and connector blocks for the board that
you want to use. This tutorial uses the Cyclone II EP2C35 development board.

Figure 6–1. SignalTap II Design Example Directory Structure

Figure 6–2. Starting Point for the SignalTap II Design Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–4 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Example Designs

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

1. Select the Boards library from the Altera DSP Builder Blockset folder in the
Simulink library browser.

2. Open the CycloneIIEP2C35 folder. Drag and drop the Cyclone II EP2C35 DSP
Development Board configuration block into your model.

3. Drag and drop the SW2 and SW3 blocks close to the AND_Gate2 block in your
model. Connect these switch blocks to the AND_Gate2 inputs.

4. Drag and drop the SW4 and SW5 blocks close to the AND_Gate1 block in your
model. Connect these switch blocks to the AND_Gate1 inputs.

1 You can rotate the SW5 block to make the connection easier by right-clicking
the block and clicking Rotate Block on the Format menu.

5. Drag and drop the LED0 block close to the OR_Gate block in your model. Connect
this block to the OR_Gate output.

6. Select the Simulink Sources library. Drag and drop a Pulse Generator block
near to the SW2 and SW3 blocks and connect it to these blocks.

7. Drag and drop another Pulse Generator block near the SW4 and SW5 blocks
and connect it to these blocks.

Figure 6–3 shows your model.

8. Use the Block Parameters dialog box to set the parameters (Table 6–1) for both
pulse generator blocks.

Figure 6–3. Switch Control Example with Board, Pulse Generator and Terminator Blocks

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Performing SignalTap II Logic Analysis 6–5
SignalTap II Example Designs

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

9. Select the Simulink Sinks library. Drag and drop a Terminator block near to the
OR_Gate block and connect it to this block.

Specifying the Nodes to Analyze
To add SignalTap II Node blocks to the signals (also called nodes) that you want
to analyze (in this tutorial they are the output of each AND gate and the output of the
incrementer), follow these steps:

1. Open the AltLab library in the Simulink Library Browser. Drag a SignalTap II
Node block into your design. Position the block so that it is on top of the
connection line between the AND_Gate1 block and the OR_Gate block
(Figure 6–4).

1 If you position the block with this method, the Simulink software inserts
the block and joins connection lines on both sides.

Table 6–1. Parameters for the Pulse Generator Blocks

Parameter Value

Pulse type Time based

Time Use Simulation time

Amplitude 1

Period 2

Pulse Width 50

Phase delay 0

Interpret vector parameters as 1-D On

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–6 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Example Designs

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

2. Click the text under the block icon in your model and change the block instance
name by deleting the text and typing the new text firstandout.

3. Add a SignalTap II Node block between the AND_Gate2 block and the
OR_Gate block and name it secondandout.

4. Add a SignalTap II Node block between the Eightbit Counter block and
the Comparator block and name it cntout.

5. Click Save on the File menu.

Turning On the SignalTap II Option in Signal Compiler
When you add node blocks to signals, each block implicitly connects to the
SignalTap II logic analyzer. This connection is a functional change to your model and
you must recompile your design before you can use the SignalTap II logic analyzer.

To compile your design, follow these steps:

1. Double-click the Signal Compiler block and click the SignalTap II tab in the
Signal Compiler dialog box.

2. Verify that the Enable SignalTap II option is on.

When this option is on, Signal Compiler inserts an instance of the SignalTap II
logic analyzer into your design.

Figure 6–4. Completed SignalTap II Design

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Performing SignalTap II Logic Analysis 6–7
SignalTap II Example Designs

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

3. Select a depth of 128 for the SignalTap II sample buffer (that is, the number of
samples stored for each input signal) in the SignalTap II depth list.

4. Verify that the Use Base Clock option is on.

5. Click the Simple tab and verify that the Use Board Block to Specify Device
option is on.

6. Click the Compile button.

When the conversion is complete, information messages in the dialog box display
the memory allocated during processing.

1 You must compile your design before you open the SignalTap II
Analyzer block because the block relies on data files that create during
compilation.

7. Click Scan Jtag and select the appropriate download cable and device (for
example, USB-Blaster cable and EP2C35 device).

8. Click Program to download your design to the development board.

9. Click OK.

Specifying the Trigger Levels
To specify the trigger levels, follow these steps:

1. Double-click the SignalTap II Logic Analyzer block. The dialog box
displays all the nodes connected to SignalTap II Node blocks as signals to be
analyzed.

2. Specify the following trigger condition settings for the firstandout block:

a. Click firstandout under Signal Tap II Nodes.

b. Select Falling Edge in the Set Trigger Level list.

c. Click Change. The condition is updated.

3. Repeat these steps to specify the trigger condition High for the secondandout
block.

The SignalTap II logic analyzer captures data for analysis when it detects all trigger
patterns simultaneously on the input signals. For example, because you specify
Falling Edge for firstandout and High for secondandout, the SignalTap II logic
analyzer only triggers when it detects a falling edge on firstandout and a logic
level high on secondandout.

Performing SignalTap II Analysis
You are now ready to run the analyzer and display the results in a MATLAB plot.
After you click Acquire, the SignalTap II logic analyzer begins analyzing the data and
waits for the trigger conditions to occur. To perform analysis, follow these steps:

1. Click Scan Jtag in the SignalTap II Logic Analyzer dialog box and select the
appropriate download cable and device.

2. Click Acquire.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–8 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Example Designs

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

3. Press switch SW4 on the DSP development board to trigger the SignalTap II logic
analyzer.

1 If you press and hold switch SW2 or SW3 while pressing switch SW4, the
trigger condition is not met and acquisition does not occur.

4. Click OK in the SignalTap II Logic Analyzer dialog box when you finish.

DSP Builder interprets the captured data as unsigned values and displays them in
MATLAB plots. It stores the values in MATLAB .mat files in the working directory.

Figure 6–5 shows the MATLAB plot for the SignalTap II node firstandout.

Figure 6–6 shows the MATLAB plot for the SignalTap II node secondandout.

Figure 6–7 shows the MATLAB plot for the SignalTap II node cntout.

Figure 6–5. MATLAB Plot for SignalTap II Node firstandout

Figure 6–6. MATLAB Plot for SignalTap II Node secondandout

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: Performing SignalTap II Logic Analysis 6–9
SignalTap II Example Designs

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

f For more information about the SignalTap II Logic Analyzer block, refer to
the SignalTap II Logic Analyzer block description in the AltLab Library chapter in the
DSP Builder Standard Blockset Libraries section in volume 2 of the DSP Builder
Handbook.

Figure 6–7. MATLAB Plot for SignalTap II Node cntout

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–10 Chapter 6: Performing SignalTap II Logic Analysis
SignalTap II Example Designs

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

7. Using the Interfaces Library

This chapter describes how to use the Avalon-MM blocks in the Interfaces library to
create a design that functions as a custom peripheral to SOPC Builder.

SOPC Builder is a system development tool for creating systems that can contain
processors, peripherals, and memories. SOPC Builder automates the task of
integrating hardware components into a larger system.

To integrate a DSP Builder design into your SOPC Builder system, your peripheral
must meet the Avalon-MM interface or Avalon-ST interface specification and qualify
as a SOPC Builder-ready component.

The Interfaces library supports peripherals that use the Avalon-MM and Avalon-ST
interface specifications.

1 The correct version of MATLAB with DSP Builder must be available on your system
path to integrate DSP Builder .mdl files in SOPC Builder.

Avalon-MM Interface
The Avalon Interface Specifications provide peripheral designers with a basis for
describing the address-based read and write interfaces on master (for example, a
microprocessor or DMA controller) and slave peripherals (for example, a memory,
UART, or timer).

The Avalon-MM Master and Avalon-MM Slave blocks in DSP Builder provide a
seamless flow for creating a DSP Builder block as a custom peripheral and integrating
the block into your SOPC Builder system. These blocks provide you the following
benefits:

■ Automates the process of specifying Avalon-MM ports that are compatible with
the Avalon-MM bus

■ Supports multiple Avalon-MM master and Avalon-MM slave instantiations

■ Saves time spent hand coding glue logic that connects Avalon-MM ports to DSP
blocks

f For more information about SOPC Builder, refer to the Quartus II Handbook Volume 4:
SOPC Builder; for more information about the Avalon-MM Interface, refer to the
Avalon Interface Specifications.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–2 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Avalon-MM Interface Blocks
A SOPC Builder component is a design module that SOPC Builder recognizes and can
automatically integrate into a system.

SOPC Builder can recognize a DSP Builder design model if it is in the same working
directory as the SOPC Builder project. With the Avalon-MM blocks in the Interfaces
library, you can design the DSP function and add an Avalon-MM block that makes it a
custom peripheral in the Simulink environment.

You can instantiate each Avalon-MM block multiple times in a design to implement
an SOPC component with multiple master or slave ports.

Avalon-MM Slave Block
The Avalon-MM Slave block supports the following signals:

■ clock

■ address

■ read

■ readdata

■ write

■ writedata

■ byteenable

■ readyfordata

■ dataavailable

■ endofpacket

■ readdatavalid

■ waitrequest

■ beginbursttransfer

■ burst count

■ irq

■ begintransfer

■ chipselect

f For more information about these signals, refer to the DSP Builder Standard Blockset
Libraries section in volume 2 of the DSP Builder Handbook.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–3
Avalon-MM Interface Blocks

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Figure 7–1 shows a block that describes an Avalon-MM slave interface where all the
Avalon-MM signals are enabled.

Figure 7–1. Avalon-MM Slave Block Signals

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–4 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Each of the input and output ports of the block correspond to the input and output
ports of the pin or bus that Figure 7–1 shows between the ports.

Inputs to the DSP Builder core display as right pointing bus or pins; outputs from the
core display as left pointing pins or busses.

You can use the opposite end of any pins to provide pass-through test data from the
Simulink domain.

Avalon-MM Master Block
You may want to use an Avalon-MM Master block (for example, to design a DMA
controller) in a design that functions as an Avalon-MM Master in your SOPC Builder
system.

The Avalon-MM Master block is similar to the Avalon-MM Slave block and
supports the following signals:

■ clock

■ waitrequest

■ address

■ read

■ readdata

■ write

■ writedata

■ byteenable

■ endofpacket

■ readdatavalid

■ flush

■ burstcount

■ irq

■ irqnumber

f For more information about these signals, refer to the DSP Builder Standard Blockset
Libraries section in volume 2 of the DSP Builder Handbook.

Figure 7–2 on page 7–5 shows a block that describes an Avalon-MM master interface
where all the Avalon-MM signals are enabled.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–5
Avalon-MM Interface Blocks

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Wrapped Blocks
The Avalon-MM Master and Avalon-MM Slave interface blocks allow you to
generate a SOPC Builder component in DSP Builder, but they do little to mask the
complexities of the interface. The Avalon-MM read and write FIFO blocks in the
Interfaces library provide a higher level of abstraction.

You can implement a typical DSP core that handles data in a streaming manner, with
the signals Data, Valid, and Ready. To provide a high level view, DSP Builder
provides you with configurable Avalon-MM Write FIFO and Avalon-MM Read
FIFO blocks for you to map Avalon-MM interface signals to this protocol.

Figure 7–2. Avalon-MM Master Block Signals

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–6 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Figure 7–3 shows an example system with Avalon-MM Write FIFO and
Avalon-MM Read FIFO blocks.

Avalon-MM Write FIFO
An Avalon-MM Write FIFO has the following ports:

■ TestData (input). Connect this port to a Simulink block that provides simulation
data to the Avalon-MM Write FIFO. The data passes to the DataOut port one cycle
after the Ready input port asserts.

■ Stall (input). Connect this port to a Simulink block. It simulates stall conditions
of the Avalon-MM bus and hence underflow to the SOPC Builder component. For
any simulation cycle where Stall asserts, the Avalon-MM Write Test Converter
caches the test data and releases in order, one sample per clock, when stall is
de-asserted.

■ Ready (input). Connect this port to a DSP Builder block. It indicates that the
downstream hardware is ready for data.

■ DataOut (output). Connect this port to a DSP Builder block that corresponds to
the oldest unsent data sample received on the TestData port.

■ DataValid (output). Connect this port to a DSP Builder block and assert
whenever DataOut corresponds to real data.

Double-click on an Avalon-MM Write FIFO block to open the Block Parameters
dialog box so that you can set parameters for the data type, data width and FIFO
depth.

1 To open the hierarchy below the Avalon-MM Write FIFO block, right-click the
block and click Look Under Mask on the pop-up menu.

You can use this design as a template to design new functionality (for example, when
you use an Avalon-MM address input to split incoming streams).

Figure 7–3. Example System with Avalon-MM Write FIFO and Avalon-MM Read FIFO Blocks

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–7
Avalon-MM Interface Blocks

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Figure 7–4 shows the internal content of an Avalon-MM Write FIFO buffer.

The Avalon-MM Write Test Converter block handles caching and conversion of
Simulink or MATLAB data into accesses over the Avalon-MM interface. You can use
this block to test the functionality of your design. The Avalon-MM Write Test
Converter is simulation only and does not synthesize to HDL.

Avalon-MM Read FIFO Buffer
An Avalon-MM read FIFO buffer has the following ports:

■ Stall (input). Connect this port to a Simulink block. It simulates stall conditions
of the Avalon-MM bus and hence backpressure to the SOPC Builder component.
For any simulation cycle where Stall asserts, no Avalon-MM reads take place
and the internal FIFO buffer fills. When full, the Ready output is de-asserted so
that you lose no data.

■ Data (input). Connect this port to a DSP Builder block and to outgoing data from
the user design.

■ DataValid (input). Connect this port to a DSP Builder block and assert whenever
the signal on the Data port corresponds to real data.

■ TestDataOut (output). Connect this port to a Simulink block that corresponds to
data received over the Avalon-MM bus.

■ TestDataValid (output). Connect this port to a Simulink block and assert
whenever TestDataOut corresponds to real data.

■ Ready (output). When asserted, indicates that the block is ready to receive data.

Double-clicking on an Avalon-MM Write FIFO block opens the Block Parameters
dialog box that you can use to set parameters for the data type, data width and FIFO
depth.

You can open the hierarchy below the Avalon-MM Read FIFO block by
right-clicking on the block and choosing Look Under Mask from the pop-up menu.

Figure 7–5 shows the internal content of an Avalon-MM Read FIFO.

Figure 7–4. Avalon-MM Write FIFO Content

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–8 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

The Avalon-MM Read Data Converter block handles caching and conversion of
Simulink or MATLAB data into accesses over the Avalon-MM interface. You can use
this block to test the functionality of your design. The Avalon-MM Read Data
Converter is simulation only and does not synthesize to HDL.

Avalon-MM Interface Blocks Design Example
This tutorial describes how to interface a design using the Avalon-MM Blocks as a
custom peripheral to the Nios II embedded processor in SOPC Builder.

The design consists of a 4-tap FIR filter with variable coefficients. You load the
coefficients with the Nios II embedded processor while an off-chip source supplies the
input data through an analog-to-digital converter. The design sends filtered output
data off-chip through a digital-to-analog converter.

Adding Avalon-MM Blocks to the Design Example
To complete the design example, follow these steps:

1. Click Open on the File menu in the MATLAB software.

2. Browse to the <DSP Builder install path>\DesignExamples\Tutorials\
SOPCBuilder\SOPCBlock directory.

Figure 7–5. Avalon-MM Read FIFO Content

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–9
Avalon-MM Interface Blocks Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

3. Select the new_topavalon.mdl file and click Open.

Figure 7–6 shows new_topavalon.mdl.

4. Rename the file by clicking Save As on the File menu. Create a new folder
MySystem and save your new MDL file as topavalon.mdl in this folder.

5. Open the Simulink Library Browser. Expand the Altera DSP Builder Blockset and
select Avalon Memory-Mapped in the Interfaces library.

6. Drag and drop an Avalon-MM Slave block into the top left of your model.
Change the block name to Avalon_MM_Write_Slave.

7. Double-click on the Avalon_MM_Write_Slave block to bring up the Block
Parameters dialog box.

8. Select Write for the address type, Signed Integer for the data type, and specify 8
bits for the data width. Turn off the Allow Byte Enable option.

9. Click OK.

The Avalon_MM_Write_Slave block redraws with three ports: Address i1:0,
Write ibit, and Write Data i7:0.

Figure 7–6. new_topavalon.mdl Design Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–10 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

10. Connect the ports (Figure 7–7).

1 You can re-size a block by dragging the resize handles at each corner.

11. Drag and drop another Avalon-MM Slave block into the top right of your model
and change the name of this block instance to Avalon_MM_Read_Slave.

12. Double-click on the Avalon_MM_Read_Slave block to bring up the Block
Parameters dialog box.

13. Select Read for the address type, Signed Integer for the data type, and specify
8 bits for the data width.

14. Click OK and notice that the Avalon_MM_Read_Slave block redraws with three
ports: Address i1:0, Read ibit, and Read Data o7:0.

15. Complete your design by connecting the Avalon_MM_Read_Slave ports
(Figure 7–7).

f The default design example uses the Stratix II EP2S60 DSP Development
Board. If you have a different board (such as the Cyclone II EP2C35
Development Board), you must replace the board block and
analog-to-digital converter blocks by corresponding blocks for the
appropriate board. For more information, refer to the Boards Library
chapter in the DSP Builder Standard Blockset Libraries section in volume 2 of
the DSP Builder Handbook.

Figure 7–7. topavalon.mdl Design Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–11
Avalon-MM Interface Blocks Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

16. Add oscilloscope probes to monitor the signals on the DSP development board.

17. Click Save on the File menu in your model window to save your model.

18. Run a simulation and observe the results on the oscilloscope probes. Coefficient
values 1 0 0 0 load into the filter.

Verifying the Design
Before using your design in SOPC Builder, use the TestBench block to verify your
design. To verify your design, follow these steps:

1. Double-click the TestBench block to display the TestBench Generator dialog box
(Figure 7–8).

2. Click Compare against HDL.

This process generates HDL, runs Simulink and ModelSim, and then compares the
simulation results. Progress messages issue in the dialog box and completes with a
message “Exact Match”.

Figure 7–8. TestBench Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–12 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

3. Click OK.

Running Signal Compiler
To generate all the hardware and files required by the Quartus II software, follow
these steps:

1. Double-click on the Signal Compiler block to display the Signal Compiler
dialog box.

2. Verify that the Device is set to match your target development kit and click
Compile.

3. When the compilation has completed successfully, click OK.

Instantiating the Design in SOPC Builder
To instantiate your design as a custom peripheral to the Nios II embedded processor
in SOPC Builder, follow these steps:

1. Start the Quartus® II software.

2. On the File menu in the Quartus II software, click New Project Wizard.

a. Specify the working directory for your project by browsing to <DSP Builder
install path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\
MySystem.

b. Specify a name for your project. This tutorial uses SOPC for the project name.

1 The Quartus II software automatically specifies a top-level design entity
that has the same name as the project. This tutorial assumes that the names
are the same.

c. Click Next in the New Project Wizard, until you get to the Family and Device
Settings page. Verify that the selected device matches the FPGA on your DSP
development board (if applicable).

d. Click Finish to create the Quartus II project.

3. On the Tools menu, click Tcl Scripts and follow these steps:

a. Select topavalon_add.tcl in the Project folder.

b. Click Run to load your .mdl file and other required files into the Quartus II
project.

4. On the Tools menu, click SOPC Builder and set the following parameters in the
Create New System dialog box:

a. Specify SOPC as the system name.

b. Select VHDL for the target HDL.

c. Click OK.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–13
Avalon-MM Interface Blocks Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

5. Click the System Contents tab in SOPC Builder and set the following options:

a. Expand Memories and Memory Controllers.

b. Expand On-Chip and double-click On-Chip Memory (RAM or ROM).

c. Specify 30 KBytes for the Total Memory size.

d. Click Finish to add an on-chip RAM device to the system.

e. Double-click Nios II Processor in the System Contents tab to display the
MegaWizard interface.

f. Set the reset and exception vectors to use onchip_mem and click Finish to add
the processor to your system with all other parameters set to their default
values.

g. Expand Peripherals and Debug and Performance. Double-click on System ID
Peripheral and click Finish to accept the default settings.

h. Expand Interface Protocols and Serial. Double-click on JTAG UART and click
Finish to accept the default settings.

i. Expand DSPBuilder Systems and double-click the topavalon_interface
module to include it in your Nios II system (Figure 7–9).

Figure 7–9. Including Your DSP Builder Design Module in SOPC Builder

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–14 Chapter 7: Using the Interfaces Library
Avalon-MM Interface Blocks Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

1 If the memory device, Nios II processor, debug peripheral, interface
protocol, and DSP Builder system add in this order, you should not need to
set a base address. However, you can click Auto-Assign Base Addresses on
the System menu to automatically add a base address if necessary.

6. Click Generate to generate the SOPC Builder system. The system generation may
take several minutes.

After the system generation in SOPC Builder completes, you can design the rest of
your Nios II embedded processor system using the standard Nios II embedded
processor design flow. Continue with this tutorial to exercise the system from
software using the Nios II processor.

Compiling the Quartus II Project
To compile the Quartus II project, follow these steps:

1. On the Assignments menu in the Quartus II software, click Device to display the
Device page of the Settings dialog box and create the basic pin settings as follows:

a. In the Settings dialog box, click Device and Pin Options.

b. In the Device and Pin Options dialog box, click the Unused Pins tab, select As
input tri-stated and click OK.

c. Click OK to close the Settings dialog box.

2. On the Assignments menu, click Pins to open the Pin Planner and make pin
assignments for clk and reset_n (Table 7–1) (depending on which development
board you are using).

1 If the Location column does not display, right-click in the pin assignments
table and click Customize Columns to change the table display.

You can ignore all other pin assignments for this tutorial.

3. Close the Pin Planner.

4. On the Processing menu, click Start Compilation to compile the Quartus II project.

5. When the compilation completes, click Programmer on the Tools menu and click
Start in the Quartus II Programmer to program the FPGA device on your
development board.

6. Close the Quartus II Programmer window.

Table 7–1. Pin Assignments for the Stratix II and Cyclone II Development Boards

Node Name Direction Location

Stratix II EP2S60 or EP2S60ES DSP Development Board

clk Input PIN_AM17

reset_n Input PIN_AG19

Cyclone II EP2C35 DSP Development Board

clk Input PIN_N2

reset_n Input PIN_A14

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–15
Avalon-MM Interface Blocks Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Testing the DSP Builder Block from Software
Altera provides a C program that loads a set of four coefficient into the filter, reads
them back, and then repeats the process. To use this program, follow these steps:

1. On the Nios II menu in SOPC Builder, click Nios II IDE.

2. Create a new Nios II C/C++ application as follows:

a. On the File menu in the Nios II IDE, point to New and click Project.

b. Nios II C/C++ Application.

c. In the New Project wizard, select Nios II C/C++ Application and click Next.

d. Type test_DSP_Block for the Name of the project and select the Blank
Project template.

e. Turn on Specify Location and browse to the directory <DSP Builder install
path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\MySystem.

f. Click on Make a New Folder and create a software subdirectory.

g. Click OK.

h. Browse to the System PTF file <DSP Builder install path>\DesignExamples\
Tutorials\SOPCBuilder\SOPCBlock\MySystem\SOPC.ptf

i. Click Finish in the New Project wizard.

j. Verify that the application project test_DSP_Block appears in the Nios II
C/C++ Projects list.

3. Add the test software to the new project as follows:

a. Locate the file test_DSP_Block.c in your file system. (<DSP Builder install
path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\)

b. Right-click on the test_DSP_Block.c file and click Copy.

c. Select the test_DSP_Block project folder in the Nios II IDE and paste the
test_DSP_Block.c file into the project.

4. Set some of the reduced code footprint options in the Nios II IDE as follows:

a. Right-click on the Nios II IDE application project, test_DSP_Block, and click
Properties.

b. In the Properties dialog box click System Library.

c. Turn on Reduced device drivers and Small C library.

d. Turn off Support C++.

e. Click OK.

5. Run the test_DSP_Block software project in the Nios II IDE by right-clicking on
test_DSP_Block and clicking Run As Nios II Hardware.

The project compiles and the application code runs on the development board.
Observe the following results in the Nios II IDE Console:

LOADING...

Coefficient 1 = 1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–16 Chapter 7: Using the Interfaces Library
Avalon-MM FIFO Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Coefficient 2 = 0

Coefficient 3 = 0

Coefficient 4 = 0

RELOADING...

Coefficient 1 = 0

Coefficient 2 = 0

Coefficient 3 = 1

Coefficient 4 = 0

f For information about using SOPC Builder to create a custom Nios II embedded
processor, refer to AN 351: Simulating Nios II Embedded Processor Designs.

1 Completed versions of the topavalon.mdl design for the Cyclone II EP2C35 and
Stratix II EP2S60 DSP development boards are available in the <DSP Builder install
path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\Finished Examples
directory.

Avalon-MM FIFO Design Example
This tutorial describes how to interface a design built using the Avalon-MM FIFO
block as a custom peripheral to the Nios® II embedded processor in SOPC Builder.

The design consists of a Prewitt edge detector with one Avalon-MM write FIFO buffer
and one Avalon-MM read FIFO buffer. The design uses an additional slave port as a
control port.

f For a full description of the Prewitt edge detector design, refer to AN364: Edge
Detection Reference Design.

For this hardware implementation, DSP Builder stores the image in the compact flash
and loads it in DMA with a Nios II embedded processor. DSP Builder outputs the
edge detected image through a VGA controller. The DSP Builder model uses Simulink
to read in the original image and to capture the edge detected result.

Opening the Design Example
To open the design example, follow these steps:

1. Click Open on the File menu in the MATLAB software.

2. Browse to the <DSP Builder install path>\DesignExamples\Tutorials\
SOPCBuilder\AvalonFIFO directory.

3. Select the sopc_edge_detector.mdl file and click Open.

Figure 7–10 shows sopc_edge_detector.mdl.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–17
Avalon-MM FIFO Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Compiling the Design
In this example, you use the Signal Compiler block to verify that your design
generates valid HDL.

1 Alternatively, use the TestBench block (“Avalon-MM Interface Blocks Design
Example” in “Verifying the Design” on page 7–11).

To verify your design, follow these steps:

1. Double-click the Signal Compiler block.

2. Select the family and device for the DSP Development board you are using. The
design example is configured for a Stratix 1S25 board (Figure 7–11).

3. Click Compile.

Figure 7–10. sopc_edge_detector.mdl Design Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–18 Chapter 7: Using the Interfaces Library
Avalon-MM FIFO Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

4. When the compilation completes successfully, click OK.

1 The Avalon-MM read and write converter is simulation only and does not synthesize
to HDL.

Instantiating the Design in SOPC Builder
To instantiate your design as a custom peripheral to the Nios II embedded processor
in SOPC Builder, follow these steps:

1. Start the Quartus II software.

Figure 7–11. Signal Compiler Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–19
Avalon-MM FIFO Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

2. On the File menu in the Quartus II software, click New Project Wizard and set the
following options:

a. Specify the working directory for your project by browsing to <DSP Builder
install path>\DesignExamples\Tutorials\SOPCBuilder\AvalonFIFO.

b. Specify a name for your project. This tutorial uses FIFO for the project name.

1 The Quartus II software automatically specifies a top-level design entity
that has the same name as the project. This tutorial assumes that the names
are the same.

c. Click Finish to create the Quartus II project.

3. On the Tools menu, click Tcl Scripts and set the following options:

a. Load your design by selecting sopc_edge_detector_add.tcl in the Project
folder.

b. Click Run.

4. On the Tools menu, click SOPC Builder to display the Create New System dialog
box.

a. Specify AvalonFIFO as the system name.

b. Select VHDL for the target HDL.

c. Click OK.

5. Click the System Contents tab in SOPC Builder and set the following options:

a. Expand Memories and Memory Controllers.

b. Expand On-Chip and double-click On Chip Memory (RAM or ROM).

c. Click Finish to add an on-chip RAM device with default parameters.

6. Double-click the Nios II Processor module in the System Contents tab to display
the MegaWizard interface.

7. Set the reset and exception vectors to use onchip_memory2_0 and click Finish to
add the processor to your system with all other parameters set to their default
values.

8. Expand DSPBuilder Systems in the System Contents tab and double-click the
sopc_edge_detector_interface module to include it in your Nios II system.

You can now design the rest of your NIOS embedded processor with the standard
SOPC Builder design flow.

f For more detailed instructions, refer to “Instantiating the Design in SOPC Builder” on
page 7–12 in the “Avalon-MM Interface Blocks Design Example”.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–20 Chapter 7: Using the Interfaces Library
Avalon-ST Interface

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Avalon-ST Interface
All DSP MegaCore functions in the DSP Builder MegaCore Functions library have
interfaces that comply with the Avalon Interface Specifications. You can combine
multiple MegaCore functions easily because they use a common interface. This
section summarizes the features of the Avalon-ST interface.

The Avalon Interface Specifications define how to convey data between a source
interface and a sink interface. The interface indicates the integrity of the data by a feed
forward signal, valid. The specification also defines how the MegaCore functions
may stall other blocks (backpressure) or regulate the rate at which you provide data
with a feedback sideband signal, ready.

You can configure the DSP Builder Avalon-ST Source and Avalon-ST Sink
blocks with a ready latency of 0 or 1. The ready latency is the number of cycles that a
source must wait after a sink asserts ready so that a data transfer is possible. The
source interface provides valid data at the earliest time possible, and it holds that data
until sink asserts ready. The ready signal notifies the source interface that it has
sampled the data on that clock cycle.

For the ready_latency = 0 mode, Figure 7–12 shows the interaction that occurs between
the source interface valid signal and the sink interface ready signal.

On cycle one, the source provides data and asserts valid even though the sink is not
ready. The source waits until cycle two and the sink acknowledges that it samples the
data by asserting ready. On cycle three, the source happens to provide data on the
same cycle that the sink is ready to receive it and so the transfer occurs immediately.
On the fourth cycle, the sink is ready but because the source does not provide any
valid data, the data bus is not sampled.

A beat is the transfer of one unit of data between a source and sink interface. This unit
of data may consist of one or more symbols, so it can support modules that convey
more than one piece of information on each valid cycle. Some modules have parallel
input interfaces and other instances require serial input interfaces. For example, when
conveying an in-phase and quadrature component on the same clock cycle. The choice
depends on the algorithm, optimization technique, and throughput requirements.

Figure 7–12. Avalon-ST Interface Timing for ready-latency=0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Using the Interfaces Library 7–21
Avalon-ST Interface

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Figure 7–13 gives an example of a data transfer where two symbols are conveyed on
each beat—an in phase symbol I and a quadrature symbol Q. In this example, each
symbol is eight bits wide.

The Avalon Interface Specifications also describe several mechanisms to support the
transfer of data associated with multiple channels. Altera recommends that you
achieve this mechanism with packet based transfers where each packet has a
deterministic format and each channel is allocated a specific field (time slot in a
packet).

Packet transfers require two additional signals that mark the start and the end of the
packet. The MegaCore functions have internal counters that count the samples in a
packet so they know which channel a particular sample is associated with and
synchronize appropriately with the start and end of packet signals. In Figure 7–13, the
in phase and quadrature components associated with three different channels convey
between two MegaCore functions.

Avalon-ST Packet Formats
You can allocate the data associated with each channel a field in a packet. To describe
the relationship between the input and the output interfaces of a MegaCore function,
you must define the packets associated with each interface.

Two parameters describe the basic format of a packet: SymbolsPerBeat, and
PacketDescription. The SymbolsPerBeat parameter defines the number of
symbols that DSP Builder presents in parallel on every valid cycle. The
PacketDescription is a string description of the fields in the packet.

A basic PacketDescription is a comma-separated list of field names, where a field
name starts with a letter and may include the characters a-zA-Z0-9_. Typical field
names include Channel1, Channel2, and Q. Field names are case sensitive and
white space is not permitted.

Figure 7–13. Packetized Data Transfer

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–22 Chapter 7: Using the Interfaces Library
Avalon-ST Interface

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Figure 7–14 shows an example of a generic function that has two input interfaces and
performs a transformation on the two input streams.

Avalon-ST Packet Format Converter
The packet format converter (PFC) is a flexible, multipurpose component that
transforms packets that are received from one function into a packet format that is
supported by another function.

The PFC takes packet data from one or more input interfaces, and provides field
reassignment in time and space to one or more output packet interfaces. You can
specify the input packet format and the desired output packet format. The
appropriate control logic is automatically generated.

Each input interface has Avalon-ST ready, valid, startofpacket, endofpacket,
empty, and data signals. Each output interface has an additional error bit, which
asserts to indicate a frame delineation error.

The PFC performs data mapping on a packet by packet basis, so that there is exactly
one input packet on each input interface for each output packet on each output
interface. The interface limits the packet rate of the converter with the longest packet.
When the PFC has multiple output interfaces, DSP Builder aligns the packets on each
output interface so that the startofpacket signal presents on the same clock cycle.

If each interface supports fixed-length packets, you can select the multipacket
mapping option, and the PFC can map fields from multiple input packets to multiple
output packets.

f For a complete description of the Avalon-ST interface, refer to the Avalon Interface
Specifications. For an example of a design that uses Avalon-ST interfaces and the
Packet Format Converter blocks, refer to AN442: Tool Flow for Design of Digital IF for
Wireless Systems.

Figure 7–14. Generic Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

8. Using Black Boxes for HDL Subsystems

The Signal Compiler block converts subsystems with blocks from the DSP Builder
block libraries into HDL code. Non-DSP Builder blocks, such as encapsulations of
your own pre-existing HDL code, require the Signal Compiler block to recognize
them as black boxes so that the conversion process does not alter them.

There are two types of black-box interface in DSP Builder: implicit and explicit.

Implicit Black Box Interface
Use the HDL Import block to infer the implicit black-box interface.

The Signal Compiler block recognizes the HDL Import block as a black box and
bypasses this block during the HDL translation.

f For information about the HDL Import block, refer to the block description in the
AltLab Library chapter of the DSP Builder Standard Blockset Libraries section in volume 2
of the DSP Builder Handbook.

Explicit Black-Box Interface
Use the HDL Input, HDL Output, HDL Entity, and Subsystem Builder blocks
to specify the explicit black-box interface.

Using the HDL Input, HDL Output, and HDL Entity blocks prevents Signal
Compiler from translating the subsystem into HDL. You can also use a Subsystem
Builder block to create a new subsystem and then automatically populate its ports
using the specified HDL.

Typically use the explicit black-box interface to encapsulate non-DSP Builder blocks
from the main Simulink blocksets.

f For information about the HDL Input, HDL Output, HDL Entity, and Subsystem
Builder blocks, refer to the block descriptions in the AltLab Library chapter of the
DSP Builder Standard Blockset Libraries section in volume 2 of the DSP Builder
Handbook.

HDL Import Design Example
The HDL Import block provides an interface to import a HDL module into your DSP
Builder design.

1 To define imported VHDL use std_logic_1164 types. If your design uses any other
VHDL type definitions (such as arithmetic or numeric types), write a wrapper that
converts them to std_logic or std_logic_vector.

The following sections show an example of importing an existing VHDL design into
the DSP Builder environment with the HDL Import block.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–2 Chapter 8: Using Black Boxes for HDL Subsystems
HDL Import Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Importing Existing HDL Files
To import existing HDL files into a DSP Builder design, follow these steps:

1. In MATLAB, change the current directory setting to: <DSP Builder install
path>\DesignExamples\Tutorials\BlackBox\HDLImport

2. On the File menu, click Open and select empty_MyFilter.mdl.

This design file has some of the peripheral blocks instantiated including the input
and output ports and source blocks that provide appropriate stimulus for
simulation. It is missing the main filter function, which you can import as HDL.

3. Rename the file by clicking Save As on the File menu. Name your new MDL file
MyFilter.mdl.

4. Open the Simulink Library Browser. Expand the Altera DSP Builder Blockset and
select the AltLab library.

5. Drag and drop a HDL Import block into your model.

6. Double-click on the HDL Import block to bring up the DSP Builder HDL Import
dialog box (Figure 8–1 on page 8–3).

7. In the HDL Import dialog box, enable the Import HDL radio button and click on
the Add button to select the HDL input files.

8. From the VHDL Black Box File dialog box, select the files fir_vhdl.vhd,
four_mult_add.vhd, and final_add.vhd, then click on Open.

9. Ensure that fir_vhdl is specified as the name of the top-level design entity. The
fir_vhdl.vhd file describes the top-level entity, which implements an 8-tap
low-pass FIR filter design.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 8: Using Black Boxes for HDL Subsystems 8–3
HDL Import Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

10. Turn on the option to Sort top-level ports by name.

11. Under Generate Simulink Model, click Compile to generate a Simulink
simulation model for the imported HDL design.

Figure 8–1. HDL Import Dialog Box

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–4 Chapter 8: Using Black Boxes for HDL Subsystems
HDL Import Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

12. Progress messages issue in the HDL Import dialog box ending with the message:

Quartus II Analysis & Synthesis was successful.

13. The HDL Import block in the MyFilter.mdl model updates to show the ports
defined in the imported HDL.

14. Click OK to close the HDL Import dialog box.

15. Connect the input and output ports to the symbol (Figure 8–2). The code
generated for the HDL Import block automatically converts to a black box.

16. Click Save on the File menu to save the MyFilter.mdl file.

Simulating the HDL Import Model using Simulink
Follow these steps to run simulation in Simulink:

1. Double-click on the manual switch connected to the Tsamp block which feeds into
the fir_data_in input port.

This toggles the switch and sets the impulse_in stimulus, which verifies the
impulse response of the low-pass filter.

2. Click Start on the Simulation menu in your model window.

3. Double-click on the Scope block to view the simulation results.

4. Click the Autoscale icon to resize the scope. This scales both axes to display all
stored simulation data until the end of the simulation (which is set to 500*Tsamp
for this model).

5. Click the Zoom X-axis icon and drag the cursor to zoom in on the first 70 X-axis
time units.

Figure 8–3 on page 8–5 shows the simulation results.

Figure 8–2. Completed Design

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 8: Using Black Boxes for HDL Subsystems 8–5
HDL Import Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

6. Double-click on the manual switch connected to the Tsamp block to select the
chirp_in stimulus—a sinusoidal signal the frequency of which increases at a linear
rate with time.

7. Click Start on the Simulation menu in your model window.

8. Double-click on the Scope block to view the simulation results.

9. Press the Autoscale icon to resize the scope.

Figure 8–4 shows the simulation results.

The HDL import tutorial is complete. You can optionally compile your model for
synthesis or perform RTL simulation on your design by following similar procedures
to those described in the “Getting Started”.

Figure 8–3. Simulink Simulation Results for the Impulse Stimulus

Figure 8–4. Simulink Simulation Results for the Chirp Stimulus

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–6 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Subsystem Builder Design Example
The Subsystem Builder block makes it easy for you to import the input and
output signals for a VHDL or Verilog HDL design into a Simulink subsystem.

If your HDL design contains any LPM or megafunctions that the HDL Import block
does not support, use the Subsystem Builder block. The Subsystem Builder
block also allows you to create your own Simulink simulation model from non-DSP
Builder blocks for faster simulation speed.

Unlike the HDL Import block, the Subsystem Builder block does not create a
Simulink simulation model for the imported HDL design.

f For more information about the Subsystem Builder block, refer to the block
description in the AltLab Library chapter in the DSP Builder Standard Blockset Libraries
section in volume 2 of the DSP Builder Handbook.

In addition to porting the HDL design to a Simulink subsystem, you must create the
Simulink simulation model for the block. The simulation models describes the
functionality of the particular HDL subsystem. The following options are available to
create Simulink simulation models:

■ Simulink generic library

■ Simulink blocksets (such as the DSP and Communications blocksets)

■ DSP Builder blockset

■ MATLAB functions

■ S-functions

1 You must add a Non-synthesizable Input block and a Non-synthesizable
Output block around any DSP Builder blocks in the subsystem.

The following section shows an example that uses an S-function to describe the
simulation models of the HDL code.

Creating a Black Box System
To create a black-box system, follow these steps:

1. In MATLAB, change the current directory to: <DSP Builder install path>
\DesignExamples\Tutorials\BlackBox\SubSystemBuilder

2. Click Open on the File menu. Select the filter8tap.mdl file and click OK.

3. Open the Simulink Library Browser and expand the AltLab library under the
Altera DSP Builder blockset.

4. Drag a Subsystem Builder block into your model.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 8: Using Black Boxes for HDL Subsystems 8–7
Subsystem Builder Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

5. Double-click the Subsystem Builder block.

The Subsystem Builder dialog box displays (Figure 8–5).

6. In the dialog box, browse for the fir_vhdl.vhd file and click Build.

This action builds the subsystem and adds the signals for the fir_vhdl
subsystem to the symbol in your filter8tap.mdl model. The Subsystem Builder
dialog box automatically closes.

7. Connect the ports (Figure 8–6).

Figure 8–5. Subsystem Builder Dialog Box

Figure 8–6. filter8tap Design

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–8 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

8. Double-click on the fir_vhdl symbol. The filter8tap/fir_vhdl subsystem opens
(Figure 8–7).

The subsystem contains two HDL Input blocks (simulink_sclr and
data_in) and a HDL Output block (data_out). Each of these blocks in turn
connects to a subsystem input or output. DSP Builder also creates a HDL Entity
block to store the name of the HDL file and the names of the clock and reset ports.

1 The clock is handled implicitly and no port is explicitly created in the
subsystem.

9. Leave your model window open for use in the next section.

In the next section, you build the simulation model that represents the
functionality of this block in your Simulink simulations.

Building the Black-Box SubSystem Simulation Model
For this example, you use a S-function C++ simulation model to represent the 8-tap
FIR filter block. To create your model, follow these steps:

1. In the Simulink Library Browser, expand the Simulink folder.

2. From the User-Defined Functions library, drag and drop a S-Function block
into your model window.

3. Double-click the S-Function block to display the Function Block Parameters:
S-Function dialog box.

4. In the Block Parameters dialog box, change the S-Function name to Sfir8tap
and enter the parameters -1 3962 4817 5420 5733 5733 5420 4817 3962.

The Sfir8tap function is a C++ Simulink S-Function simulation model for the
8-tap Fir filter block.

The first parameter refers to the sampling rate (-1 indicates it inherits the sampling
rate from the preceding block) and the rest of the parameters represent the eight
filter coefficients.

1 Leave the S-function modules parameter with its default value.

5. Click the Edit button to view the code that describes the S-Function.

Figure 8–7. Library: filter8tap/fir_vhdl Window

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 8: Using Black Boxes for HDL Subsystems 8–9
Subsystem Builder Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

1 If the code does not appear automatically, click Browse and select the
Sfir8tap.CPP file.

6. Scroll down in the Sfir8tap.CPP file to the S-function methods section.

The following code shows the Simulink C++ S-Mex function code that designs a
Simulink filter simulation model:

/*====================*

* S-function methods *

====================/

/* Function: mdlInitializeSizes=======================================

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

/* See sfuntmpl.doc for more details on the macros below */

ssSetNumSFcnParams(S, 9); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual parameters */

return;

}
// Set DialogParameters not tunable

const int iMaxssGetSFcnParamsCount = ssGetSFcnParamsCount(S);

for (int p=0;p<iMaxssGetSFcnParamsCount;p++)

{

ssSetSFcnParamTunable(S, p, 0);

}

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 1);

ssSetInputPortDataType(S, 0, SS_DOUBLE);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortDataType(S, 0, SS_DOUBLE);

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 1);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumDWork(S, DYNAMICALLY_SIZED); // reserve element in the

ssSetNumModes(S, 0); // pointers vector to store a C++ object

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–10 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, 0);

}

During simulation, Simulink invokes certain callback methods from the S-function.
The callback methods are subfunctions that initialize, update discrete states, and
calculate output. Table 8–1 shows the design example callback methods.

1. At the MATLAB command prompt, type:

mex Sfir8tap.CPP r
The mex command compiles and links the source file into a shared library
executable in MATLAB, Sfir8tap.mexw32. The extension is specific to 32-bit
version of MATLAB run in Windows.

2. Close the editor window and click on OK to close the Function Block Parameters
dialog box.

3. In the filter8tap/fir_vhdl window, connect the input port of the S-function block to
the data_in block, and connect the output port of the S-function block to the
data_out block (Figure 8–8).

1 You do not need to connect the simulink_sclr block. The HDL Entity
block automatically maps any input ports named simulink_clock in the
VHDL entity to the global clock signal, and any input ports named
simulink_sclr to the global synchronous clear signal.

4. Click Save on the File menu to save the filter8tap.mdl file.

Table 8–1. S-Function Callback Methods

Callback Method Description

mdlInitializeSizes Specify the number of inputs, outputs, states, parameters,
and other characteristics of the S-function.

mdlInitializeSampleTimes Specify the sample rates at which this S-function operates.

mdlStart Initialize the vectors of this S-function.

mdlOutputs Compute the signals that this block emits.

mdlUpdate Update the states of the block.

mdlTerminate Perform any actions required at termination of simulation.

Figure 8–8. S-Function Block Connection

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 8: Using Black Boxes for HDL Subsystems 8–11
Subsystem Builder Design Example

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Simulating the Subsystem Builder Model
To run the Simulink simulation, follow these steps:

1. Click Start on the Simulation menu in the filter8tap.mdl window to begin the
simulation.

2. Double-click the Scope block to view the simulation results. Click Autoscale to
resize the scope.

3. Click the Zoom X-axis icon and use the cursor to zoom in on the first 22 x-axis time
units.

Figure 8–9 shows the simulation results.

1 Because the input is a pulse, the simulation results show the impulse response of the
8-tap FIR filter, which translates to the eight coefficient values. You can change the
input stimulus to verify the step and random response of the filter.

Adding VHDL Dependencies to the Quartus II Project and ModelSim
The VHDL file is dependent on two other VHDL files. The Quartus II software or
ModelSim do not examine these two files, and compilation either fails or gives
unexpected results. To resolve this issue, follow these steps:

1. Double-click on the Signal Compiler block and click Compile. Ignore the
result for now. This action creates a DSPBuilder_filter8tap_import directory in
the directory containing your design.

1 Alternatively, you can create the directory DSPBuilder_filter8tap_import
directly.

2. Copy the extra_add.tcl and extra_add_msim.tcl files from the original design
directory to the DSPBuilder_filter8tap_import directory.

The extra_add.tcl file adds final_add.vhd and four_mult_add.vhd to the Quartus II
project, while extra_add_msim.tcl compiles them in ModelSim when your design is
run using the TestBench block. The Quartus II software executes any files ending
with _add.tcl when it creates the project. ModelSim executes files ending with
_add_msim.tcl when it compiles your design testbench.

Figure 8–9. Simulink Simulation Results of 8-Tap FIR Filter, Scope Window

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–12 Chapter 8: Using Black Boxes for HDL Subsystems
Subsystem Builder Design Example

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Simulate the Design in ModelSim
To test the simulation model against the HDL in ModelSim, follow these steps:

1. In the Simulink Library Browser, expand AltLab library under Altera DSP
Builder Blockset.

2. Drag a TestBench block into your model.

3. Double-click on the TestBench block and click Compare against HDL.

When the comparison completes successfully an Exact Match message issues in
the TestBench Generator dialog box.

1 If you want to use ModelSim directly, click on the Advanced tab, turn on the Launch
GUI option, and then click Run ModelSim.

This completes the Subsystem Builder tutorial. You can optionally compile your
model for synthesis (“Getting Started”).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

9. Using Custom Library Blocks

A parameterizable custom library block is a Simulink subsystem in which
DSP Builder primitives describe the block functionality. This design flow also
supports parameterizable hierarchical subsystem structures.

Altera provides an example of a custom library block, <DSP Builder install path>\
DesignExamples\Tutorials\BuildingCustomLibrary\top.mdl. (Figure 9–1).

The RamBasedDelay block that top.mdl uses, is an example of a custom
parameterizable Simulink block. The library file MyLib.mdl defines it. The
RamBasedDelay block has one parameter, Delay.

Creating a Custom Library Block
To create your own custom block, follow these steps:

1. Creating a Library Model File

2. Building the HDL Subsystem Functionality

3. Defining Parameters Using the Mask Editor

4. Linking the Mask Parameters to the Block Parameters

5. Making the Library Block Read Only

6. Adding the Library to the Simulink Library Browser

Figure 9–1. top.mdl Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–2 Chapter 9: Using Custom Library Blocks
Creating a Custom Library Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Creating a Library Model File
To create a Library Model File for your custom block, follow these steps:

1. In MATLAB, change the current directory setting to: <DSP Builder install
path>\DesignExamples\Tutorials\BuildingCustomLibrary.

2. Open the Simulink Library Browser. On the File menu in the Simulink Library
Browser, point to New and click Library to open a new library model window.

3. Expand the Simulink Ports & Subsystems library in the Simulink Library Browser
and drag a Subsystem block into your model.

4. Click on the Subsystem text below the block and rename the block DelayFIFO.

1 You should always rename a block representing an HDL Subsystem to
ensure that all the generated entities in a hierarchical design are unique.

5. Click Save on the File menu and save the library file as NewLib.mdl.

Building the HDL Subsystem Functionality
To add functionality to the DelayFIFO block, follow these steps:

1. Double-click on the DelayFIFO block to open the NewLib/DelayFIFO subsystem
window.

2. Drag and drop a Shift Taps block from the Storage library in the Altera DSP
Builder Blockset into your model window. Insert the Shift Taps block between
the input and output blocks (Figure 9–2).

3. Double-click the Shift Taps block to open the Block Parameters dialog box.
Table 9–1 shows the parameters to set.

Figure 9–2. Shift Taps Block

Table 9–1. Parameters for the Shift Taps Block

Parameter Value

Main Tab

Number Of Taps 1

Distance Between Taps 10

Optional Ports and Settings Tab

Use Shift Out Port Off

Use Enable port: On

Use Dedicated Circuitry On

Memory Block Type Auto

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Using Custom Library Blocks 9–3
Creating a Custom Library Block

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

4. Click OK to close the Block Parameters dialog box.

5. Add an Input block (In2) from the Simulink Ports & Subsystems library and
connect it to the ena port on the Shift Taps block.

6. Rename the blocks (Table 9–2).

7. Click Save on the File menu.

Figure 9–3 shows the completed DelayFIFO subsystem.

Figure 9–4 shows the NewLib library model that now shows the input and output
ports defined in the DelayFIFO subsystem.

Defining Parameters Using the Mask Editor
Use the Mask Editor to create parameters for the DelayFIFO block by following these
steps:

1. Right-click the DelayFIFO block in the NewLib model and click Mask
Subsystem on the pop-up menu.

2. In the Mask Editor dialog box set the parameters (Table 9–3 on page 9–4).

Table 9–2. Renaming the Blocks

Old Name New Name

In1 InDin

In2 InEna

Shift Taps DRB

Out1 OutDout

Figure 9–3. DelayFIFO Subsystem

Figure 9–4. NewLib Model

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–4 Chapter 9: Using Custom Library Blocks
Creating a Custom Library Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

3. Click OK in the Mask Editor dialog box.

4. Double-click on the DelayFIFO block in your NewLib model to display the Block
Parameters dialog box.

5. Specify a Delay of 5.

6. Click OK in the Block Parameters dialog box.

7. Click Save on the File menu to save your library model.

f For more information about the Mask Editor, refer to the MATLAB Help.

Linking the Mask Parameters to the Block Parameters
To pass parameters from the symbol’s mask into the block, use a model workspace
variable, by following these steps:

1. Double-click the DRB block in the NewLib/DelayFIFO window to open the Block
Parameters dialog box.

2. Copy the mask parameter variable name d from the Parameters tab of the Mask
Editor into the Distance Between Taps field in the Block Parameters dialog box.

3. Click OK to close the Shift Taps Block Parameters dialog box.

4. Close your model window.

Making the Library Block Read Only
Make a library block read only so that you do not accidentally edit it in a design
model. To set the read and write permissions, follow these steps:

Table 9–3. Parameters for the Mask Editor

Parameter Value

Icon Tab

Frame Visible

Transparency Opaque

Rotation Fixed

Units Autoscale

Drawing Commands port_label('input',1,'din');
port_label('input',2,'ena');
port_label('output',1,'dout');
fprintf('Delay %d',d)

Parameters Tab

Prompt Delay

Variable d

Documentation Tab

Mask type SubSystem AlteraBlockSet

Mask description RAM-Based Delay Element
Altera Corporation

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Using Custom Library Blocks 9–5
Creating a Custom Library Block

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

1. Right-click the DelayFIFO block in the NewLib model and click SubSystem
Parameters on the pop-up menu to display the Block Parameters dialog box.

2. In the Read/Write permissions list, select ReadOnly.

1 The ReadWrite option allows edits from both the library and the design.
The NoReadOrWrite option does not allow Signal Compiler to
generate HDL for the design. If you want to modify a library model, open
your model, click Unlock Library on the File menu and change the read
and write permissions in the Block Parameters dialog box. Remember to
reset ReadOnly after changing the library model. Your changes are
automatically propagated to all instances in your design.

3. Click OK to close the Block Parameters dialog box.

4. Click Save on the File menu to save your library model.

Adding the Library to the Simulink Library Browser
You can add a custom library to the Simulink library browser by creating a slblocks.m
file. This file must be in the same location as your library file and both files must be in
search path for MATLAB. To create this file, follow these steps:

1. On the File menu in MATLAB, point to New and click M-File to open a new editor
window.

2. Enter the following text in the editor window:

function blkStruct = slblocks

blkStruct.Name = ['Custom Library DSP Builder'];
blkStruct.OpenFcn = 'NewLib';
blkStruct.MaskDisplay = '';
% Define the Browser structure array, the first
% element contains the information for the Simulink
% block library and the second for the Simulink
% Extras block library.
Browser(1).Library = 'NewLib';
Browser(1).Name = 'Custom Library DSP Builder';
Browser(1).IsFlat = 0;
blkStruct.Browser = Browser;

% End of slblocks

3. Save the M-file with the file name slblocks.m in the same directory as
NewLib.mdl. The next time that you display the Simulink library browser the
custom library is available (Figure 9–5).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–6 Chapter 9: Using Custom Library Blocks
Synchronizing a Custom Library

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

You can drag and drop a block from your custom library in the same way as from any
other library in the Simulink library browser.

You can create a custom library with multiple blocks by creating the required blocks
in the same library file.

f For more information about M-files, refer to the MATLAB Help. A template
slblocks.m file with explanatory comments is at <MATLAB install path>\toolbox\
simulink\blocks\slblocks.m.

Synchronizing a Custom Library
A custom library can contain MegaCore functions, HDL import, or state machine
editor blocks. If you move or copy your design, synchronize your model containing
these blocks by using the following command:

alt_dspbuilder_refresh_user_library_blocks

1 This command calls automatically when you use either of the commands:

alt_dspbuilder_refresh_hdlimport

or

alt_dspbuilder_refresh_megacore

Figure 9–5. Custom Library in the Simulink Library Browser

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

10. Adding a Board Library

This chapter describes how to create and build a custom board library to use inside
DSP Builder using built-in board components.

Each board library is defined by a XML board description file. This board description
file contains all the board components and their FPGA pin assignments.

DSP Builder supports the following development boards:

■ Cyclone II DE2 Starter board

■ Cyclone II EP2C35 board

■ Cyclone II EP2C70 board

■ Cyclone III EP3C25 Starter board

■ Cyclone III EP3C120 board

■ Stratix EP1S25 board

■ Stratix EP1S80 board

■ Stratix II EP2S60 board

■ Stratix II EP2S180 board

■ Stratix II EP2SGX90 PCI Express board

■ Stratix III EP3SL150 board

f For information about these boards, refer to the DSP Builder Standard Blockset Libraries
section in volume 2 of the DSP Builder Handbook.

Creating a New Board Description
To add additional boards create new board description files. You only need to create a
board description file for each new board and run a MATLAB command to build it
into a DSP Builder Library. You can use the existing components or create your own
custom components.

Predefined Components
Predefined components are in the following folder:

<install dir>\quartus\dsp_builder\lib\boardsupport\components

There is a single XML file, <component_name>.component, that describes each
separate board component. This file defines its data type, direction, bus width, and
appearance. The file also contains a brief description of the component.

Component Types
There are three main types of component: single bit, fixed size bus, and selectable
single bit.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

10–2 Chapter 10: Adding a Board Library
Creating a New Board Description

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Single Bit Type

These components have a single bit with one FPGA pin assigned to each component.
The components are either inputs or outputs and you cannot change them. DSP
Builder offers the following single-bit predefined components:

■ Red and Green LEDs (LED0 to LED17 and LEDG0 to LEDG8)

■ Software switches (SW0 to SW17)

■ User push buttons (PB0 to PB3)

■ Reset push buttons (IO_DEV_CLRn and USER_RESETN)

■ RS232 receive output and RS232 transmit input pins (RS232Rout and RS232Tin)

Fixed-Size Bus Type

These components have a fixed-sized group of same type (either input or output) pins
with one FPGA pin assigned to each bit of the bus. DSP Builder offers the following
fixed-size bus type predefined components:

■ 12-bit analog-to-digital converter (A2D1Bit12 and A2D2Bit12)

■ 14-bit analog-to-digital converter (A2D1Bit14 and A2D2Bit14)

■ 14-bit digital-to-analog converter (D2A1 and D2A2)

■ 8-bit dual in-line package switch (DipSwitch)

■ 7-Segment display with a decimal point (SevenSegmentDisplay0 to
SevenSegmentDisplay1)

■ Simple 7-Segment display without a decimal point (Simple7SegmentDisplay0
to Simple7SegmentDisplay7)

Selectable Single Bit Type

These components have a single bit, you can select the pin from a group of predefined
FPGA pins. Furthermore, the pin can be set as either input or output. DSP Builder
offers the following selectable single-bit predefined components:

■ Debug pins (DebugA and DebugB)

■ Prototyping pins (PROTO, PROTO1 to PROTO3)

■ Evaluation input pin (EvalIoIn)

■ Evaluation output pin (EvalIoOut)

Component Description File
To define a new component create a corresponding component file,
<component_name>.component, in the same folder as the predefined components.

The component description file contains a root element component that contains
several attributes and subelements that define the component. The component has
the following attributes:

■ displayname= Specifies the name of the component, which the board
description file references.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 10: Adding a Board Library 10–3
Creating a New Board Description

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

■ direction= Specifies the direction of the signal. It can have the value of Input
or Output. You can omit this attribute for the Selectable Single Bit Type, because it
is set later.

■ type= Specifies the data type of the signal. The type can be BIT, INT, or UINT.
followed by the size in square brackets. For example, "BIT[1,0]" defines a single
bit while "UINT[12,0]" is a 12-bit unsigned integer.

The component subelements have the following definitions:

■ <documentation> text </documentation> This subelement contains text
describing the component and one of the following variable that define how the
pin name, or list of pin-names appears in the new board library:

■ %pinname% for single bit type

■ %pinlist% for selectable single bit type

■ %indexedpinliat% for fixed size bus type

■ <display [attributes]> This subelement has the following attributes:

■ icon= specifies the image file name for the component

■ width= specifies the display width for the image file

■ height= specifies the display height for the image file

1 For components without an image, you can omit the icon display attribute and
define a visual representation using the plot and fprintf commands. For example:

<display width="90" height="26">

plot([0 19 20 21 22 21 20 19], [0 0 1 0 0 0 -1 0]);

fprintf('EVAL IO OUT \n%pinname% ');

</display>

Example Component Description File
The following code shows an example of a component description file:

<component displayname="EVAL IO OUT" direction="Output"
type="BIT[1,0]">

<documentation>

Prototyping Area Pin Single Bit Output

%pinlist%

</documentation>

<display width="90" height="26">

plot([0 19 20 21 22 21 20 19],[0 0 1 0 0 0 -1 0]);

fprintf('EVAL IO OUT \n%pinname% ');

</display>

</component>

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

10–4 Chapter 10: Adding a Board Library
Creating a New Board Description

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Board Description File
Create the board description file, <board_name>.board, in the following folder:

<install dir>\quartus\dsp_builder\lib\boardsupport\boards

The board description file has header and board description sections.

Header Section
This section contains the following line that defines the XML version and character
encoding:

<?xml version="1.0" encoding="UTF-8"?>

In this case, the document conforms to the 1.0 specification of XML and uses the
ISO-8859-1 (Latin-1/West European) character set.

You should not modify this line.

Board Description Section
The main body of the document is a root element board that has several attributes
and subelements that define the details of the board.

<board Attributes>

<displayname> Text </displayname>

<component Attributes />

...........

<component Attributes />

<configuration Attributes>

<devices> Attributes>

</devices>

<option Attributes>

</option>

</configuration>

</board>

1 The last line in the file must be a closing tag for the root element board </board>.

The board attributes have the following definitions:

■ uniquename= A unique name to reference the board.

■ family= Device family of the FPGA on board (assuming only one device is on the
board).

The board must contain a displayname subelement containing text that describes
the board. For example:

<displayname>Cyclone II XYZ Board</displayname>

The following component subelements declare the components:

■ Single bit type examples:

<component name="LED0" pin="Pin_E5"/>

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 10: Adding a Board Library 10–5
Creating a New Board Description

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

<component name="LED1" pin="Pin_B3"/>

where attribute name defines the name of the component on the board and pin
defines the FPGA pin to which the component is connected. The name must match
one of the predefined components and you can use it only once per board.

■ Fixed-size bus type example:

<component name="DipSwitch" label="S1">

<pin location="Pin_AC13"/> <!-- LSB -->

<pin location="Pin_A19"/>

<pin location="Pin_C21"/>

<pin location="Pin_C23"/>

<pin location="Pin_AE18"/>

<pin location="Pin_AE19"/> <!-- MSB-->

</component>

where attribute name defines the name of the component on the board and label
defines the name of the component as it appears in Simulink. For a component
with width n, there must be n pin subelements. The pin location must be a valid
FPGA pin name. The pin ordering is listed from LSB to MSB, with LSB on top of
the list.

■ Selectable single bit type example:

<component name="PROTO1">

<pin location="Pin_C3"/>

<pin location="Pin_D2"/>

<pin location="Pin_L3"/>

<pin location="Pin_J7"/>

<pin location="Pin_J6"/>

<pin location="Pin_K6"/>

</component>

This element has the same format as the fixed-size bus type, but you can choose
each pin element from a specified list of available FPGA pin locations.

The configuration element defines the board configuration block. For example:

<configuration icon="dspboard2c35.bmp" width="166" height="144">

<devices jtag-code="0x020B40DD">

<device name="EP2C35F672C6" />

</devices>

<!-- Input clock selection list -->

<option name="ClockPinIn" label="Clock Pin In">

<pin location="Pin_N2"/>

<pin location="Pin_N25"/>

<pin location="Pin_AE14"/>

<pin location="Pin_AF14"/>

<pin location="None"/>

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

10–6 Chapter 10: Adding a Board Library
Building the Board Library

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

</option>

<!-- Global Reset Pin -->

<option name="GlobalResetPin" label="Global Reset Pin">

<pin location="Pin_A14"/>

<pin location="Pin_AC18"/>

<pin location="Pin_AE16"/>

<pin location="Pin_AE22"/>

<pin location="None"/>

</option>

</configuration>

The configuration attributes have the following definitions:

■ icon = the image file to be used for the board configuration block

■ width = the width of the image

■ height = the height of the image

The devices subelement has the following attributes:

■ jtag-code = the JTAG code of the FPGA device

■ device name = the device name of the FPGA used on the board

Each option subelement has the following attributes:

■ name = the name of the option (clock or reset pin)

■ label = labels that identifies the pins on the blocks

■ pin location = a list of selectable clock or reset pins

f For more examples, refer to any of the existing board description files.

Building the Board Library
Restart MATLAB without opening the Simulink library and run the following
command in the MATLAB command window to create the new board library:

alt_dspbuilder_createComponentLibrary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

11. Using the State Machine Library

This chapter describes how to implement a state machine in DSP Builder.

1 The State Machine Table block is not available on Linux and is deprecated on
Windows. Use the State Machine Editor block in new designs.

The design example, fifo_control_logic.mdl, contains a simple state machine to
implement the control logic for a first-in first-out (FIFO) memory structure.

The design files for this example are in the <DSP Builder install path>\
DesignExamples\Tutorials\StateMachine\StateMachineTable directory.

Figure 11–1 shows the top-level schematic for the FIFO design example.

The state machine in this design example feeds the control inputs of a Dual-Port
RAM block and the inputs of an address counter.

The state machine has the following operation:

■ When you assert the push input and the address counter is less than 250, the
address counter increments and a byte of data writes to memory.

■ When you assert the pop input and the address counter is greater than 0, the
address counter decrements and a byte of data reads from memory.

■ When the address counter is equal to 0, the empty flag asserts

■ When the address counter is equal to 250, the full flag asserts.

Figure 11–1. FIFO Design Example Top-Level Schematic

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–2 Chapter 11: Using the State Machine Library
Using the State Machine Table Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Using the State Machine Table Block
To use the State Machine Table block, to create the FIFO controller in the design
example, follow these steps:

1. Add a State Machine Table block to your Simulink design and assign it a new
name. Figure 11–2 shows the default State Machine Table block. In this
example, the block is named fifo_controller.

1 You must save you model and change the default name of the State
Machine Table block before you define the state machine properties.

2. Double-click the fifo_controller block to define the state machine properties.

The State Machine Builder dialog box appears with the Inputs tab selected. The
Inputs tab displays the input names defined for your state machine and provides
an interface to allow you to add, and delete input names.

3. Delete the default input names In2, In3, In4, and In5 and enter the following
new input names:

■ count_in

■ pop

■ push

1 You can add or delete inputs but you cannot change an existing input name
directly. You cannot delete or change the reset input.

4. Click the States tab.

The States tab displays the state names defined for your state machine and
provides an interface to allow you to add, change, and delete state names. The
States tab also allows you to select the reset state for your state machine. The reset
state is the state to which the state machine transitions when you assert the reset
input.

1 You must define at least two states for the state machine. You cannot delete
or change the name of a state while it is selected as the reset state.

Figure 11–2. fifo_controller State Machine Table Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Using the State Machine Library 11–3
Using the State Machine Table Block

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

5. Use the Add, Change, and Delete buttons to replace the default states S1, S2, S3,
S4, and S5 with the following states:

■ empty (reset state)

■ full

■ idle

■ pop_not_empty

■ push_not_full

6. After specifying the input and state names, click the Conditional Statements tab
and use it to describe the behavior of your state machine by adding the statements
(Table 11–1).

The Conditional Statements tab displays the state transition table, which contains
the conditional statements that define your state machine.

1 There must be at least one conditional statement defined in the Conditional
Statements tab.

A conditional statement consists of a current state, a condition that causes a
transition to take place, and the next state to which the state machine transitions.
The current state and next state values must be state names defined in the States
tab, which you can select from a list in the dialog box.

Table 11–1. FIFO Controller Conditional Statements

Current State Condition Next State

empty (push=1)&(count_in!=250) push_not_full

empty (push=0)&(pop=0) idle

full (push=0)&(pop=0) idle

full (pop=1) pop_not_empty

idle (pop=1)&(count_in=0) empty

idle (push=1) push_not_full

idle (pop=1)&(count_in!=0) pop_not_empty

idle (push=1)&(count_in=250) full

pop_not_empty (push=0)&(pop=0) idle

pop_not_empty (pop=1)&(count_in=0) empty

pop_not_empty (push=1)&(count_in!=250) push_not_full

pop_not_empty (pop=1)&(count_in!=0) pop_not_empty

pop_not_empty (push=1)&(count_in=250) full

push_not_full (push=0)&(pop=0) idle

push_not_full (pop=1)&(count_in=0) empty

push_not_full (push=1)&(count_in!=250) push_not_full

push_not_full (push=1)&(count_in=250) full

push_not_full (pop=1)&(count_in!=0) pop_not_empty

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–4 Chapter 11: Using the State Machine Library
Using the State Machine Table Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

1 To indicate in a conditional statement that a state machine always
transitions from the current state to the next state, specify the conditional
expression to be one.

Figure 11–3 shows the Conditional Statements tab, after defining the conditional
statements for the FIFO controller.

When a state machine is in a particular state, it may need to evaluate more than
one condition to determine the next state to which it transitions. The priority of the
conditional operator determines the priority if the condition contain only one
operator.

Table 11–2 shows the conditional operators you can use to define a conditional
expression.

Figure 11–3. State Machine Builder Conditional Statements Tab

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Using the State Machine Library 11–5
Using the State Machine Table Block

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

If the conditions contain multiple operators, they are evaluated in the order that
you list them in the conditional statements table.

Table 11–3 shows the conditional statements when the current state is idle.

The condition (pop=1)&(count_in=0) is higher in the table than the condition
(push=1)&(count_in=250), therefore it has higher priority.

The condition (pop=1)&(count_in!=0) has the next highest priority and the
condition (push=1)&(count_in=250) has the lowest priority.

1. Use the Move Up and Move Down buttons to change the order of the conditional
statements (Table 11–4).

Table 11–2. Comparison Operators Supported in Conditional Expressions

Operator Description Priority Example

- (unary) Negative 1 -1

(...) Brackets 1 (1)

= Numeric equality 2 in1=5

!= Not equal to 2 in1!=5

> Greater than 2 in1>in2

>= Greater than or equal to 2 in1>=in2

< Less than 2 in1<in2

<= Less than or equal to 2 in1<=in2

& AND 2 (in1=in2)&(in3>=4)

| OR 2 (in1=in2)|(in1>in2)

Table 11–3. Idle State Condition Priority

Current State Condition Next State

idle (pop=1)&(count_in=0) empty

idle push=1 push_not_full

idle (pop=1)&(count_in!=0) pop_not_empty

idle (push=1)&(count_in=250) full

Table 11–4. Idle State Condition Priority (Reordered)

Current State Condition Next State

idle (pop=1)&(count_in=0) empty

idle (push=1)&(count_in=250) full

idle (pop=1)&(count_in!=0) pop_not_empty

idle push=1 push_not_full

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–6 Chapter 11: Using the State Machine Library
Using the State Machine Table Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

2. Click the Design Rule Check tab. You can use this tab to verify that the state
machine you defined in the previous steps does not violate any of the design rules.
Click Analyze to evaluate the design rules for your state machine. If a design rule
is violated, an error message, highlighted in red, is listed in the Analysis Results
box. If error messages appear in the analysis results, fix the errors and rerun the
analysis until no error messages appear before simulating and generating VHDL
for your design. Figure 11–4 shows the Design Rule Check tab after clicking
Analyze.

3. To save the changes made to your state machine, click OK.

The State Machine Builder dialog box closes and returns you to your Simulink
design file. The design file automatically updates with the input and output names
defined in the previous steps.

1 You may need to resize the block to ensure that the input and state names
do not overlap and display correctly.

Figure 11–5 shows the updated fifo_controller block.

Figure 11–4. State Machine Builder Design Rule Check Tab

Figure 11–5. fifo_controller Block After Closing the State Machine Table

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Using the State Machine Library 11–7
Using the State Machine Editor Block

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Using the State Machine Editor Block
To use the State Machine Editor block to create the FIFO controller in the design
example, follow these steps:

1. Add a State Machine Editor block to your Simulink design and assign it a
new name. Figure 11–6 shows the default State Machine Editor block. In this
example, the block is named fifo_controller.

1 You should save you model and change the default name of the State
Machine Editor block before you define the state machine properties.

2. Double-click the fifo_controller block to open the State Machine Editor in
the Quartus II software (Figure 11–7).

3. On the Tools menu in the Quartus II State Machine Editor, point to State Machine
Wizard and click Create a new state machine design.

Figure 11–6. fifo_controller State Machine Editor Block

Figure 11–7. Quartus II State Machine Editor Window

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–8 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

4. The first page of the wizard allows you to choose the reset mode, whether the reset
is active-high or active-low, and whether the outputs are registered. Accept the
default values (synchronous, active-high, registered outputs) and click Next to
display the Transitions page of the wizard.

5. Delete the default state names (state1, state2, state3) and type the following
new state names:

■ empty

■ full

■ idle

■ pop_not_empty

■ push_not_full

6. Delete the default input port names (input1, input2) and type the following
new input port names:

■ count_in[7:0]

■ pop

■ push

1 Do not change the clock and reset port names. The count_in port must
be defined as an 8-bit vector to allow count values up to 250.

7. Edit the state transitions by entering the statements (Table 11–1).

Table 11–5. FIFO Controller Transitions

Source State Destination State Condition

empty push_not_full (push==1)&(count_in!=250)

empty idle (push==0)&(pop==0)

full idle (push==0)&(pop==0)

full pop_not_empty (pop==1)

idle empty (pop==1)&(count_in==0)

idle push_not_full (push==1)

idle pop_not_empty (pop==1)&(count_in!=0)

idle full (push==1)&(count_in==250)

pop_not_empty idle (push==0)&(pop==0)

pop_not_empty empty (pop==1)&(count_in==0)

pop_not_empty push_not_full (push==1)&(count_in!=250)

pop_not_empty pop_not_empty (pop==1)&(count_in!=0)

pop_not_empty full (push==1)&(count_in==250)

push_not_full idle (push==0)&(pop==0)

push_not_full empty (pop==1)&(count_in==0)

push_not_full push_not_full (push==1)&(count_in!=250)

push_not_full full (push==1)&(count_in==250)

push_not_full pop_not_empty (pop==1)&(count_in!=0)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Using the State Machine Library 11–9
Using the State Machine Editor Block

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

1 The transitions are validated on entry and must conform with Verilog HDL
syntax.

Figure 11–8 shows the Transitions page after you define the states, inputs, and
transitions.

8. Click Next to display the Actions page. Delete the default output port name
(output1) and enter the following new output port names:

■ out_empty

■ out_full

■ out_idle

■ out_pop_not_empty

■ out_push_not_full

Figure 11–8. State Machine Editor Wizard Transitions Page

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–10 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

9. Specify the output logic for each output port by specifying the action conditions to
set each output port to 1 when the state is true and 0 for all other states
(Table 11–6).

Table 11–6. FIFO Controller Output Actions

Output Port Output Value In State

out_empty 1 empty

out_full 1 full

out_idle 1 idle

out_pop_not_empty 1 pop_not_empty

out_push_not_full 1 push_not_full

out_empty 0 full

out_empty 0 idle

out_empty 0 pop_not_empty

out_empty 0 push_not_full

out_full 0 empty

out_full 0 idle

out_full 0 pop_not_empty

out_full 0 push_not_full

out_idle 0 empty

out_idle 0 full

out_idle 0 pop_not_empty

out_idle 0 push_not_full

out_pop_not_empty 0 empty

out_pop_not_empty 0 full

out_pop_not_empty 0 idle

out_pop_not_empty 0 push_not_full

out_push_not_full 0 empty

out_push_not_full 0 full

out_push_not_full 0 idle

out_push_not_full 0 pop_not_empty

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Using the State Machine Library 11–11
Using the State Machine Editor Block

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Figure 11–9 shows the Actions page after you define the output ports, and action.

10. Click Next to display the Summary page. Check that the summary lists the five
states (empty, full, idle, pop_not_empty, and push_not_full), the five
input ports (clock, count_in[7:0], pop, push, and reset), and the five
output ports (out_empty, out_full, out_idle, out_pop_not_full, and
out_push_not_full).

11. Click Finish to complete the state machine definition. The state machine displays
graphically in the State Editor window (Figure 11–10 on page 11–12).

Figure 11–9. State Machine Editor Wizard Actions Page

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–12 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

1 DSP Builder marks the first state that you enter in the wizard as the default
state. This state is the empty state and is the state to which the state machine
transitions when you assert the reset input.

12. On the Tools menu in the Quartus II State Machine Editor, click Generate HDL
File to display the Generate HDL File dialog box. Select VHDL and click OK to
confirm your choice. Click Yes to save the fifo_controller.smf file and check that
there are no FSM verification errors.

1 There are five warning messages stating that FSM verification skips in each
state. You can ignore these messages.

If there are any errors, you can edit the state machine using the Properties dialog
boxes that you can display from the right button pop-up menu when you select a
state or transition. You can also edit the state machine in table format by clicking
the tabs at the bottom of the State Machine Editor window.

f For information about editing state machine properties and drawing a graphical state
machine, refer to the About the State Machine Editor topic in the Quartus II Help.

13. On the File menu in the Quartus II State Machine Editor, click Exit.

The fifo_controller block on your model updates with the input and output
ports defined in the state machine.

Figure 11–10. Graphical fifo_controller State Machine Diagram

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Using the State Machine Library 11–13
Using the State Machine Editor Block

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

1 You may need to resize the block to ensure that the input and state names
do not overlap and are displayed correctly.

Figure 11–11 shows the updated fifo_controller block for the FIFO design
example.

Figure 11–11. fifo_controller Block After Closing the State Machine Editor

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–14 Chapter 11: Using the State Machine Library
Using the State Machine Editor Block

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

12. Managing Projects and Files

DSP Builder design requires the following files to store all the components:

■ The top-level Simulink model <top_level_name>.mdl

■ The import directory DSPBuilder_<top_level_name>_import and its contents.

■ Any source files for imported HDL.

■ Any Intel format hexadecimal memory initialization (.hex) files.

■ Any referenced custom library files.

■ The analyzed Simulink model file <top_level_name>.mdlxml.

1 When you include the .mdlxml file in a Quartus II project, you do not need to call
MATLAB to synthesize the design. You can still synthesize a project without the
.mdlxml file, but you must call MATLAB as part of the generation flow.

If you do not want Quartus II synthesis to call MATLAB, or are passing the design a
user without access to MATLAB, follow one of these steps:

■ Include both the .mdl and corresponding .mdlxml files in the project,

■ Export HDL and specify the exported HDL as the source with no references to the
.mdl or .mdlxml files in the project.

1 Any design that includes HDL Import, State Machine Editor or MegaCore functions
requires the import directory.

Integration with Source Control Systems
Altera recommends that you store Quartus II archive (.qar) files rather than
individual HDL files for source control purposes.

To create a .qar file, follow these steps in the Quartus II software:

1. Create a Quartus II project that sources the top-level Quartus II IP (.qip) file that
the DSP Builder Export HDL flow generates (“Exporting HDL” on page 12–2).

2. Perform analysis and elaboration to ensure the design incorporates any black-box
system files.

3. Archive the project by clicking Archive Project on the project menu in the
Quartus II software) to generate the .qar file.

1 Any HDL elements that you introduce into DSP Builder with custom library blocks
may require their own source control. Additional .qip files, which are referenced in
the "# Imported IP files" section of the top-level .qip file, list the required files.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

12–2 Chapter :
HDL Import

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

HDL Import
In general, source files that you import with HDL Import are not part of a DSP Builder
project. DSP Builder references them in projects that generate with the Export HDL
flow as external files, with absolute paths.

When you move a design to a new version of the tools or to a location on a different
computer, run the alt_dspbuilder_refresh_HDLimport script to ensure the
HDL Import blocks are up-to-date.

When migrating to a new computer, re-import the HDL to enable hardware
generation (although simulation in Simulink may be possible without this step).

MegaCore Functions
The MegaCore IP Library always installs in the same parent directory as the Quartus
II installation. This directory is not a subdirectory of the quartus directory but a
relative path to an install directory at the same level as the quartus directory. The
expected directory structure is:

<install_path><QUARTUS_ROOTDIR>\..\ip

This feature allows the Export HDL flow to use relative paths, and improves
portability.

1 Before the Quartus II software version 8.0, it was possible to install previous versions
of the MegaCore IP Library in any specified location. If you use an old version of the
MegaCore IP Library in your design, there may still be absolute paths in the generated
Quartus II IP (.qip) files that you must modify when you move projects to a different
location. The .qip file contains all the assignments and other information that the
design requires to process the exported HDL in the Quartus II compiler and generate
hardware.

When moving a design to a new version of the tools or a different location, run the
alt_dspbuilder_refresh_megacore script to ensure that the MegaCore
function blocks are up-to-date.

Successful migration of designs with MegaCore Functions assumes that the new
environment has all the required IP installed. It may be necessary to install the
MegaCore IP Library and run the alt_dspbuilder_setup_megacore script.

Memory Initialization Files
Intel-format hexadecimal (.hex) files are required for memory initialization in
simulation and hardware generation. If they are generated by HDL Import or
MegaCore function blocks, ensure that they are in the import directory. This fact is
generally not the case if you generate the files with HDL Import.

Exporting HDL
You can export the DSP Builder-generated synthesizable HDL to a Quartus II project
and then use the Export tab in the Signal Compiler block to export them
(Figure 12–1).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter : 12–3
Exporting HDL

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

You can also export HDL by executing the alt_dspbuilder_exportHDL command
in the MATLAB command window.

The syntax for the export HDL command is:

<exportDir_value> alt_dspbuilder_exportHDL(<model>, <exportDir>)

where:

■ model is the name of the .mdl file to export. This file is always the top-level name in
the exported Quartus II project.

■ exportDir is the directory that contains the exported files. If you omit this optional
argument, DSP Builder uses the default or previous export directory.

■ exportedDir_value is the return string indicating the output directory containing the
newly generated files.

Running this flow creates a set of source files in the export directory, including a .qip
file corresponding to the top-level of your design.

Figure 12–1. Export Tab in Signal Compiler

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

12–4 Chapter :
Migration of DSP Builder (Standard Blockset) Files to a New Location

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Using Exported HDL
After the Export HDL flow completes, you can create a project using the New Project
Wizard, which is available on the File menu in the Quartus II software. You should
enter the top-level name of the exported project and add the corresponding .qip files
as the single source file for the project. There may be additional .qip files describing
the requirements for black-box components. The top-level files sources these files
automatically.

Use the Archive Project command in the Quartus II software to archive this project.

1 When migrating designs that include MegaCore function blocks to a different
location, edit their corresponding .qip files if they include absolute paths to library
components.

Use the Export HDL flow on a Windows computer to a Linux-based computer to
migrate the files generated. However, this act requires adding an additional file to the
project. This additional alt_dspbuilder_package.vhd file is in the
<QUARTUS_ROOTDIR>\libraries\vhdl\altera directory on a Windows computer.

Migration of DSP Builder (Standard Blockset) Files to a New Location
When moving DSP Builder (standard blockset) projects to a new directory or
machine, you can recreate the project by transferring a minimum set of design files.
You do not need to copy the entire project directory. However, in some cases, when
the relative paths for the design files change in the new location, recreate the auxiliary
files to achieve a successful compilation.

You require the following minimum set of design files to recreate a project:

■ DSP Builder model (.mdl)

■ HDL source files associated with HDL import blocks (if any)—maintain same
relative path to MDL

■ HDL wrapper files associated with IP MegaCore function blocks (if any)—
maintain same relative path to the .mdl file (they should be in the
DSPBuilder_<mdl name>_import subdirectory)

■ Memory initialization .hex files (if any)

■ Custom library files (if any)

To recreate the project in the new location, follow these steps:

1. If the model contains IP MegaCore function or HDL import blocks, regenerate the
auxiliary files (.qip, .entityimport, .simdb) associated with the IP MegaCore
function or HDL import block by following these steps:

a. HDL import—run the alt_dspbuilder_refresh_HDLimport script to
automatically update all the HDL import blocks in the new location.

b. IP MegaCore functions—run the alt_dspbuilder_refresh_megacore script to
automatically update all the IP MegaCore function blocks in the new location.
Successful migration of design with IP MegaCore functions assumes that you
install the required MegaCore IP library on the new environment.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter : 12–5
Integration of Multiple Models in a Top-Level Quartus II Project

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

1 If the ..\DSPBuilder_<mdl name>_import subdirectory copies and the
design files, skip this step.

2. Re-analyze the model by clicking Analyze in the Advanced tab of the Signal
Compiler block to regenerate the auxiliary files (.mdlxml, .qip, .ipx) associated
with the model.

Integration of Multiple Models in a Top-Level Quartus II Project
To integrate multiple DSP Builder (standard blockset) designs in a top-level Quartus
II project, you need the .mdl and .ipx files.

Use the Quartus II IP (.qip) file as the single source file for each DSP Builder model.
The .qip file is a single file that contains paths for all the files for an IP design. The .qip
file allows you to add an IP design to the project by adding only one file, rather than
adding all the necessary files individually. You only need the .qip file for Quartus II
archiving for DSP Builder, which does not use it for generation.

If the DSP Builder design includes HDL import or IP MegaCore functions, the
top-level .qip may reference embedded .qip file(s). Also, some older versions of IP
MegaCore functions (before v8.0) and HDL import blocks may have absolute paths in
the generated .qip files. If you migrate the files from a different location, it may be
necessary to manually edit their corresponding .qip files to reflect the new
environment. By running the Analyze process from the Signal Compiler block in
the new location, the .qip file updates automatically with the new path settings. These
embedded .qip file(s) contain the information concerning the projects, libraries and
source HDL required by the Quartus II software for successful integration of these
external entities into DSP Builder.

In addition to the .qip source files, the top-level project also requires an IP Index (.ipx)
file that specifies additional paths for the IP Librarian to find components. SOPC
Builder uses the same IP librarian to search for SOPC Builder components.
Specifically for DSP Builder designs, the Quartus II software needs the .ipx file for the
HDL import and IP MegaCore function blocks that your model uses. Essentially, the
DSP Builder system is an entity composed of DSP Builder blocks, (which themselves
are entities but are easily discoverable), and non-native entities like HDL import and
MegaCore functions. Use the IP Librarian with .ipx files to find all entities.

1 The DSP Builder specifies the main entities in the main Quartus II .ipx file and need
no special action—you just need to add the extra HDL import and MegaCore function
entities.

To update the IP librarian search path for the top-level Quartus II project, create an
additional directory <project directory>/ip/<module name> and create a file <module
name>.ipx in that subdirectory.

The .ipx file has the following contents:

<library>

<path path='../../../<module name>/**/*'/>

</library>

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

12–6 Chapter :
Integration of Multiple Models in a Top-Level Quartus II Project

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

These statements specify the relative path to the directory where to locate the .mdl file
and where to search for directories containing further .ipx files. The ** means search
recursively, and the final * locates all identifiable elements there.

You can combine all the search paths into a single .ipx file. For example:

<library>

<path path='../../../<module name1>/**/*'/>

<path path='../../../<module name2>/**/*'/>

...

</library>

You can also specify a path to a specific .ipx file using:

<index file='../../../blockdemo.ipx'/>

Design Example
The following example shows how you can integrate multiple DSP Builder designs
into a top-level Quartus II project. Suppose your top-level design consists of the
following three DSP Builder models:

■ fir1.mdl—containing two Avalon-MM slave interfaces

■ fir2.mdl—containing multiple HDL import blocks

■ fir3.mdl—containing one IP MegaCore function block with two Avalon-ST
interfaces

In the top-level Quartus II project, there are the following four design files:

■ top.vhd—Top-level wrapper that instantiates the three separate models

■ fir1.qip—Quartus IP file for fir1.mdl

■ fir2.qip—Quartus IP file for fir2.mdl

■ fir3.qip—Quartus IP file for fir3.mdl

Figure 12–2 on page 12–7 shows the design example in the Quartus II Project
Navigator window.

1 In this example, fir2.qip has an embedded .qip associated with the HDL import block
and fir3.qip has an embedded .qip associated with the IP MegaCore function block.

To update the IP Librarian search path, create additional directories <project
directory>/ip/<module name> and create an .ipx file in each subdirectory.

Thus in this design example, create the following directories:

■ ../<project directory>/ip/fir1

■ ../<project directory>/ip/fir2

■ ../<project directory>/ip/fir3

and in each subdirectory, create a text file <module name>.ipx with the following
contents:

<library>

 <path path='../../../<module name>/**/*'/>

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter : 12–7
Integration of Multiple Models in a Top-Level Quartus II Project

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

</library>

These .ipx files specify the relative path to the directory, where the .mdl file is located
and tell the IP Librarian where to look for the components.

Figure 12–2. Project Navigator Window in the Quartus II Software

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

12–8 Chapter :
Integration of Multiple Models in a Top-Level Quartus II Project

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

13. Troubleshooting

Troubleshooting Issues
This chapter contains information about resolving the following DSP Builder issues
and error conditions:

■ Signal Compiler Cannot Checkout a Valid License

■ Loop Detected While Propagating Bit Widths

■ The MegaCore Functions Library Does Not Appear in Simulink

■ The Synthesis Flow Does Not Run Properly

■ DSP Development Board Troubleshooting

■ SignalTap II Analysis Appears to Hang

■ Error if Output Block Connected to an Altera Synthesis Block

■ Warning if Input/Output Blocks Conflict with clock or aclr Ports

■ Wiring the Asynchronous Clear Signal

■ Error Issues when a Design Includes Pre-v7.1 Blocks

■ Creating an Input Terminator for Debugging a Design

■ A Specified Path Cannot be Found or a File Name is Too Long

■ Incorrect Interpretation of Number Format in Output from MegaCore Functions

■ Simulation Mismatch For FIR Compiler MegaCore Function

■ Simulation Mismatch After Changing Signals or Parameters

■ Unexpected Exception Error when Generating Blocks

■ VHDL Entity Names Change if a Model is Modified

■ Algebraic Loop Causes Simulation to Fail

■ Parameter Entry Problems in the DSP Block Dialog Box

■ DSP Builder System Not Detected in SOPC Builder

■ MATLAB Runs Out of Java Virtual Machine Heap Memory

■ ModelSim Fails to Invoke From DSP Builder

■ Unexpected End of File Error When Comparing Simulation Results

Signal Compiler Cannot Checkout a Valid License
You may receive this error message if you try to generate VHDL files and Tcl scripts
(or try to generate VHDL stimuli) and you have not installed a license for
DSP Builder.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–2 Chapter :
Troubleshooting Issues

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

f For information about how to obtain a license, refer to Volume 1: Introduction to DSP
Builder in the DSP Builder Handbook.

Verifying That Your DSP Builder Licensing Functions Properly
Type the following command in the MATLAB Command Window:

dos('lmutil lmdiag C4D5_512A') r
where C4D5_512 is the DSP Builder feature ID.

This command outputs the status of the DSP Builder license.

For example, if you are using a node locked license:

lmutil - Copyright (C) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

FLEXnet diagnostics on Mon 8/11/2008 14:36

License file: c:\qdesigns\license.dat

"C4D5_512A" v0000.00, vendor: alterad

uncounted nodelocked license, locked to Vendor-defined
"GUARD_ID=T000001297" no expiration date

1 You receive a message about the hostid if you are using an Altera software guard for
licensing.

Alternatively, if you are using a floating license:

>> dos('lmutil lmdiag C4D5_512A')

lmutil - Copyright (c) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

FLEXnet diagnostics on Mon 8/11/2008 10:49

License file: node@lic_server

"C4D5_512A" v2030.12, vendor: alterad

License server: lic_server

floating license expires: 31-dec-2030

This license can be checked out

If the command does not work, your license file may not be set up correctly. For
information about how to check your system path and registry settings, refer to “The
Synthesis Flow Does Not Run Properly” on page 13–5.

If your license file has a SERVER line, type the following command in the MATLAB
Command Window:

dos('lmutil lmstat -a') r
This command outputs the status of the DSP Builder license in the following format:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter : 13–3
Troubleshooting Issues

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

lmutil - Copyright (c) 1989-2006 Macrovision Europe Ltd. and/or
Macrovision Corporation. All Rights Reserved.

Flexible License Manager status on Mon 8/11/2008 15:36

License server status:

[Detecting lmgrd processes...]
License server status: node@lic_server

License file(s) on shama: /usr/licenses/quartus/license.dat:

lic_server: license server UP (MASTER) v10.8

Vendor daemon status (on lic_server):

alterad: UP v9.2

Feature usage info:

Users of C4D5_512A: (Total of 100 licenses issued; Total of 0 licenses
in use)

If the command does not work, your license file may not be set up correctly.

Verifying That the LM_LICENSE_FILE Variable Is Set Correctly
The LM_LICENSE_FILE system variable must point to your license.dat file that
includes the DSP Builder FEATURE line for the DSP Builder to operate properly.

1 If you have multiple versions of software that uses a license.dat file (for example,
Quartus II Limited Edition and a full version of the Quartus II software), make sure
that LM_LICENSE_FILE points to the version of software that you want to use with
DSP Builder.

Other software products, such as Mentor Graphics LeonardoSpectrum, also use the
LM_LICENSE_FILE variable to point to a license file. You can combine several
license.dat files into one or you can specify multiple license.dat files in the steps
below.

Follow these steps to set the LM_LICENSE_FILE variable:

1. On the Windows Start menu point to Settings and click Control Panel.

2. Double-click the System icon in the Control Panel window.

3. In the System Properties dialog box, click the Advanced tab.

4. Click on Environment Variables.

5. Click the System Variable list to highlight it, and then click New.

6. In the Variable Name box, type LM_LICENSE_FILE.

7. In the Variable Value box, type <path to license file>\license.dat.

8. Click OK.

Verifying the Quartus II Path
Verify that the QUARTUS_ROOTDIR environment variable points at the correct version
of the Quartus II software by typing the following command in the MATLAB
Command Window:

!echo %QUARTUS_ROOTDIR% r

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–4 Chapter :
Troubleshooting Issues

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

This command returns the path that the QUARTUS_ROOTDIR environment variable
specifies. For example:

C:\altera\81\quartus

If You Still Cannot Get a License
■ Try adding the following paths to your system path:

■ quartus/bin

■ matlab/bin

■ Remove and reinstall DSP Builder. After removing DSP Builder, delete any
DSP Builder files or directories that remain in the file system to ensure that you
re-install a clean file set.

Loop Detected While Propagating Bit Widths
You may get an error if you have a feedback loop in your design and you have not
explicitly defined the feedback loop’s bit width. Figure 13–1 shows this error.

To avoid this error, include an AltBus block configured as an internal node to specify
the bit width in the feedback loop explicitly (Figure 13–2).

The MegaCore Functions Library Does Not Appear in Simulink
The Simulink Library Browser may not display MegaCore functions library if you
install DSP Builder before you install the Altera MegaCore IP Library.

To fix this problem, type the following command after you instal the Altera MegaCore
IP Library:

alt_dspbuilder_setup_megacore r

Figure 13–1. Feedback Loop With Unresolved Width Error

Figure 13–2. Feedback Loop With AltBus Block as an Internal Node

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter : 13–5
Troubleshooting Issues

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

The Synthesis Flow Does Not Run Properly
The DSP Builder automated flows allow you to control your entire synthesis and
compilation flow in the MATLAB or Simulink environment using the Signal
Compiler block. With the automated flow, the Signal Compiler block outputs
VHDL files and Tcl scripts and then automatically begins synthesis and compilation
in the Quartus II software.

If the Quartus II software does not run automatically, check the software paths and if
necessary, change the system path settings.

Check the Software Paths
If you have multiple versions of the same software product on your PC (for example,
Quartus II Web Edition and a full version of the Quartus II software), your registry

DSP Development Board Troubleshooting
If Signal Compiler does not configure the device on the DSP development board,
check the following points:

■ Ensure that you set up and connect the board to your PC and you install any
necessary drivers.

■ When the board powers up, the CONF_DONE LED illuminates. The CONF_DONE
LED turns off and then on when configuration completes successfully. If you do
not observe the LED operating in this way, configuration is unsuccessful.

■ You can configure the DSP board manually with an SRAM Object File (.sof), a
ByteBlasterMV, ByteBlaster II, ByteBlaster, or USB-Blaster download cable, and the
Quartus II Programmer in JTAG mode. Signal Compiler generates the SRAM
object file (.sof) file in your working directory.

SignalTap II Analysis Appears to Hang
The SignalTap II logic analyzer should terminate successfully after it meets all trigger
conditions. However, if it does not meet one or more of the trigger conditions, the
SignalTap II analyzer does not terminate and the JTAG node remains locked.

You can either disconnect and reconnect the USB cable, or switch off the board and
switch it on again. You must program the board again if you power it off.

Error if Output Block Connected to an Altera Synthesis Block
An Output block maps to output ports in VHDL and marks the edge of the generated
system. You should normally use these blocks to connect simulation blocks (Simulink
blocks) for your testbench. If you want to use DSP Builder blocks outside your
synthesizable system (such as for test bench generation or verification) put
Non-synthesizable Input and Non-synthesizable Output blocks around
them.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–6 Chapter :
Troubleshooting Issues

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

Warning if Input/Output Blocks Conflict with clock or aclr Ports
A warning issues if an input or output port has the same name as a clock or reset
signal that your model uses. For example if your design has an input port aclr, this
name is the same name as the default system reset and the following warning issues
during analysis:

Warning: aclrInputPortTest/aclr has been renamed to avoid conflict:
aclr has been renamed to aclr_1:

The input port renames during HDL conversion. If you want to keep the port aclr,
add a Clock block and use it to rename the reset port.

Wiring the Asynchronous Clear Signal
Wire the asynchronous clear signal with a register to make sure that the end of the
aclr cycle synchronizes with the clock (Figure 13–3).

1 A design may not match the hardware if an asynchronous clear performs during
simulation because the aclr cycle may last several clocks - depending on clock speed
and the device.

Error Issues when a Design Includes Pre-v7.1 Blocks
An error of the following form issues if you attempt to simulate a design that includes
unupgraded pre-v7.1 blocks:

Data type mismatch. Input port 1 of '<old block>' expects a signal
of data type 'double'. However, it is driven by a signal of data type
'DSPB_Type'.

f For information about upgrading your designs, refer to Volume 1: Introduction to DSP
Builder in the DSP Builder Handbook.

Creating an Input Terminator for Debugging a Design
If there is a problem somewhere in a design, disconnect some subsystems so that you
can analyze a small portion of your design. This procedure may cause bit width
propagation and inheritance problems.

You can avoid these problems by inserting a Non-synthesizable Output block
followed immediately by a Non-synthesizable Input block. This combination
functions as a temporary input terminator and you can remove them after you debug
your design.

Figure 13–3. Wiring the Asynchronous Clear Signal

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter : 13–7
Troubleshooting Issues

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

A Specified Path Cannot be Found or a File Name is Too Long
The maximum length for a path is limited to 256 characters in the Windows operating
system.

When the file path to a model or the name of the model is very long, DSP Builder may
attempt to create a file path exceeding this limit.

If this problem occurs, reduce the length of the file path to the model or the length of
its name.

Incorrect Interpretation of Number Format in Output from MegaCore Functions
For some MegaCore functions, DSP Builder may be unable to infer whether it should
interpret output signals as signed, unsigned, signed fractional. This issue can cause
problems when visualizing the output. For example, by directly attaching scopes,
when the signal waveform may obscur because of the incorrectly inferred number
formats.

Correct this issue by connecting to the output with an AltBus block or a
Non-synthesizable Output block (as appropriate) with the correct bus type
assignment.

Simulation Mismatch For FIR Compiler MegaCore Function
FIR Compiler MegaCore function-generated functional simulation models generally
do not output valid data until the data storage of these models is clear.

f For more information including a formula that estimates the number of cycles before
relevant samples are available, refer to the Simulate the Design section in the FIR
Compiler User Guide.

Simulation Mismatch After Changing Signals or Parameters
The simulation results may not match after changing any signal names or parameters.
If this problem occurs, delete the previous testbench directory (tb_<model name>)
and run the simulation again.

Unexpected Exception Error when Generating Blocks
DSP Builder issues errors of the following form when you generate a DSP Builder
system:

Info: IP Generator Info: stderr: No clock info for
my_alt_dspbuilder_clock

Info: IP Generator Info: stderr: Failed to find clock
my_alt_dspbuilder_clock

Info: IP Generator Info: stderr: Failed to find clock
my_alt_dspbuilder_clock

Error: IP Generator Error: Unexpected exception thrown by MDLFactory:
java.lang.NullPointerException

Error: Node instance "dut" instantiates undefined entity
"TestBarrelShifter" File: <path>/mytoplevel.vhd Line: 30

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–8 Chapter :
Troubleshooting Issues

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

This problem is caused by corrupted Librarian IP cache and can be resolved by
deleting the IP cache directory which is normally located at:

C:\Documents and Settings\<user>\.altera.quartus\ip_cache

VHDL Entity Names Change if a Model is Modified
The Signal Compiler VHDL files have a random number suffix appended to the file if
you modify the model.

For example, if you change the pipeline delay on a Delay block, the corresponding
VHDL file: alt_dspbuilder_delay_<randomnumber> changes, while the VHDL file
name for the rest of the blocks in the model remain the same.

Solve this problem with a regular expression in the project assignments (“Making
Quartus II Assignments to Block Entity Names” on page 3–27).

Algebraic Loop Causes Simulation to Fail
HDL import and IP Toolbench-based MegaCore function blocks provide an interface
for changing the direct feedthrough settings of their inputs.

Algebraic loops are loops entirely consisting of blocks having some inputs that are
direct feedthrough, that is, inputs that have a purely combinational path to at least
one output of the block.

f For more information about algebraic loops, refer to the MATLAB Help.

The feature to automatically infer the correct direct feedthrough values is disabled by
default for HDL Import (and DSP Builder treats all inputs as direct feedthrough).
Enable it by typing the following command in the MATLAB command window:

set_param(<HDL Import block name>, 'use_dynamic_feedthrough_data', 'on')

The direct feedthrough settings for the HDL Import block update after a successful
compile of the HDL when this parameter is on.

1 This feature may not generate correct settings when importing low-level
LPM-based HDL.

A more direct method of changing the direct feedthrough settings is to modify the
InDelayed parameter on HDL Import or MegaCore function blocks, with the following
command:

set_param(<block name>, 'inDelayed', <feedthrough setting>)

For example, if the block is named My_HDL:

set_param(<My_HDL>, 'inDelayed', '1 0 0 1')

A valid value of this parameter is a series of digits, one for each of the inputs on the
block (from top to bottom), with a 0 indicating direct feedthrough, and a 1 indicating
that all paths to outputs from this input are registered.

1 Specifying a value of 1 for an input, when it is in fact direct feedthrough,
causes Simulink to treat combinational paths as registered, and results in
incorrect simulation results.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter : 13–9
Troubleshooting Issues

© June 2010 Altera Corporation DSP Builder Standard Blockset User Guide
Preliminary

Adjust the order in which Simulink exercises all the blocks in a feedback loop, by
giving blocks a priority value. This procedure is useful if you know which block is
providing the correct initial values.

The priority of a block can be set with the General tab in the block properties for a
block. A lower value of priority causes DSP Builder to execute a block before a block
with a higher value.

Parameter Entry Problems in the DSP Block Dialog Box
There are issues with the Block Properties dialog box for the DSP block. Some
interdependencies require that you close and re-open the dialog box to edit further
parameters. This issue may be occur after a warning message issues or when a
required option is not available.

For example, if you change the Output Rounding Operation Type you may get an
error when Symmetric is selected for the Output Saturation Operation Type. If this
occurs, set the saturation type to None (wrap) and close the dialog box. Reopen the
dialog box and you can select now select Symmetric saturation.

DSP Builder System Not Detected in SOPC Builder
SOPC Builder may not detect DSP Builder systems whose hardware has been
generated using previous versions of the DSP Builder software. Altera does not
guarantee backwards compatibility of these modules when you use them in SOPC
Builder.

To workaround this issue, follow these steps:

1. Remove the <dspbuilder system name>_dspbuilder directory that the older DSP
Builder version generated.

2. Re-run compilation from the Signal Compiler block with the current DSP Builder
version.

3. Refresh the SOPC Builder system.

MATLAB Runs Out of Java Virtual Machine Heap Memory
For a very large design (containing many thousand blocks), MATLAB may have
insufficient heap memory available for the Java virtual machine and issues an error
message of the form:

“OutofMemoryError: Java heap space”

f For information about how to increase the heap space available to the Java virtual
machine, refer to:

http://www.mathworks.com/support/solutions/data/1-18I2C.html

ModelSim Fails to Invoke From DSP Builder
If ModelSim fails to invoke from within DSP Builder, check that the currently
supported ModelSim executable (vsim.exe) is in the path. Your PC should
automaticall include ModelSim in your path if you install ModelSim-Altera but you
may need to be add it manually if you use a different ModelSim installation.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–10 Chapter :
Troubleshooting Issues

DSP Builder Standard Blockset User Guide © June 2010 Altera Corporation
Preliminary

You can verify the ModelSim installation by typing the following command at the
MATLAB prompt:

!vsim

This command returns the ModelSim version and the path to the ModelSim
preferences Tcl file. If an error message issues or the returned path is incorrect, you
may need to move ModelSim to be ahead of any other similar tool in the path.

f For information about the supported version of ModelSim, refer to the DSP Builder
Installation and Licensing manual.

Unexpected End of File Error When Comparing Simulation Results
Occasionally an “Unexpected End of File” error issues when you are comparing the
Simulink and ModelSim simulation results for a design with multiple clocks.

This error occurs because the rounding calculation that aligns the clock signals sets
ModelSim simulation to run for one additional clock cycle (on the fastest clock) and
there is no stimulus data for this extra cycle. You can ignore the error message.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Section II. DSP Builder Standard Blockset Libraries

Document Version: 1.0
Document Date: June 2010

HB_DSPA_STD_LIB-1.0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

About This Section

Revision History
The following table shows the revision history for this section.

Date Version Changes Made

June 2010 1.0 First published.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

iv About This Section
Revision History

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

1. AltLab Library

The blocks in the AltLab library manage design hierarchy and generate RTL VHDL
for synthesis and simulation.

The AltLab library contains the following blocks:

■ BP (Bus Probe)

■ Clock

■ Clock_Derived

■ Display Pipeline Depth

■ HDL Entity

■ HDL Import

■ HDL Input

■ HDL Output

■ HIL (Hardware in the Loop)

■ Quartus II Global Project Assignment

■ Quartus II Pinout Assignments

■ Resource Usage

■ Signal Compiler

■ SignalTap II Logic Analyzer

■ SignalTap II Node

■ Subsystem Builder

■ TestBench

■ VCD Sink

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–2 Chapter 1: AltLab Library
BP (Bus Probe)

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

BP (Bus Probe)
The Bus Probe (BP) block is a sink, which you can place on any node of a model. The
Bus Probe block does not have any hardware representation and therefore does not
appear in the VHDL RTL representation generated by the Signal Compiler block.

The Display in Symbol parameter selects the graphical shape of the symbol in your
model and the information that is reported there (Table 1–1).

After simulating your model, the Bus Probe block back-annotates the following
information in the parameters dialog box for the Bus Probe block:

■ Maximum value reached during simulation

■ Minimum value reached during simulation

■ Maximum number of integer bits required during simulation

Clock
Use the Clock block in the top level of a design to set the base hardware clock
domain.

The block name is the name of the clock signal and must be a valid VHDL identifier.

A design can have zero or one base clock in a design and an error issues if you try to
use more than one base clock. You can specify the required units and enter any
positive value with the specified units. However, the clock period must be greater
than 1ps but less than 2.1ms.

If no base clock exists in your design, a default clock (clock) with a 20-ns real-world
period and a Simulink sample time of 1 is automatically created with a default Active
Low reset (aclr).

1 To avoid sample time conflicts in the Simulink simulation, ensure that the sample
time specified in the Simulink source block matches the sample time specified in the
Input block (driven by the Clock block or a derived clock).

Place additional clocks in the system by adding Clock_Derived blocks.

Each clock must have a unique reset name. As all clock blocks have the same default
reset name (aclr) ensure you specify a valid unique name with multiple clocks.

You can add reset synchronizer circuitry for this clock domain by specifying the reset
type to be either synchronized active low or synchronized active high.

When you specify these reset types, DSP Builder adds two extra registers to avoid
metastability issues during reset removal.

Table 1–1. Bus Probe Block “Display in Symbol” Parameter

Shape of
Symbol Data Reported in Symbol

Circle Maximum number of integer bits required during simulation.

Rectangle Maximum or minimum value reached during simulation.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: AltLab Library 1–3
Clock_Derived

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 1–2 lists the parameters for the Clock block.

Clock_Derived
Use the Clock_Derived block in the top level of a design to add additional clock
pins to your design. Specify these clocks as a rational multiple of the base clock for
simulation purposes.

DSP Builder uses the block name as the name of the clock signal. It must be a valid
VHDL identifier.

You can specify the numerator and denominator multiplicands calculates the derived
clock. However, the resulting clock period should be greater than 1ps but less than
2.1ms.

If no base clock is set in your design, DSP Builder creates a 20ns base clock and
determines the derived clock period. You must use a Clock block to set the base clock
if you want the sample time to be anything other than 1.

1 To avoid sample time conflicts in the Simulink simulation, ensure that the sample
time specified in the Simulink source block matches the sample time specified in the
Input block (driven by the Clock block or a derived clock).

Each clock must have a unique reset name. As all clock blocks have the same default
reset name (aclr) ensure you specify a valid unique name with multiple clocks.

You can add reset synchronizer circuitry for this clock domain by specifying the reset
type to be synchronized active low or synchronized active high.

When you specify these reset types, DSP Builder adds two extra registers to avoid
metastability issues during reset removal.

Table 1–3 lists the parameters for the Clock_Derived block:

Table 1–2. Clock Block Parameters

Name Value Description

Real-World Clock Period user specified Specify the clock period, which should be greater than 1ps but less than
2.1 ms.

Period Unit ps, ns, us, ms, s Specify the units for the clock period (picoseconds, nanoseconds,
microseconds, milliseconds, or seconds).

Simulink Sample Time > 0 Specify the Simulink sample time.

Reset Name User defined Specify a unique reset name. The default reset is aclr.

Reset Type Active Low,
Active High,
Synchronized
Active Low,
Synchronized
Active High

Specify whether the reset signal is active high or active low.

Export As Output Pin On or Off Turn on to export this clock as an output pin.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–4 Chapter 1: AltLab Library
Display Pipeline Depth

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Display Pipeline Depth
The Display Pipeline Depth block controls whether the pipeline depth displays
on primitive blocks.

You can change the display mode by double-clicking on the block. When set, the
current pipeline depth displays at the top right corner of each block that adds latency
to your design. The currently selected mode shows on the Display Pipeline
Depth block symbol.

Changing modes causes a Simulink display update, which may be slow for very large
designs.

The Display Pipeline Depth block has no parameters.

HDL Entity
Use the HDL Entity block for black-box simulation subsystems that you include in
your design with a Subsystem Builder block. The HDL Entity block specifies the
name of the HDL file that DSP Builder substitutes for the subsystem and the names of
the clock and reset ports for the subsystem.

The Subsystem Builder block usually creates this block.

Table 1–4 shows the parameters for the HDL Entity block.

Table 1–3. Clock_Derived Block Parameters

Name Value Description

Base Clock Multiplicand
Numerator

>= 1 Multiply the base clock period by this value. The resulting clock period should
be greater than 1ps but less than 2.1ms.

Base Clock Multiplicand
Denominator

>= 1 Divide the base clock period by this value. The resulting clock period should be
greater than 1ps but less than 2.1ms.

Reset Name User defined Specify a unique reset name. The default reset is aclr.

Reset Type Active Low,
Active High,
Synchronized
Active Low,
Synchronized
Active High

Specify whether the reset signal is active high or active low.

Export As Output Pin On or Off Turn on to export this clock as an output pin.

Table 1–4. HDL Entity Block Parameters

Name Value Description

HDL File Name User defined Specifies the name of the HDL file that DSP Builder substitutes for the subsystem
represented by a Subsystem Builder block.

Clock Name User defined Specifies the name of the clock signal that the black-box subsystem uses.

Reset Name User defined Specifies the name of the reset signal that the black-box subsystem uses.

HDL takes port names
from Subsystem

On or Off Turn on to use the subsystem port names as the entity port names instead of the
names of the HDL Input and HDL Output blocks.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: AltLab Library 1–5
HDL Import

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

HDL Import
Use the HDL Import block to import existing blocks implemented in HDL into DSP
Builder. Individually specify the VHDL or Verilog HDL files or define in a Quartus® II
project file (.qpf).

1 You must save your model file before you can import HDL with the HDL Import
block.

When you click Compile, a simulation file generates and the block in your model
configures with the required input and output ports. The Quartus II software
synthesizes the imported HDL or project as a netlist of megafunctions, LPM functions,
and gates.

DSP Builder may explicitly instantiate the megafunctions and LPM functions in the
imported files, or the Quartus II software may infer them. The netlist then compiles
into a binary simulation netlist for use by the HDL simulation engine in DSP Builder.

When simulating imported VHDL in ModelSim, which includes FIFO buffers, there
may be Xs in the simulation results, which may give a mismatch with the Simulink
simulation. You should use the FIFO buffer carefully to avoid any overflows or
underflows. Examine and eliminate any warnings of Xs that ModelSim reports during
simulation before you compare to the Simulink results.

The simulator supports many of the common megafunctions and LPM functions
although it does not support some. If DSP Builder encounters an unsupported
function, it issues an error message after you click Compile and it cannot import the
HDL. However, you may be able to rewrite the HDL so that the Quartus II software
infers a different megafunction or LPM function.

Table 1–5 shows the parameters for the HDL Import block.

Table 1–5. HDL Import Block Parameters (Part 1 of 2)

Name Value Description

Import HDL On or Off You can import individual HDL files when this option is on.

Add .v or .vhd file Click to browse for one or more VHDL files or Verilog HDL files.

Remove — Click to remove the selected file from the list.

Up, Down — Click to change the compilation order by moving the selected HDL file up or down the
list. The file order is not important when you use the Quartus II software but may be
significant when you use other downstream tools (such as ModelSim).

Enter name of top
level design entity

Entity name Specifies the name of the top level entity in the imported HDL files.

Import Quartus II
Project

On or Off When this option is on, you can specify the HDL to import with a Quartus II project file
(.qpf). DSP Builder imports the current HDL configuration. To import a different
revision, specify the required revision in the Quartus II software. The source files that
the Quartus II project uses must be in the same directory as your model file or be
explicitly referenced in the Quartus II settings file (.qsf). Error messages issue for any
entities that DSP Builder cannot find. Refer to the Quartus II documentation for
information about setting the current revision of a project and how to explicitly
reference the source files in your design.

Browse .qpf file Click to browse for a Quartus II project file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–6 Chapter 1: AltLab Library
HDL Import

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 1–1 shows an example of an imported HDL design implementing a simple
adder with four input ports (Input, Input1, Input2, sclrp), and two output ports
(Output, Output1).

Use std_logic_1164 types to define the input and output interfaces to the imported
VHDL. If your design uses any other VHDL type definitions (such as arithmetic or
numeric types), you should write a wrapper that converts them to std_logic or
std_logic_vector.

HDL import only supports single clock designs. If you import a design with multiple
clocks, DSP Builder uses one clock as the implicit clock and shows any others as input
ports on the Simulink block.

1 Store HDL source files in any directory or hierarchy of directories.

Table 1–6 lists the supported megafunctions and LPM functions.

Table 1–7 on page 1–7 lists the megafunctions and LPM functions that are not
supported.

Sort top-level
ports by name

On or Off Turn on to sort the ports that the top-level HDL file alphabetically defines instead of the
order specified in the HDL.

Compile — Compiles a simulation model from the imported HDL and displays the ports defined in
the imported HDL on the block.

Table 1–5. HDL Import Block Parameters (Part 2 of 2)

Figure 1–1. Typical HDL Import Block

Table 1–6. Supported Megafunctions and LPM Functions

Megafunctions LPM Functions

a_graycounter

altaccumulate

altmult_add

altshift_taps

altsyncram

parallel_add

scfifo

lpm_abs

lpm_add_sub

lpm_compare

lpm_counter

lpm_mult (Note 1)

lpm_mux

lpm_ram_dp

Note to Table 1–6:

(1) The lpm_mult LPM function is not supported when configured to perform a squaring operation.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: AltLab Library 1–7
HDL Input

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

HDL Input
Connect the HDL Input block directly to an input node in a subsystem. Use with the
Subsystem Builder and HDL Entity blocks for black-box simulation.

The type and bit width must match the type and bit width on the corresponding input
port in the HDL file referenced by the HDL Entity block. HDL Input blocks are
automatically generated by the Subsystem Builder block.

You can optionally specify the external Simulink type. If set to Simulink Fixed
Point Type, the bit width is the same as the input. If set to Double, the width may
be truncated if the bit width is greater than 52.

Table 1–8 shows the HDL Input block parameters.
.

Table 1–9 on page 1–7 shows the HDL Input block I/O formats.

Table 1–7. Unsupported Megafunctions and LPM Functions

Megafunctions LPM Functions

alt3pram

altcam

altcdr

altclklock

altddio

altdpram

altera_mf_common

altfp_mult

altlvds

altmemmult

altmult_accum

altpll

altqpram

altsqrt

alt_exc_dpram

alt_exc_upcore

dcfifo

lpm_and

lpm_bustri

lpm_clshift

lpm_constant

lpm_decode

lpm_divide

lpm_ff

lpm_fifo

lpm_fifo_dc

lpm_inv

lpm_latch

lpm_or

lpm_pad

lpm_ram_dq

lpm_ram_io

lpm_rom

lpm_shiftreg

lpm_xor

Table 1–8. HDL Input Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

The number format of the bus.

[number of bits].[] >= 0

(Parameterizable)

Specify the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[].[number of bits] >= 0

(Parameterizable)

Specify the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

External Type Inferred,
Simulink Fixed Point Type,
Double

Specifies whether the external type is inferred from the Simulink block it
is connected to or explicitly set to either Simulink Fixed Point or Double
type. The default is Inferred.

Table 1–9. HDL Input Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–8 Chapter 1: AltLab Library
HDL Output

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

HDL Output
The HDL Output block should be connected directly to an output node in a
subsystem. Use with the Subsystem Builder and HDL Entity blocks for
black-box simulation.

The type and bit width must match the type and bit width on the corresponding
output port in the HDL file referenced by the HDL Entity block. HDL Output
blocks are automatically generated by the Subsystem Builder block.

Table 1–10 shows the HDL Output block parameters.

Table 1–11 shows the HDL Output block I/O formats.

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 1–9:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 1–9. HDL Input Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Table 1–10. HDL Output Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point, including the sign bit.
This parameter does not apply to single-bit buses.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This parameter applies
only to signed fractional buses.

Table 1–11. HDL Output Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 1–11:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: AltLab Library 1–9
HIL (Hardware in the Loop)

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

HIL (Hardware in the Loop)
The HIL (Hardware in the Loop) block allows you to use an FPGA as a simulation
device inside a Simulink design. This configuration accelerates the simulation time,
and also allows access to real hardware in a simulation.

To use an HIL block, you need an FPGA development board with a JTAG interface.
Use any JTAG download cable, such as a ByteBlasterMV™, ByteBlaster™, or
USB-Blaster™ cable.

HIL supports advanced features, including:

■ Exported ports (allows the use of hardware components connected to the FPGA)

■ Burst and frame modes (improves HIL simulation speed)

1 This block supports only single clock designs with registered paths in a design. The
simulation results may be unreliable for combinational paths.

Table 1–12 shows the parameters specified in page 1 of the HIL dialog box.

Table 1–12. HIL Block Parameters, Page 1 (Part 1 of 2)

Name Value Description

Select the Quartus II
project

.qpf file Browse for a Quartus II project file ,which describes the hardware design that the
HIL block uses.

Select the clock pin Port name The clock pin name for the hardware design in the Quartus II software.

Select the reset pin Port name The reset pin name for the hardware design in the Quartus II software.

Identify the signed
ports

Signed or
Unsigned

Set the number of bits and select the type (signed or unsigned) of each input and
output port in the hardware design.

Export On or Off When on, the selected port is exported on an FPGA pin (or on multiple pins for
buses). When off (the default), the port is exported to the Simulink model.

Select the reset level Active_High,
Active_Low

The reset level that matches the setting in the original design. For designs originated
from the standard blockset, the reset level is specified in the Clock or
Clock_Derived block. If your design uses no clock block, it uses a default clock
with reset level active high. For designs originated from the advanced blockset, the
reset level is specified in the Signals block.

Burst Mode On or Off When on, allows sending data to the FPGA in bursts, which improves the simulation
speed, but delays the outputs by the burst length. When Off, it defaults to
single-step mode.

Burst Length (Note 1) Specify the length of a burst ("1" is equivalent to disabling burst mode). Use higher
values to produce faster simulations (although the extra gain becomes negligible
with bigger burst sizes).

Frame Mode On or Off Use in burst mode when data is sent or received in frames. When on, allows
synchronizing of the output data frames to the input data frames.

Input Sync Port name The input port for the synchronization signal in frame mode.

Output Sync Port name The output port for the synchronization signal in frame mode.

Sampling Period Integer Specify the sample time period in seconds. (A value of -1 means that the sampling
period is inherited from the block connected to the inputs.)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–10 Chapter 1: AltLab Library
HIL (Hardware in the Loop)

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

1 The HIL block needs recompilation if you change the Quartus II project, clock pin, or
any of the exported ports.

Table 1–13 shows the parameters specified in page 2 of the HIL dialog box.

Figure 1–2 shows an example with the HIL block.

1 Refer to the “Using Hardware in the Loop” chapter in the DSP Builder Standard Blockset
User Guide section in volume 2 of the DSP Builder Handbook.

Assert “Sclr” before
starting the simulation

On or Off When on, asserts the synchronous clear signal before the simulation starts.

Note to Table 1–12:

(1) The record size is 32×1024×1024, which is the product of (packet size) × (burst length) while the packet size is the larger of the total input data
width and the total output data width. For example, for a packet size of 1024 bits, set the burst length to 32×1024. However, due to the
limitations of the JTAG interface, the optimal record size is between 1 to 2 MBPS (depending on the host computer, USB driver and cables).
Hence, setting a bigger burst size might not give significant speed up.

Table 1–12. HIL Block Parameters, Page 1 (Part 2 of 2)

Name Value Description

Table 1–13. HIL Block Parameters, Page 2

Name Value Description

FPGA device device name The FPGA device.

Compile with Quartus II — Click to compile the HIL block with the Quartus II software.

JTAG Cable cable name The JTAG cable.

Device in chain device location The required entry for the location of the device.

Scan JTAG — Click to scan the JTAG interface for all JTAG cables attached to the system
(including any remote computers) and the devices on each JTAG cable. The
available cable names and device names are loaded into the JTAG Cable and
Device in chain list boxes.

Configure FPGA — Click to configure the FPGA.

Transcript window — Displays the progress of the compilation.

Figure 1–2. Example With the HIL Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: AltLab Library 1–11
Quartus II Global Project Assignment

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Quartus II Global Project Assignment
This block passes Quartus® II global project assignments to the Quartus II project.
Each block sets a single assignment. If you need to make multiple assignments, use
multiple blocks (Figure 1–3). These assignments could set Quartus II compilation
directives such as target device or timing requirements.

1 You cannot assign the device, family, or fMAX requirement with this block. Use the
Signal Compiler block to make device and family settings, or the Clock and
Clock_Derived blocks to make explicit clock settings.

f For a full list of Quartus II global assignments and their syntax, refer to the Quartus II
Settings File Reference Manual or use the following Quartus II shell command:

quartus_sh --tcl_eval get_all_assignment_names

Table 1–14 shows the Quartus II Global Project Assignment block
parameters.

Figure 1–3 shows an example defining multiple assignments with Quartus II
Global Project Assignment blocks.

Quartus II Pinout Assignments
The Quartus II Pinout Assignments block passes Quartus® II project pinout
assignments to the Quartus II project generated by the Signal Compiler block.

Only use this block at the top level of your model. This block sets the pinout location
of the Input or Output blocks in your model, which have the specified pin names.

For buses, use a comma to separate the bit pin assignment location from LSB to MSB.

Table 1–14. Quartus II Global Project Assignment Block Parameters

Name Value Description

Assignment Name String Specify the assignment name.

Assignment Value String Specify the assignment value with any optional arguments. Any values or arguments
that contain spaces or other special characters must be enclosed in quotes.

Figure 1–3. Assignments With Quartus II Global Project Assignment Blocks

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–12 Chapter 1: AltLab Library
Resource Usage

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

For example:

Pin Name: abc
Pin Location: Pin_AA, Pin_AB, Pin_AC

assigns abc[0] to Pin_AA, abc[1] to Pin_AB, and abc[2] to Pin_AC

To set the pin assignment for a clock, use the name of the Clock block (for example,
the default is clock) for the pin name. For example:

Pin Name: clock
Pin Location: Pin_AM17

To set the pin assignment for a reset, use the name of the reset signal specified in the
Clock block (for example the default global reset is aclr) for the pin name. For
example:

Pin Name: aclr
Pin Location: Pin_B4

Table 1–15 shows the Quartus II Pinout Assignments block parameters.

Figure 1–4 shows an example with the Quartus II Pinout Assignments block.

Resource Usage
Use the Resource Usage block to check the hardware resources, display timing
information, and highlight the critical paths in your design.

1 You must save your model file and run Signal Compiler before you can use the
Resource Usage block.

The Resource Usage block displays an estimate of the logic, block RAM and DSP
blocks resources required by your design.

Table 1–15. Quartus II Pinout Assignments Block Parameters

Name Value Description

Pin Name String The pin name must be the exact instance name of the Input or Output block from
the IO & Bus library.

Pin Location String Pin location value of the FPGA IO. Refer to the Quartus II Help for the pinout values of a
device.

Figure 1–4. Assignments With Quartus II Pinout Assignments Blocks

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: AltLab Library 1–13
Signal Compiler

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

You can double-click on the Resource Usage block to display more information
about the blocks in your design that generate hardware.

f The information that displays depends on the selected device family. Refer to the
device documentation for more information.

Select the Timing tab and click Highlight path to highlight the critical paths on your
design.

1 When the source and destination in the dialog box are the same and you highlight a
single block, the critical path is because of the internal function or a feedback loop.

Signal Compiler
Use the Signal Compiler block to create and compile a Quartus II project for your
DSP Builder design, and to program your design onto an Altera® FPGA.

1 You must save your model file before you can use the Signal Compiler block.

Table 1–16 shows the controls and parameters for the Signal Compiler block.

Table 1–16. Signal Compiler Block Parameters Settings Page

Name Value Description

Family Stratix®, Stratix GX,
Stratix II, Stratix II GX,
Stratix III, Stratix IV,
Arria® GX, Arria II GX,
Cyclone®, Cyclone II,
Cyclone III

The Altera device family you want to target.

If you use the automated design flow, the Quartus II software
automatically uses the smallest device in which your design fits.

Use Board Block
to Specify Device

On or Off Turn on to get the device information from the development board block.

Compile — Click to compile your design.

Scan JTAG List of ports connected to
the JTAG cable.

The required JTAG cable port.

Program — Click to download your design to the connected development board.

Analyze — Click to analyze the DSP Builder system.

Synthesis — Click to run Quartus II synthesis.

Fitter — Click to run the Quartus II Fitter tool.

Enable SignalTap II On or Off Turn on to enable use of a SignalTap II Logic Analyzer block
in your design. Turn on this setting to add extra logic and memory to
capture signals in hardware in real time.

SignalTap II depth 2, 4, 8, 16, 32, 64, 128,
256, 512, 1k, 2K, 4K, 8K

The required depth for the SignalTap II Logic Analyzer.

SignalTap II clock User defined Specifies the clock to use for capturing data with the SignalTap II feature
from a list of available signals.

Use Base Clock On or Off Turn on if you want to use the base clock for the SignalTap II Logic
Analyzer.

Export — Exports synthesizable HDL to a user-specified directory.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–14 Chapter 1: AltLab Library
SignalTap II Logic Analyzer

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

1 Use a Clock or Clock_Derived block to specify the clock and reset signals.

SignalTap II Logic Analyzer
As programmable logic design complexity increases, system verification in software
becomes time consuming and replicating real-world stimulus is increasingly difficult.
To alleviate these problems, you can supplement traditional system verification with
efficient board-level verification.

DSP Builder supports the SignalTap® II embedded logic analyzer, which lets you
capture signal activity from internal Altera device nodes while the system under test
runs at speed. Use the SignalTap II Logic Analyzer block to set up event
triggers, configure memory, and display captured waveforms.

You use the SignalTap II Node block to select signals to monitor. Samples are
saved to internal embedded system blocks (ESBs) when the logic analyzer is
triggered, and are subsequently streamed off chip via the JTAG port with an Altera
download cable. The captured data is then stored in a text file, displayed as a
waveform in a MATLAB plot, and transferred to the MATLAB workspace as a global
variable.

Table 1–17 shows the SignalTap II Logic Analyzer block parameters.

f For detailed instructions on with the SignalTap II Logic Analyzer and
SignalTap II Node blocks, refer to the Performing SignalTap II Logic Analysis
chapter in the DSP Builder Standard Blockset User Guide section in volume 2 of the DSP
Builder Handbook.

Table 1–17. SignalTap II Logic Analyzer Block Parameters Page

Name Value Description

Scan JTAG List of ports connected
to the JTAG cable.

The JTAG cable port.

Acquire — Click to acquire data from the development board.

SignalTap Nodes List of SignalTap II node
blocks.

Click to select a node and use the Change button to set a trigger condition.

Change Don’t Care, High, Low,
Rising Edge, Falling
Edge, Either Edge

Click the Change button to set the specified logic condition as the trigger
condition for the selected node.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: AltLab Library 1–15
SignalTap II Node

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 1–5 shows an example with the SignalTap II Node block and the
SignalTap II Logic Analyzer block.

SignalTap II Node
Use the SignalTap II Node block with the SignalTap II Logic Analyzer
block to capture signal activity from internal Altera device nodes while the system
under test runs at speed. The SignalTap II Node block specifies the signals (also
called nodes) for which you want to capture activity.

The SignalTap II Node block has no parameters.

For an example of a design with the SignalTap II Logic Node block, refer to the
description of the SignalTap II Logic Analyzer block.

f Refer to the Performing SignalTap II Logic Analysis chapter in the DSP Builder Standard
Blockset User Guide section in volume 2 of the DSP Builder Handbook.

Subsystem Builder
The Subsystem Builder block allows you to build black-box subsystems that
synthesize user-supplied VHDL and simulate non-DSP Builder Simulink blocks. This
alternative to HDL import gives better simulation speed. You can also use this block if
you cannot use HDL import because of unsupported megafunctions or LPMs.

The subsystem connects the inputs and outputs in the specified VHDL to HDL Input
and HDL Output blocks and creates an HDL Entity block, which you can modify if
the clock and reset signals are not correctly identified.

Figure 1–5. Example SignalTap II Analysis Model

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–16 Chapter 1: AltLab Library
Subsystem Builder

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

The Subsystem Builder block automatically maps any input ports named
simulink_clock in the VHDL entity section to the global VHDL clock signal, and
maps any input ports named simulink_sclr in the VHDL entity section to the
global VHDL synchronous clear signal.

The VHDL entity should be formatted according to the following guidelines:

■ The VHDL file should contain a single entity

■ Port direction: in or out

■ Port type: STD_LOGIC or STD_LOGIC_VECTOR

■ Bus size:

■ a(7 DOWNTO 0) is supported (0 is the LSB, and must be 0)

■ a(8 DOWNTO 1) is not supported

■ a(0 TO 7) is not supported

■ Single port declaration per line:

■ a:STD_LOGIC; is supported

■ a,b,c:STD_LOGIC; is not supported

The Verilog HDL module should be formatted according to the following guidelines:

■ The Verilog HDL file should contain a single module

■ Port direction: input or output

■ Bus size:

■ input [7:0] a; is correct (0 is the LSB, and must be 0)

■ input [8:1] a; is not supported

■ input [0:7] a; is not supported

■ Single port declaration per line:

■ input [7:0] a; is correct

■ input [7:0] a,b,c; is not supported

To use the Subsystem Builder block, drag and drop it into your model, click
Select HDL File, specify the file to import, and click Build.

Table 1–18 shows the Subsystem Builder block parameters.

Table 1–18. Subsystem Builder Block Parameters

Name Value Description

Select HDL File User defined Browse for the VHDL or Verilog HDL file to import.

Build SubSystem — Click to build a subsystem for the selected HDL file.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 1: AltLab Library 1–17
TestBench

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 1–6 shows an example with the Subsystem Builder block.

TestBench
The TestBench block controls the generation of a testbench. If the ModelSim
executable (vsim.exe) is available on your path, you can load the testbench into
ModelSim and compare the results with Simulink. Input and output vectors are
generated when you use the Compare against HDL option in the Simple tab or Run
Simulink in the Advanced tab.

You can optionally launch the ModelSim GUI to visually view the ModelSim
simulation.

1 Enabling testbench generation may slow simulation as all input and output values are
stored to a file.

Table 1–19 shows the TestBench block parameters.

Figure 1–6. Example With the Subsystem Builder Block

Table 1–19. TestBench Block Parameters

Name Value Description

Enable Testbench generation On or Off Turn on to enable automatic testbench generation.

Compare against HDL — Click to generate HDL, run Simulink and compare the Simulink simulation
results with ModelSim.

Generate HDL — Click to generate a VHDL testbench from the Simulink model.

Run Simulink — Re-run the Simulink simulation.

Run ModelSim — Load the testbench into the ModelSim simulator.

Launch GUI On or Off Turn on to launch the ModelSim graphical user interface.

Compare Results — Compare the Simulink and ModelSim results.

Mark ModelSim Unknowns
(X’s) as

Error,
Warning,
Info

Display ModelSim unknown values as error, warning, or info messages.
Errors display in red; warnings in blue; info in green.

Maximum number of
mismatches to display

>=0

Default = 10

Specify the maximum number of mismatches to display.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

1–18 Chapter 1: AltLab Library
VCD Sink

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

VCD Sink
The VCD Sink block exports Simulink signals to a third-party waveform viewer.
When you run the simulation of your model, the VCD Sink block generates a value
change dump (.vcd) <VCD Sink block name>.vcd file, which a third-party waveform
viewer can read.

To use the VCD Sink block in your Simulink model, perform the following steps:

1. Add a VCD Sink block to your Simulink model.

2. Connect the simulink signals you want to display in a third-party waveform
viewer to the VCD Sink block.

3. Run the Simulink simulation.

4. Read the VCD file in the third-party waveform viewer.

If you use the ModelSim software to view waveforms, run the script
<VCD Sink block path>_vcd.tcl where the path is the hierarchical path of the block in
the Simulink model. That is: <model name>_<subsystem names>_<block name> each
separated by underscore character.

This Tcl script converts VCD files to ModelSim waveform format (.wlf), starts the
waveform viewer, and displays the signals. If you use any other third-party viewer,
load the VCD file directly into the viewer.

The VCD Sink block does not have any hardware representation and therefore does
not appear in the VHDL RTL representation created by the Signal Compiler block.

Table 1–20 shows the parameters for the VCD Sink block.

Figure 1–7 shows an example of the VCD Sink block

Table 1–20. VCD Sink Block Parameters

Name Value Description

Number of Inputs An integer greater than 0 Specify the number of input ports on the VCD Sink block.

Figure 1–7. Simulink Model With the VCD Sink Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

2. Arithmetic Library

The Arithmetic library contains two’s complement signed arithmetic blocks such as
multipliers and adders. Some blocks have a Use Dedicated Circuitry option, which
implements functionality into dedicated hardware in the Altera FPGA devices (that is,
in the dedicated DSP blocks of these devices).

The Arithmetic library contains the following blocks:

■ Barrel Shifter

■ Bit Level Sum of Products

■ Comparator

■ Counter

■ Differentiator

■ Divider

■ DSP

■ Gain

■ Increment Decrement

■ Integrator

■ Magnitude

■ Multiplier

■ Multiply Accumulate

■ Multiply Add

■ Parallel Adder Subtractor

■ Pipelined Adder

■ Product

■ SOP Tap

■ Square Root

■ Sum of Products

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–2 Chapter 2: Arithmetic Library
Barrel Shifter

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Barrel Shifter
The Barrel Shifter block shifts the input data a by the amount set by the
distance bus. The Barrel Shifter block can shift data to the left (toward the
MSB) or to the right (toward the LSB).

The Barrel Shifter block shift data to the left only, or to the right only, or in the
direction specified by the optional direction input. The shifting operation is an
arithmetic shift and not a logical shift; that is, the shifting operation preserves the
input data sign for a right shift although the input sign is lost for a left shift.

Table 2–1 shows the Barrel Shifter block inputs and outputs.

Table 2–2 shows the Barrel Shifter block parameters.

Table 2–1. Barrel Shifter Block Inputs and Outputs

Signal Direction Description

a Input Data input.

distance Input Distance to shift.

direction Input Direction to shift (0 = shift left, 1 = shift right).

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

r Output Result after shift.

Table 2–2. Barrel Shifter Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The bus number format that you want to use.

[number of bits].[] >= 0 (Parameterizable) Specify the number of bits to the left of the binary point.

[].[number of bits] >= 0 (Parameterizable) Specify the number of bits to the right of the binary point.

This field is zero (0) unless Signed Fractional is selected.

Enable Pipeline On or Off Turn on to pipeline the barrel shifter with a latency of 3. Enabling
pipeline, increases latency and may increase the fMAX of your design.

Infer size of distance
port from input port

On or Off Turn off to specify the bit width of the distance port. When on, the design
uses the full input bus width.

Bit width of distance
port

>= 0 (Parameterizable) Specify the width in bits of the distance port. Defaults to the size of the
input port.

Shift Direction Shift Left, Shift Right,
Use direction input pin

The direction you want to shift the bits or specify the direction with the
direction input.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use asynchronous
Clear Port

On or Off Turn on to enable the asynchronous clear input. This option is available
only when the pipeline option is enabled.

Use Dedicated Circuitry On or Off If you target devices that support DSP blocks, turn on to implement the
functionality in DSP blocks instead of logic elements.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–3
Bit Level Sum of Products

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 2–3 shows the Barrel Shifter block I/O formats.

Figure 2–1 shows an example with the Barrel Shifter block.

Bit Level Sum of Products
The Bit Level Sum of Products block performs a sum of the multiplication of
one-bit inputs by signed integer fixed coefficients.

The Bit Level Sum of Products block uses the equation:

q = a(0)C0 + ... + a(i)Ci + ... + a(n–1)Cn-1

where:

■ q is the output result

■ a(i) is the one-bit input data

■ Ci are the signed integer fixed coefficients

■ n is the number of coefficients in the range one to eight

Table 2–4 on page 2–4 shows the Bit Level Sum of Products block inputs and
outputs.

Table 2–3. Barrel Shifter Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[L2].[R2]

I3[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

I3: in STD_LOGIC

Explicit

Explicit

O O1[L1].[R1] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0 Explicit

Notes to Table 2–3:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–1. Barrel Shifter Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–4 Chapter 2: Arithmetic Library
Bit Level Sum of Products

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–5 shows the Bit Level Sum of Products block parameters.

Table 2–6 shows the Bit Level Sum of Products block I/O formats.

Table 2–4. Bit Level Sum of Products Block Inputs and Outputs

Signal Direction Description

a(0) to a(n–1) Input 1 to 8 ports corresponding to the signed integer fixed coefficient
values specified in the block parameters.

ena Input Optional clock enable.

sclr Input Optional synchronous clear.

q Output Result.

Table 2–5. Bit Level Sum of Products Block Parameters

Name Value Description

Number of Coefficients 1–8 The number of coefficients.

Coefficient Number of
Bits

>= 1–51
(Parameterizable)

Specify the bit width as a signed integer. The bit width must be capable of
being expressed as a double in MATLAB.

Signed Integer
Fixed-Coefficient
Values

User Defined
(Parameterizable)

Specify the coefficient values for each port as a sequence of signed integers.
the coefficient values must be capable of being expressed as a double in
MATLAB. For example: [-21 2 13 5]

Register Inputs On or Off When on, a register is added on the input signal.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous
Clear Port

On or Off Turn on to use the synchronous clear input (sclr).

Table 2–6. Bit Level Sum of Products Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[1].[0]

...

Ii[1].[0]

...

In[1].[0]

I(n+1)[1]

I(n+2)[1]

I1: in STD_LOGIC

...

Ii: in STD_LOGIC

...

In: in STD_LOGIC

I(n+1): in STD_LOGIC

I(n+2): in STD_LOGIC

Explicit

O O1[L0].[0] O1: out STD_LOGIC_VECTOR({L0 - 1} DOWNTO 0 Explicit

Notes to Table 2–6:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–5
Comparator

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–2 shows an example with the Bit Level Sum of Products block.

Comparator
The Comparator block compares two Simulink signals and returns a single bit. The
Comparator block implicitly understands the input data type (for example, signed
binary or unsigned integer) and produces a single-bit output.

Table 2–7 shows the Comparator block inputs and outputs.

Table 2–8 shows the Comparator block parameters.

Table 2–9 shows the Comparator block I/O formats.

Figure 2–2. Bit Level Sum of Products Block Example

Table 2–7. Comparator Block Inputs and Outputs

Signal Direction Description

a Input Operand a.

b Input Operand b.

<unnamed> Output Result.

Table 2–8. Comparator Block Parameters

Name Value Description

Operator a == b,
a ~= b,
a < b,
a <= b,
a >= b,
a > b

The operation you want to perform on the two buses.

Table 2–9. Comparator Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[L2].[R2]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I1: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

Implicit

Implicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–6 Chapter 2: Arithmetic Library
Counter

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 2–3 shows an example with the Comparator block.

Counter
The Counter block is an up/down counter. For each cycle, the counter increments or
decrements its output by the smallest amount that DSP Builder can represent with the
selected bus type.

Table 2–10 shows the Counter block inputs and outputs.

Table 2–11 shows the Counter block parameters.

O O1[1] O1: out STD_LOGIC Implicit

Notes to Table 2–9:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 2–9. Comparator Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 2–3. Comparator Block Example

Table 2–10. Counter Block Inputs and Outputs

Signal Direction Description

data Input Optional parallel data input.

sload Input Optional synchronous load signal.

sset Input Optional synchronous set port. (Loads the specified constant value into the counter.)

updown Input Optional direction (1 = up; 0 = down).

clk_ena Input Optional clock enable. (Disables counting and sload, sset, sclr signals.)

ena Input Optional counter enable. (Disables counting but not sload, sset, and sclr signals.)

sclr Input Optional synchronous clear. (Loads zero into the counter.)

q Output Result.

Table 2–11. Counter Block Parameters (Part 1 of 2)

Name Value Description

Bus Type Signed Integer, Unsigned
Integer, Signed Fractional

The bus number format that you want to use for the counter.

[number of bits].[] >= 0 (Parameterizable) Specify the number of bits to the left of the binary point.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–7
Counter

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 2–12 shows the Counter block I/O formats.

[].[number of bits] >= 0 (Parameterizable) Specify the number of bits to the right of the binary point. This field
is ignored unless Signed Fractional selected.

Use Modulo On or Off Turn on to enable the Count Modulo parameter. This option is not
available for bit widths greater than 31.

Count Modulo User defined
(Parameterizable)

Specify the maximum count plus 1. This represents the number of
unique states in the counter’s cycle.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specify the clock signal name.

Counter Direction Increment, Decrement, Use
Direction Port (updown)

The direction you want to count or specify the direction with the
direction input.

Use Synchronous
Load Ports

On or Off Turn on to use the synchronous load inputs (data, sload).

Use Synchronous Set
Port

On or Off Turn on to use the synchronous set input (sset). This option is not
available for bit widths greater than 31.

Set Value User defined Specify the constant value loaded when the design uses the sset
input. This value must be less than the Count Modulo value (if used).

Use Clock Enable Port On or Off Turn on to use the clock enable input (clk_ena).

Use Counter Enable
Port

On or Off Turn on to use the counter enable input (ena).

Use Synchronous
Clear Port

On or Off Turn on to use the synchronous clear input (sclr).

Table 2–11. Counter Block Parameters (Part 2 of 2)

Name Value Description

Table 2–12. Counter Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[R]]

I2[1]

I3[1]

I4[1]

I5[1]

I6[1]

I1: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

I4: in STD_LOGIC

I5: in STD_LOGIC

I6: in STD_LOGIC

Explicit

O O1[L].[R] O1: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0) Explicit

Notes to Table 2–12:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–8 Chapter 2: Arithmetic Library
Differentiator

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Differentiator
The Differentiator block is a signed integer differentiator with the equation:

q(n) = d(n) - d(n-D)

where D is the delay parameter.

Use this block for DSP functions such as CIC filters.

The equation 1-z-D describes the transfer function that the Differentiator block
implements.

Table 2–13 shows the Differentiator block inputs and outputs.

Table 2–14 shows the Differentiator block parameters.

Table 2–15 shows the Differentiator block I/O formats.

Table 2–13. Differentiator Block Inputs and Outputs

Signal Direction Description

d Input Data input.

ena Input Optional clock enable.

sclr Input Optional synchronous clear.

q Output Result.

Table 2–14. Differentiator Block Parameters

Name Value Description

Number of Bits >= 1

(Parameterizable)

Specify the number of bits.

Depth Any positive number
(Parameterizable)

Specify the depth of the differentiator register.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous Clear Port On or Off Turn on to use the synchronous clear input (sclr).

Table 2–15. Differentiator Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[0]

I2[1]

I3[1]

I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Explicit

O O1[L1].[0] O1: out STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0) Explicit

Notes to Table 2–15:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–9
Divider

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–4 shows an example with the Differentiator block.

Divider
The Divider block takes a numerator and a denominator and returns the quotient
and a remainder with the equation:

a = b × q + r.

q and r are undefined if b is zero.

1 Dividing a maximally negative number by a minimally negative one (-1 if using
signed integers), outputs a truncated answer.

The numerator and denominator inputs can have different widths but convert to the
specified bit width.

Table 2–16 shows the Divider block inputs and outputs.

Table 2–17 shows the Divider block parameters.

Figure 2–4. Differentiator Block Example

Table 2–16. Divider Block Inputs and Outputs

Signal Direction Description

a Input Numerator.

b Input Denominator.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

q Output Quotient.

r Output Remainder.

Table 2–17. Divider Block Parameters (Part 1 of 2)

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The bus number format that you want to use for the divider.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–10 Chapter 2: Arithmetic Library
DSP

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–18 shows the Divider block I/O formats.

Figure 2–5 shows an example with the Divider block.

DSP
The DSP block consists of one to four multipliers feeding a parallel adder. It is
equivalent to the Multiply Add block but exposes extra features (including
chaining) that are available only on Stratix IV and Stratix III DSP blocks.

The DSP block accepts one to four pairs of multiplier inputs a and b. The operands in
each pair are multiplied together. The second and fourth multiplier outputs can
optionally be added or subtracted from the total.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option applies
only to signed fractional formats.

Number of Pipeline
Stages

0 to number of bits
(Parameterizable)

When non-zero, adds pipeline stages to increase the data throughput. The clock
enable and asynchronous clear ports are available only if the block is registered
(that is, if the number of pipeline stages is greater than or equal to 1).

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port

On or Off Turn on to use the asynchronous clear input (aclr).

Table 2–17. Divider Block Parameters (Part 2 of 2)

Name Value Description

Table 2–18. Divider Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[R]

I2[L].[R]

I3[1]

I4[1]

I1: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

I3: in STD_LOGIC

I4: in STD_LOGIC

Explicit

Explicit

O O1[L].[R]

O2[L].[R]

O1: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

O2: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

Explicit

Explicit

Notes to Table 2–18:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–5. Divider Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–11
DSP

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

The following equation expresses the block function:

res = a0×b0 ± a1×b1 [+ a2×b2 [± a3×b3]] [+ chainin]

If there are four multipliers and the input bit widths are both less than or equal to 18,
you can optionally enable a chainout adder output (chainout) instead of the normal
output (res).

If there are four multipliers and the input bit widths are both equal to 18, you can
enable a chainout adder input (chainin). Only drive this chainin port from the
chainout output of a DSP block at the preceding stage.

Other features include:

■ Parameterizable input and output data widths

■ Optional asynchronous clear and clock enable inputs

■ Optional accumulator synchronous load input

■ Optional shiftin instead of an a input

■ Optional shift out from the a input of the last multiplier

■ Optional saturation overflow outputs

■ Optional registers to pipeline the adder and chainout adder

■ Optional accumulator mode

f For more information about multiplier or adder operations, refer to the altmult_add
Megafunction User Guide.

Table 2–19 shows the DSP block inputs and outputs.

Table 2–19. DSP Block Inputs and Outputs

Signal Direction Description

a0—a3 Input Operand a.

b0—b3 Input Operand b.

ena Input Optional clock enable.

chainin Input Optional input bus from the preceding stage. (1)

zero_chainout Input Optional reset to zero for the chainout value.

aclr Input Optional asynchronous clear.

accum_sload Input Optional accumulator synchronous load input.

res Output Result.

shiftouta Output Optional shift out from A input of last multiplier.

overflow Output Optional saturation overflow output.

chainout Output Optional chainout output. (Replaces the res output when
enabled.)

Note to Table 2–19:

(1) Use the chainin port to feed the adder result (chainout) from a previous stage. Do not use for any other
signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–12 Chapter 2: Arithmetic Library
DSP

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 2–6 shows a basic multiplier or adder with two inputs where the product is
subtracted.

Figure 2–7 shows a 4-input multiplier or adder with shiftin inputs, registered outputs,
rounding and saturation enabled, a chainout adder and saturation overflow outputs.

Figure 2–6. Basic 2-Input Multiplier or Adder

Figure 2–7. 4-Input Multiplier or Adder with Chainout Adder

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–13
DSP

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 2–20 shows the DSP block parameters.

Table 2–20. DSP Block Parameters (Part 1 of 2)

Name Value Description

Number of Multipliers 1, 2, 3, 4 The number of multipliers you want to feed the adder.

Bus Type Signed Integer,
Unsigned Integer,
Signed Fractional

The number format you want to use for the bus.

a Inputs [number of bits].[] >= 0
(Parameterizable)

Specify the number of data a input bits to the left of the binary point,
including the sign bit.

a Inputs [].[number of bits] >= 0
(Parameterizable)

Specify the number of data a input bits to the right of the binary point.
This option applies only to signed fractional formats.

b Inputs [number of bits].[] >= 0
(Parameterizable)

Specify the number of data b input bits to the left of the binary point,
including the sign bit.

b Inputs [].[number of bits] >= 0
(Parameterizable)

Specify the number of data b input bits to the right of the binary point.
This option applies only to signed fractional formats.

Connect Multiplier Input a
to shiftin

On or Off Turn on to connect the multiplier input a to shiftin from the previous
multiplier. The design uses separate inputs for each multiplier.)

Use Shiftout from a Input
of Last Multiplier

On or Off Turn on to create a shiftouta output from the a input of the last
multiplier.

Output Operation on First
Multiplier Pair

ADD, SUB Add or subtract the product of the first multiplier pair.

Output Operation on
Second Multiplier Pair

ADD, SUB Add or subtract the product of the second multiplier pair.

Enable Accumulator Mode On or Off Turn on to enable accumulator mode. When this option is on, you can
select the accumulator direction and use the optional accum_sload
input.

Accumulator Direction ADD, SUB Add or subtract values in the accumulator.

Use Accumulator
Synchronous Load Input

On or Off Turn on to use the optional accum_sload input.

Use Chainout Adder Input
(chainin)

On or Off Turn on to use the chainin input for the chainout adder to add the
result from a previous stage. This option is available only if the input bit
widths are less than or equal to 18 and the number of multipliers is 4.

Use Chainout Adder Output
(chainout)

On or Off Turn on to use the chainout output from the chainout adder output
instead of the res output. This option is available only if the input bit
widths are less than or equal to 18 and the number of multipliers is 4.

Use Zero Chainout Input On or Off Turn on to use the zero_chainout input, which dynamically sets the
chainout value to zero.

Full Resolution for Output
Result

On or Off When on, the multiplier output bit width is full resolution. When off, you
can specify a different output width. Rounding and saturation are
available for certain input/output type combinations.

Output [number of bits].[] >= 0
(Parameterizable)

Specify the number of data output bits to the left of the binary point,
including the sign bit.

Output [].[number of bits] >= 0
(Parameterizable)

Specify the number of data output bits to the right of the binary point.
This option applies only to signed fractional formats.

Output Rounding Operation
Type

None (truncate),
Nearest Integer,
Nearest Even

You can disable rounding (truncate), round to the nearest integer or
round to the nearest even.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–14 Chapter 2: Arithmetic Library
DSP

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

1 Compilation in the Quartus II software requires that the input bit widths are 18 bits
when you use the chainout adder input, output rounding with an output LSB in the
range 6 to 21, or output saturation with an output MSB in the range 28 to 43.

Table 2–21 shows the DSP block I/O formats.

Output Saturation
Operation Type

None (wrap),
Symmetric,
Asymmetric

You can disable (wrap), or enable saturation. Symmetric saturation
specifies that the absolute value of the maximum negative number is
equal to the maximum positive number. Asymmetric saturation specifies
that the absolute value of the maximum negative number is 1 greater than
the maximum positive number. Do not enable rounding unless you have
enabled saturation.

Use Output Overflow Port On or Off Turn on to use the overflow output for the saturation unit.

Register Data Inputs to the
Multiplier(s)

On or Off Turn on to create registers at the data inputs to the multiplier. (Always on
if in shiftin mode.)

Register Output of the
Multiplier

On or Off Turn on to create a register at the data output from the multiplier.

Register Output of the
Adder

On or Off Turn on to create a register at the output of the adder. (Always on if
accumulator mode is enabled.)

Register Chainout Adder On or Off Turn on to create a register at the output of the chainout adder (if it is
used).

Register Shiftout On or Off Registers the shiftouta output (if it is used).

Use Enable Port On or Off Turn on to use the clock enable input (ena) if using registers.

Use User Asynchronous
Clear Port

On or Off Turn on to use the asynchronous clear input (aclr) if using registers.

Table 2–20. DSP Block Parameters (Part 2 of 2)

Name Value Description

Table 2–21. DSP Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL
Type
(4)

I I1[L1].[R1]

….

In[L1].[R1]

I(n+1)[1]

I(n+2)[1]

where 3 < n < 9

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

….

In: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I(n+1): in STD_LOGIC

I(n+2): in STD_LOGIC

where 3 < n < 9

Explicit

...

Explicit

O O12 x [L1]+ ceil(log2(n)).2 x

[R1]

O1: out STD_LOGIC_VECTOR({(2 x L1) + ceil(log2(n)) + (2 x R1) - 1} DOWNTO 0) Implicit

Notes to Table 2–21:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–15
Gain

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–8 shows an example of a basic low-pass filter with two DSP blocks.

Gain
The Gain block generates its output by multiplying the signal input by a specified
gain factor. You must enter the gain as a numeric value in the Gain block parameter
field. The gain factor must be a scalar.

1 The Simulink software also provides a Gain block. If you use the Simulink Gain
block in your model, you can use it only for simulation; Signal Compiler cannot
convert it to HDL.

Table 2–22 shows the Gain block inputs and outputs.

Figure 2–8. DSP Block Example

Table 2–22. Gain Block Inputs and Outputs

Signal Direction Description

d Input Data input.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

<unnamed> Output Result.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–16 Chapter 2: Arithmetic Library
Gain

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–23 shows the Gain block parameters.

Table 2–24 shows the Gain block I/O formats.

Table 2–23. Gain Block Parameters

Name Value Description

Gain Value User Defined Specify the gain value you want to use as a decimal number (or an
expression that evaluates to a decimal number). The gain is masked to
the number format (bus type) you select.

Map Gain Value to Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The bus number format you want to use for the gain value.

[Gain value number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point, including the
sign bit.

[].[Gain value number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option
applies only to signed fractional formats.

Number of Pipeline Stages >= 0
(Parameterizable)

The number of pipeline delay stages. The Clock Phase Selection and
Optional Ports options are available only if the block is registered (that
is, if the number of pipeline stages is greater than or equal to 1).

Clock Phase Selection User Defined Specify the phase selection with a binary string, where a 1 indicates the
phase in which the block is enabled. For example:

1—The block is always enabled and captures all data passing
through the block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the
second data of (sampled at the rate 1) passes through. That is, the
data on phases 1, 3, and 4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

Use LPM On or Off This parameter is for synthesis.

When on, the Gain block is mapped to the LPM_MULT library of
parameterized modules (LPM) function and the VHDL synthesis tool
uses the Altera LPM_MULT implementation.

Table 2–24. Gain Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type

I I1[L1].[R1]

I2[1]

I3[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Implicit (4)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–17
Increment Decrement

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–9 shows an example with the Gain block.

Increment Decrement
The Increment Decrement block increments or decrements a value in time. The
output is a signed integer, unsigned integer, or signed binary fractional number. For
all number formats, the counting sequence increases or decreases by the smallest
representable value; for integer types, the value always changes by 1.

Table 2–25 shows the Increment Decrement block inputs and outputs.

Table 2–26 shows the Increment Decrement block parameters.

O O1[L1 + LK].2*max(R1,RK)] (5) O1: out STD_LOGIC_VECTOR({L1+LK+2*max(R1,RK)-1} DOWNTO 0) Implicit

Notes to Table 2–24:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.
(5) K is the gain constant with the format K[LK].[RK]

Table 2–24. Gain Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type

Figure 2–9. Gain Block Example

Table 2–25. Increment Decrement Block Inputs and Outputs

Signal Direction Description

ena Input Optional clock enable.

sclr Input Optional synchronous clear.

c Output Result.

Table 2–26. Increment Decrement Block Parameters (Part 1 of 2)

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format you want to use for the bus.

<number of bits>.[] >= 0
(Parameterizable)

Select the number of bits to the left of the binary point, including the sign bit.

[].<number of bits> >= 0
(Parameterizable)

Select the number of bits to the right of the binary point. This option applies only
to signed fractional formats.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–18 Chapter 2: Arithmetic Library
Increment Decrement

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–27 shows the Increment Decrement block I/O formats.

Figure 2–10 shows an example with the Increment Decrement block.

Direction Increment,
Decrement

Count up or down.

Starting Value User Defined
(Parameterizable)

Enter the value with which to begin counting. This value is the initial output value
of the block after a reset.

Clock Phase
Selection

User Defined Specify the phase selection with a binary string, where a 1 indicates the phase in
which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).

10—The block is enabled every other phase and every other data (sampled at
the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second data
of (sampled at the rate 1) passes through. That is, the data on phases 1, 3, and
4 do not pass through the block.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specify the clock signal name.

Use Enable Port On or Off Turn on if you want to use the clock enable input (ena).

Use Synchronous
Clear Port

On or Off Turn on if you want to use the synchronous clear input (sclr).

Table 2–26. Increment Decrement Block Parameters (Part 2 of 2)

Name Value Description

Table 2–27. Increment Decrement Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[1]

I2[1]

I1: in STD_LOGIC

I2: in STD_LOGIC

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 2–27:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–10. Increment Decrement Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–19
Integrator

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Integrator
The Integrator block is a signed integer integrator with the equation:

q(n+D) = q(n) + d(n)

where D is the delay parameter.

Use this block for DSP functions such as CIC filters.

The equation z-D/(1-z-D) describes the transfer function that the Integrator block
implements. This behavior of this transfer function is slightly different from the more
typical 1/(1-z-D).

Figure 2–11 shows the block diagrams for these functions.

The magnitude response of these two functions is the same although their phase
response is different. For the typical integrator function, 1/(1-z-D), there is an impulse
on the output at time = 0, whereas the output delays by a factor of D for the z-D/(1-z-D)
function that the DSP Builder integrator uses.

This behavior effectively registers the output and gives a better Fmax performance
compared to the typical function where if you chained a row of n integrators together,
it is equivalent to n unregistered adder blocks in a row, and is slow in hardware.

Table 2–28 shows the Integrator block inputs and outputs.

Table 2–29 shows the Integrator block parameters.

Figure 2–11. Integrator Transfer Functions

Table 2–28. Integrator Block Inputs and Outputs

Signal Direction Description

d Input Data input.

ena Input Optional clock enable.

sclr Input Optional synchronous clear.

q Output Result.

Table 2–29. Integrator Block Parameters

Name Value Description

Number of Bits >= 1
(Parameterizable)

Specify the number of bits.

Depth A positive number
(Parameterizable)

Specify the depth of the integrator register.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–20 Chapter 2: Arithmetic Library
Magnitude

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–30 shows the Integrator block I/O formats.

Figure 2–12 shows an example of the Integrator Block.

Magnitude
The scalar Magnitude block returns the absolute value of the incoming signed binary
fractional bus.

The Magnitude block has no parameters.

Table 2–31 shows the Magnitude block I/O formats.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous Clear Port On or Off Turn on to use the synchronous clear input (sclr).

Table 2–29. Integrator Block Parameters

Name Value Description

Table 2–30. Integrator Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[0]

I2[1]

I3[1]

I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)

I2: STD_LOGIC

I3: STD_LOGIC

Explicit

O O1[L1].[0] O1: out STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0) Explicit

Notes to Table 2–30:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–12. Integrator Block Design Example

Table 2–31. Magnitude Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–21
Multiplier

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–13 shows an example with the Magnitude block.

Multiplier
The Multiplier block supports two scalar inputs (no multidimensional Simulink
signals). Operand a is multiplied by operand b and the result r output as the following
equation shows:

r = a × b

The differences between the Multiplier block and the Product block are:

■ The Product block supports clock phase selection while the Multiplier block
does not.

■ The Product block uses implicit input port data widths that it inherits from the
signals’ sources, whereas the Multiplier block uses explicit input port data
widths that you must specify as parameters.

■ The Product block allows you to use the LPM multiplier megafunction, whereas
the Multiplier block always uses the LPM.

Table 2–32 shows the Multiplier block inputs and outputs.

O O1[L1].[R1] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Notes to Table 2–31:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 2–31. Magnitude Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 2–13. Magnitude Block Example

Table 2–32. Multiplier Block Inputs and Outputs

Signal Direction Description

a Input Operand a.

b Input Operand b.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

r Output Result r.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–22 Chapter 2: Arithmetic Library
Multiplier

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–33 lists the parameters for the Multiplier block.

Table 2–34 shows the Multiplier block I/O formats.

Table 2–33. Multiplier Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The bus number format to use for the Multiplier block.

Input [number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point for input a (or
both input signals if set to have the same width).

Input [].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point for input a (or
both input signals if set to have the same width). This option applies only
to signed fractional formats.

Number of Pipeline Stages >= 0
(Parameterizable)

The number of pipeline stages. The ena and aclr ports are available
only if the block is registered (that is, if the number of pipeline stages is
greater than or equal to 1).

Both Inputs Have Same Bit
Width

On or Off Turn on if you want input a and input b to have the same bit width. When
off, additional fields are available to specify the number of bits to the left
and right of the binary point for input b.

Input b [number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point for input b.

Input b [].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point for input b. This
option applies only to signed fractional formats.

Full Resolution for Output
Result

On or Off When on, the multiplier output bit width is full resolution. When off, you
can specify the number of bits for the output.

Output MSB >= 0
(Parameterizable)

Specify the number of MSBs in the output for an integer bus.

Output LSB >= 0
(Parameterizable)

Specify the number of LSBs in the output for an integer bus.

Output [number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point for the output r.
This option applies only to signed fractional formats.

Output [].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point for the output r.
This option applies only to signed fractional formats.

Use Dedicated Circuitry AUTO, YES, NO Use dedicated multiplier circuitry (if supported by your target device). A
value of AUTO means that the Quartus II software uses the dedicated
multiplier circuitry based on the width of the multiplier.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear
Port

On or Off Turn on to use the synchronous clear input (aclr).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–23
Multiply Accumulate

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–14 shows an example with the Multiplier block.

f For more information about multiplier operations, refer to the Multiplier Megafunction
User Guide.

Multiply Accumulate
The Multiply Accumulate block consists of a single multiplier feeding an
accumulator, which performs the calculation y += a × b.

The input is signed integer, unsigned integer, or signed binary fractional formats.

Table 2–35 shows the Multiply Accumulate block inputs and outputs.

Table 2–34. Multiplier Block Input/Output Ports (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[R]

I2[L].[R]

I3[1]

I4[1]

I1: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

I3: STD_LOGIC

I4: STD_LOGIC

Explicit

Explicit

O O1[Lo].[Ro]

O2[Lo].[Ro]

O1: out STD_LOGIC_VECTOR({Lo + Ro - 1} DOWNTO 0)

O2: out STD_LOGIC_VECTOR({Lo + Ro - 1} DOWNTO 0)

Explicit

Explicit

Notes to Table 2–34:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–14. Multiplier Block Example

Table 2–35. Multiply Accumulate Block Inputs and Outputs (Part 1 of 2)

Signal Direction Description

a Input Operand A.

b Input Operand B.

sload Input Synchronous load signal.

addsub Input Optional accumulator direction (1= add, 0 = subtract).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–24 Chapter 2: Arithmetic Library
Multiply Accumulate

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–36 shows the Multiply Accumulate block parameters.

Table 2–37 shows the Multiply Accumulate block I/O formats.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

y Output Result.

Table 2–35. Multiply Accumulate Block Inputs and Outputs (Part 2 of 2)

Signal Direction Description

Table 2–36. Multiply Accumulate Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format you want to use for the bus.

Input A [number of bits].[] >= 0
(Parameterizable)

Specify the number of data input bits to the left of the binary point for
operand A, including the sign bit.

Input A [].[number of bits] >= 0
(Parameterizable)

Specify the number of data input bits to the right of the binary point for
operand A. This option applies only to signed fractional formats.

Input B [number of bits].[] >= 0
(Parameterizable)

Specify the number of data input bits to the left of the binary point for
operand B, including the sign bit.

Input B [].[number of bits] >= 0
(Parameterizable)

Specify the number of data input bits to the right of the binary point for
operand B. This option applies only to signed fractional formats.

Output Result number of
bits

>= 0
(Parameterizable)

Specify the number of output bits.

Pipeline Register None, Data Inputs,
Multiplier Output,
Data Inputs and
Multiplier

Add pipelining to the data inputs, multiplier output, both, or neither.

Use Dedicated Multiplier
Circuitry

AUTO, YES, NO Select AUTO to automatically implement the functionality in DSP blocks.
Select YES or NO to explicitly enable or disable this option. If your target
device does not support DSP blocks or you select NO, the functionality
implements in logic elements.

Accumulator Direction Add, Subtract Add or subtract the result of the multiplier.

Use Add/Subtract Port On or Off Turn on to use the direction input (addsub).

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear
Port

On or Off Turn on to use the asynchronous clear input (aclr).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–25
Multiply Add

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

The sload input controls the accumulator feedback path. If the accumulator is
adding and sload is high, the multiplier output is loaded into the accumulator. If the
accumulator is subtracting, the opposite (negative value) of the multiplier output is
loaded into the accumulator.

Figure 2–15 shows an example with the Multiply Accumulate block.

Multiply Add
The Multiply Add block consists of two, three, or four multiplier pairs feeding a
parallel adder. The operands in each pair are multiplied together and the second and
fourth multiplier outputs can optionally be added to or subtracted from the total.

The following equation expresses the block function:

y = a0×b0 ± a1×b1 [+ a2×b2 [± a3×b3]]]

The operand b inputs can optionally be hidden and instead have constant values
assigned in the Block Parameters dialog box.

The input is a signed integer, unsigned integer, or signed binary fractional formats.

Table 2–38 shows the Multiply Add block inputs and outputs.

Table 2–37. Multiply Accumulate Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[L2].[R2]

I3[1]

I4[1]

I5[1]

I6[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

I3: in STD_LOGIC

I4: in STD_LOGIC

I5: in STD_LOGIC

I6: in STD_LOGIC

Explicit

Explicit

O O1[LO].[RO] O1: out STD_LOGIC_VECTOR({L0 + R0 - 1} DOWNTO 0) Explicit

Notes to Table 2–37:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–15. Multiply Accumulate Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–26 Chapter 2: Arithmetic Library
Multiply Add

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–39 shows the Multiply Add block parameters.

Table 2–40 shows the Multiply Add block I/O formats.

Table 2–38. Multiply Add Block Inputs and Outputs

Signal Direction Description

a0—a3 Input Operand a.

b0—b3 Input Operand b.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear

y Output Result.

Table 2–39. Multiply Add Block Parameters

Name Value Description

Number of Multipliers 2, 3, 4 The number multipliers you want to feed the adder.

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format you want to use for the bus.

Input [number of bits].[] >= 0

(Parameterizable)

Specify the number of data input bits to the left of the binary point,
including the sign bit.

Input [].[number of bits] >= 0

(Parameterizable)

Specify the number of data input bits to the right of the binary
point. This option applies only to signed fractional formats.

Adder Mode Add Add, Add Sub,
Sub Add, Sub Sub

The operation mode of the adder.

■ Add Add: Adds the products of each multiplier.

■ Add Sub: Adds the second product and subtracts the fourth.

■ Sub Add: Subtracts the second product and adds the fourth.

■ Sub Sub: Subtracts the second and fourth products.

Pipeline Register No Register, Inputs Only,
Multiplier Only, Adder Only,
Inputs and Multiplier,
Inputs and Adder,
Multiplier and Adder,
Inputs Multiplier and Adder

The elements to pipeline. The clock enable and asynchronous clear
ports are available only if the block is registered.

Use Dedicated Circuitry On or Off If you target devices that support DSP blocks, turn on to
implement the functionality in DSP blocks instead of with logic
elements. This option is not available if you select the Unsigned
Integer bus type.

One Input is Constant On or Off Turn on to assign the operand b inputs to constant values. Use this
option with the Constant Values parameter but is not available
when you enable Use Dedicated Circuitry.

Constant Values User Defined Type the constant values in this box as a MATLAB array. This
option is available only if One Input is Constant is on.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear
Port

On or Off Turn on to use the asynchronous clear input (aclr).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–27
Parallel Adder Subtractor

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–16 shows an example with the Multiply Add block.

Parallel Adder Subtractor
The Parallel Adder Subtractor block takes any input data type. If the input
widths are not the same, Signal Compiler sign extends the buses so that they
match the largest input width. The generated VHDL has an optimized, balanced
adder tree.

Table 2–41 shows the Parallel Adder Subtractor block inputs and outputs.

Table 2–40. Multiply Add Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL
Type
(4)

I I1[L1].[R1]

….

Ii[L1].[R1]

…

In[L1].[R1]

I(n+1)[1]

I(n+2)[1]

where 3 < n < 9

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

…

Ii: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

….

In: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I(n+1): in STD_LOGIC

I(n+2): in STD_LOGIC

where 3 < n < 9

Explicit

...

Explicit

...

Explicit

O O12 x [L1]+ ceil(log2(n)).2 x

[R1]

O1: out STD_LOGIC_VECTOR({(2 x L1) + ceil(log2(n)) + (2 x R1) - 1} DOWNTO 0) Implicit

Notes to Table 2–40:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–16. Multiply Add Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–28 Chapter 2: Arithmetic Library
Parallel Adder Subtractor

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–42 shows the Parallel Adder Subtractor block parameters.

Table 2–43 shows the Parallel Adder Subtractor block I/O formats.

Table 2–41. Parallel Adder Subtractor Block Inputs and Outputs

Signal Direction Description

data0–dataN Input Operands.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear

r Output Result.

Table 2–42. Parallel Adder Subtractor Block Parameters

Name Value Description

Number of Inputs >= 2 The number of inputs you want to use.

Add (+) Sub (–) User Defined Specify addition or subtraction operation for each port with the operators + and –.
For example + – + implements a – b + c for 3 ports. However, two consecutive
subtractions, (– –) are not legal. Missing operators are assumed to be +.

Enable Pipeline On or Off When on, DSP Bu idler registers the output from each stage in the adder tree,
resulting in a pipeline length that is equal to ceil(log2(number of
inputs)).

Clock Phase Selection User Defined When you enable a pipeline, you can indicate the phase selection with a binary
string, where a 1 indicates the phase in which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the block
(sampled at the rate 1).

10—The block is enabled every other phase and every other data (sampled at
the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second data
of (sampled at the rate 1) passes through. That is, the data on phases 1, 3, and
4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port

On or Off Turn on to use the asynchronous clear input (aclr).

Table 2–43. Parallel Adder Subtractor Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

….

Ii[Li].[LiI]

…

In[Ln].[Rn]

I(n+1)[1]

I(n+2)[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

…

Ii: in STD_LOGIC_VECTOR({Li + Ri - 1} DOWNTO 0)

….

In: in STD_LOGIC_VECTOR({Ln + Rn - 1} DOWNTO 0)

I(n+1): in STD_LOGIC

I(n+2): in STD_LOGIC

Implicit

...

Implicit

...

Implicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–29
Pipelined Adder

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–17 shows an example with the Parallel Adder Subtractor block.

Pipelined Adder
The Pipelined Adder block is a pipelined adder and subtractor that performs the
following calculation:

r = a + b + cin (when addsub = 1)

r = a - b + cin -1 (when addsub = 0)

Use the optional ovl port an overflow with signed arithmetic or as a carry out with
unsigned arithmetic. For unsigned subtraction, the output is 1 when no overflow
occurs.

Table 2–44 shows the Pipelined Adder block inputs and outputs.

O O1[max(Li) +

ceil(log2(n))].[max(Ri)]

O1: out STD_LOGIC_VECTOR({max(Li) + ceil(log2(n)) + max(Ri) - 1} DOWNTO 0) Implicit

Notes to Table 2–43:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 2–43. Parallel Adder Subtractor Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 2–17. Parallel Adder Subtractor Block Example

Table 2–44. Pipelined Adder Block Inputs and Outputs

Signal Direction Description

a Input Operand a.

b Input Operand b.

cin Input Optional carry in.

addsub Input Optional control (1= add, 0 = subtract).

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

r Output Result r.

ovl Output Optional overflow (signed) or carry out (unsigned).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–30 Chapter 2: Arithmetic Library
Pipelined Adder

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–45 shows the Pipelined Adder block parameters.

Table 2–46 shows the Pipelined Adder block I/O formats.

Figure 2–18 shows an example with the Pipelined Adder block.

Table 2–45. Pipelined Adder Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The bus number format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option applies
only to signed fractional formats.

Number of Pipeline
Stages

>= 0
(Parameterizable)

The number of pipeline stages.

Direction ADD, SUB Use the block as an adder or subtractor.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port

On or Off Turn on to use the asynchronous clear input (aclr).

Use Carry In Port On or Off Turn on to use the carry in input (cin).

Use Overflow /
Carry Out Port

On or Off Turn on to use the overflow or carry out output (ovl).

Use Direction Port On or Off Turn on to use the direction input (addsub). 1= add, 0 = subtract.

Table 2–46. Pipelined Adder Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[R]

I2[L].[R]

I3[1]

I4[1]

I5[1]

I6[1]

I1: in STD_LOGIC_VECTOR({L + R} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L + R} DOWNTO 0)

I3: in STD_LOGIC

I4: in STD_LOGIC

I5: in STD_LOGIC

I6: in STD_LOGIC

Explicit

Explicit

O O1[L].[R]

O2[1]

O1: out STD_LOGIC_VECTOR({L + R} DOWNTO 0)

O2: out STD_LOGIC

Explicit

Notes to Table 2–46:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–31
Product

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Product
The Product block supports two scalar inputs (no multidimensional Simulink
signals). Operand a is multiplied by operand b and the result output on r as the
following equation shows:

r = a × b

The differences between the Product block and the Multiplier block are:

■ The Product block supports clock phase selection while the Multiplier block
does not.

■ The Product block uses implicit input port data widths that are inherited from
the signals’ sources, whereas the Multiplier block uses explicit input port data
widths that you must specify as parameters.

■ The Product block allows you to use the LPM multiplier megafunction, whereas
the Multiplier block always uses the LPM.

1 The Simulink software also provides a Product block. If you use the Simulink
Product block in your model, you can use it only for simulation. Signal
Compiler issues an error and cannot convert the Simulink Product block to HDL.

Table 2–47 shows the Product block inputs and outputs.

Table 2–48 shows the Product block parameters.

Figure 2–18. Pipelined Adder Block Example

Table 2–47. Product Block Inputs and Outputs

Signal Direction Description

a Input Operand a.

b Input Operand b.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

r Output Result.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–32 Chapter 2: Arithmetic Library
Product

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–49 shows the Product block I/O formats.

Table 2–48. Product Block Parameters

Name Value Description

Bus Type Inferred,
Signed Integer,
Signed Fractional,
Unsigned Integer

The bus number format that you want to use. Inferred means that the format is
automatically set by the format of the connected signal.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option applies only
to signed fractional formats.

Number of Pipeline
Stages

>= 0
(Parameterizable)

The Pipeline represents the delay. The clock enable and asynchronous clear ports
are available only if the block is registered (that is, if the number of pipeline
stages is greater than or equal to 1).

Clock Phase
Selection

User Defined This option is available only when the Pipeline value is greater than 0.

Specifies the phase selection with a binary string, where a 1 indicates the phase in
which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).

10—The block is enabled every other phase and every other data (sampled at
the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second data
of (sampled at the rate 1) passes through. That is, the data on phases 1, 3, and
4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port

On or Off Turn on to use the asynchronous clear input (aclr).

Use LPM On or Off When on, the Product block is mapped to the LPM_MULT library of
parameterized modules (LPM) function and the VHDL synthesis tool uses the
Altera LPM_MULT implementation.

When off, the VHDL synthesis tool uses the native * operator to synthesize the
product. If your design does not need arithmetic boundary optimization—such as
connecting a multiplier to constant combinational logic or register balancing
optimization—the LPM_MULT implementation generally yields a better result for
both speed and area.

Use Dedicated
Circuitry

On or Off Turn on to use the dedicated multiplier circuitry (if supported by your target
device). This option is ignored if not supported by your target device.

Table 2–49. Product Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[L2].[R2]

I3[1]

I4[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

I3: in STD_LOGIC

I4: in STD_LOGIC

Explicit

Explicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–33
SOP Tap

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 2–19 shows an example with the Product block.

f For more information about multiplier operations, refer to the lpm_mult Megafunction
User Guide.

SOP Tap
The SOP Tap block performs a sum of products for two or four taps. Use this block to
build two or four tap FIR filters, or cascade blocks to create filters with more taps.

The SOP Tap block implements with a multiplier-adder, which has registers on the
inputs, multipliers and adders. Thus, the result always lags the input by 3 cycles. The
dout port is assigned the value of din(n-t) where t is the number of taps. The block
has the following equations:

For 2 taps:

q(n+3) = c0(n)×din(n) + c1(n)×din(n-1)
dout(n+2) = din(n)

For 4 taps:

q(n+3) = c0(n)×din(n) + c1(n)×din(n-1) + c2(n)×din(n-2) + c3(n)×din(n-3)
dout(n+4) = din(n)

Table 2–50 shows the SOP Tap block inputs and outputs.

O O1[2×max(L1,L2].[2×max(R1,

R2)]

O1: out STD_LOGIC_VECTOR({2×max(L1,L2) + 2×max(R1,R2) - 1} DOWNTO 0) Implicit

Notes to Table 2–49:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 2–49. Product Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 2–19. Product Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–34 Chapter 2: Arithmetic Library
SOP Tap

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–51 shows the SOP Tap block parameters.

Table 2–52 shows the SOP Tap block I/O formats.

Figure 2–20 shows an example with the SOP Tap block.

Table 2–50. SOP Tap Block Inputs and Outputs

Signal Direction Description

din Input Data input.

c0, c1, c2,
c3

Input 2 or 4 tap coefficients.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

q Output Result.

dout Output Shifted input data.

Table 2–51. SOP Tap Block Parameters

Name Value Description

Bus Type Signed Integer,
Unsigned Integer

The bus number format that you want to use for the counter.

Input Number of Bits >= 0
(Parameterizable)

Specify the number of bits.

Number of Taps 2 or 4 The number of taps.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

Table 2–52. SOP Tap Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[R]

I2[L].[R]

...

In[L].[R]

I(n+1)

I(n+2)

I1: in STD_LOGIC_VECTOR({L + R -1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L + R -1} DOWNTO 0)

...

In: in STD_LOGIC_VECTOR({L + R -1} DOWNTO 0)

I(n+1): STD_LOGIC

I(n+2): STD_LOGIC

Explicit

Explicit

...

Explicit

O O1[2L + cell(log2(N +

1))].[2R]

O2

O1: out STD_LOGIC_VECTOR({2L + cell(log2(N + 1)) + 2R - 1} DOWNTO 0)

O2: in STD_LOGIC_VECTOR({L + R -1} DOWNTO 0)

Explicit

Explicit

Notes to Table 2–52:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–35
Square Root

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Square Root
The Square Root block returns the square root and optional remainder of unsigned
integer input data with the equation:

q2 + remainder = d

where remainder <= 2 × q

The Square Root block supports sequential mode (when the number of pipeline
stages> 0) or combinational mode (when the number of pipeline stages = 0).

Assume the radical d is an unsigned integer, and that q and the remainder are always
unsigned integers.

Table 2–53 shows the Square Root block inputs and outputs.

Table 2–54 lists the parameters for the Square Root block.

Figure 2–20. SOP Tap Block Example

Table 2–53. Square Root Block Inputs and Outputs

Signal Direction Description

d Input Data input.

en Input Optional clock enable.

aclr Input Optional asynchronous clear.

q Output Result.

remainder Output Optional remainder.

Table 2–54. Square Root Block Parameters (Part 1 of 2)

Name Value Description

Input Number of Bits >= 0
(Parameterizable)

Specify the number of bits of the unsigned input signal.

Number of Pipeline Stages >= 0
(Parameterizable)

Specify the number of pipeline stages. The computation is sequential
when the pipeline is greater than 1 or combinational when the number
of pipeline stages is zero. The clock enable and asynchronous clear
ports are available only if the number of pipeline stages is greater than
or equal to 1.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–36 Chapter 2: Arithmetic Library
Sum of Products

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 2–55 shows the Square Root block I/O formats.

Figure 2–21 shows an example of the Square Root block.

Sum of Products
The Sum of Products block implements the following expression:

q = a(0)C0 + ... + a(i)Ci + ... + a(n-1)Cn-1

where:

■ q is the output result

■ a(i) is the signed integer input data

■ Ci are the signed integer fixed coefficients

■ n is the number of coefficients in the range one to eight

Table 2–56 shows the Sum of Products block inputs and outputs.

Use Asynchronous Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

Use Remainder Port On or Off Turn on to use the remainder input (remainder).

Table 2–54. Square Root Block Parameters (Part 2 of 2)

Name Value Description

Table 2–55. Square Root Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[R]

I2[1]

I3[1]

I1: in STD_LOGIC_VECTOR({L + R} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Explicit

O O1[L].[R]

O2[L].[R]

O1: out STD_LOGIC_VECTOR({L + R} DOWNTO 0)

O2: out STD_LOGIC_VECTOR({L + R} DOWNTO 0)

Explicit

Notes to Table 2–55:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–21. Square Root Block Design Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 2: Arithmetic Library 2–37
Sum of Products

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 2–57 lists the parameters for the Sum of Products block.

Table 2–58 shows the Sum of Product block I/O formats.

Table 2–56. Sum of Products Block Inputs and Outputs

Signal Direction Description

a(0) to a(n–1) Input 1 to 8 ports corresponding to the signed integer fixed coefficient
values specified in the block parameters.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

q Output Result.

Table 2–57. Sum of Products Block Parameters

Name Value Description

Input Data Number of
Bits

>= 0

(Parameterizable)

Specify the number of bits to the left of the binary point of all input
signals.

Number of
Coefficients

1–8 The number of coefficients.

Coefficients Number
of Bits

>= 1

(Parameterizable)

Specify the number of bits to the left of the binary point of all non-variable
coefficients represented as a signed integer.

Signed Integer
Fixed-Coefficient
Values

Vector
(Parameterizable)

Specify the coefficient values for each port as a sequence of signed
integers.

For example: [-587 -844 -678 -100 367 362 71 -244]

Number of Pipeline
Stages

>= 0

(Parameterizable)

Specify the number of pipeline stages.

Full Resolution for
Output Result

On or Off When on, the multiplier output bit width is full resolution. When off, you
can specify the number of bits in the output signal and the number of
least significant bits (LSBs) truncated from the output signal.

Output Number of Bits >= 0

(Parameterizable)

Specify the number of bits in the output signal.

Output Truncated LSB >= 0

(Parameterizable)

Specify the number of LSBs to be truncated from the output signal.

FPGA Implementation Distributed Arithmetic,
Dedicated Multiplier
Circuitry, Auto

Use a distributed arithmetic, dedicated multiplier or automatically
determined implementation.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port

On or Off Turn on to use the asynchronous clear input (aclr).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

2–38 Chapter 2: Arithmetic Library
Sum of Products

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 2–22 shows an example with the Sum of Product block.

Table 2–58. Sum of Products Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[0]

...

In[L].[0]

I(n+1)

I(n+2)

I1: in STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

...

In: in STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

I(n+1): STD_LOGIC

I(n+2): STD_LOGIC

Explicit

...

Explicit

O O1[2L + cell(log2(n +

1))].[2R]

O1: out STD_LOGIC_VECTOR({2L + cell(log2(n + 1)) + 2R - 1} DOWNTO 0) Explicit

Notes to Table 2–58:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 2–22. Sum of Product Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

3. Complex Type Library

Like Simulink, DSP Builder supports native complex signal types. Use complex
number notation to simplify the design of applications such as FFT, I-Q modulation,
and complex filters.

The Complex Type library contains the following blocks:

■ Butterfly

■ Complex AddSub

■ Complex Conjugate

■ Complex Constant

■ Complex Delay

■ Complex Multiplexer

■ Complex Product

■ Complex to Real-Imag

■ Real-Imag to Complex

1 When connecting DSP Builder blocks to blocks from the Complex Type library (for
example, connecting AltBus to Complex AddSub), you must use Real-Imag to
Complex or Complex to Real-Imag blocks between the blocks. For an example,
refer to Figure 3–2 on page 3–5.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–2 Chapter 3: Complex Type Library
Butterfly

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Butterfly
The Butterfly block performs the following arithmetic operation on complex
signed integer numbers:

A = a + b×W
B = a - b×W

where a, b, W, A, and B are complex numbers (type signed integer) such as:

a = x + jX
b = y + jY
W = v + jV
A = (x + yv) - YV + j(X + Yv + yV)
B = (x - yv) + YV + j(X - Yv - yV)

This function operates with full bit width precision. The full bit width precision of A
and B is:

2 × [input bit width] + 2.

The Output Bit Width and Output Truncated LSB parameters specify the bit slice for
the output ports A and B. For example, if the input bit width is 16, the output bit
width is 16, and the output LSB is 4, then the full precision is 34 bits and the output
ports A[15:0] and B[15:0] each contain the bit slice 19:4.

Table 3–1 shows the Butterfly block inputs and outputs.

Table 3–2 shows the Butterfly block parameters.

Table 3–1. Butterfly Block Inputs and Outputs

Signal Direction Description

a Input Data input a.

b Input Data input b.

W Input Optional input W.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

A Output Data Output A.

B Output Data Output B.

Table 3–2. Butterfly Block Parameters (Part 1 of 2)

Name Value Description

Input Bit Width (a, b, W) >= 1 Specify the bit width of the complex signed integer inputs a, b, and W.

Number of Pipeline Stages >= 3 Specify the required number of pipeline stages.

Full Resolution for Output
Type

On or Off When this option is on, full output bit width resolution is enabled. When off,
you can separately specify the output bit width and LSB of the output.

Output Bit Width (A, B) >= 1 Specify the bit width of the complex signed integer outputs A and B. This
option is available when Full Resolution for Output Type is off.

Output Truncated LSB >= 0 Specify the LSB of the output bus slice of the full resolution computation.
This option is available when Full Resolution for Output Type is off.

W is constant On or Off When this option is on, you can specify the real and imaginary values for W
instead of the W port.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Complex Type Library 3–3
Butterfly

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 3–3 shows the Butterfly block I/O formats.

Figure 3–1 shows an example with the Butterfly block.

W (real) User defined Specify the value of the real part of the constant W

W (imaginary) User defined Specify the value of the imaginary part of the constant W.

Dedicated Multiplier Circuitry Auto, Yes,
No

For devices that support multipliers, a value of Auto specifies that the
choice is based on the width of the multiplier.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

Table 3–2. Butterfly Block Parameters (Part 2 of 2)

Name Value Description

Table 3–3. Butterfly Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1Real([Li].[0])Imag([Li].[0])

I2Real([Li].[0])Imag([Li].[0])

I3Real([Li].[0])Imag([Li].[0])

I4[1]

I5[1]

I1Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)

I1Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)

I2Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)

I2Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)

I3Real: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)

I3Imag: in STD_LOGIC_VECTOR({Li - 1} DOWNTO 0)

I4: in STD_LOGIC

I5: in STD_LOGIC

Explicit

Explicit

Explicit

Explicit

Explicit

Explicit

O O1Real([Lo].[0])Imag([Li].[0])

O2Real([Lo].[0])Imag([Li].[0])

O1Real: out STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0)

O1Imag: out STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0)

O2Real: out STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0)

O2Imag: out STD_LOGIC_VECTOR({Lo - 1} DOWNTO 0)

Explicit

Explicit

Explicit

Explicit

Notes to Table 3–3:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 3–1. Butterfly Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–4 Chapter 3: Complex Type Library
Complex AddSub

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Complex AddSub
The Complex AddSub block performs addition or subtraction on a specified number
of scalar complex inputs.

Table 3–4 shows the Complex AddSub block inputs and outputs.

Table 3–5 shows the Complex AddSub block parameters.

Table 3–4. Complex AddSub Block Inputs and Outputs

Signal Direction Description

+ or – Input Complex inputs.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

R Output Result.

Table 3–5. Complex AddSub Block Parameters

Name Value Description

Number of Inputs >= 2 Specifies the number of input wires to combine.

Add (+) Sub (–) User defined Specify addition or subtraction operation for each port with the characters +
and –. For example + – + implements +a – b + c for three ports.

DSP Builder implements the block as a tree of 2-input adders. Each
consecutive pair of inputs are + +, + – or – +. However, none of the input
adders can have two consecutive subtractions. Thus, + – – + is valid (as the
two input adders are parameterized + – and – +), + – – + + is also valid but
+ + – – + is not valid.

Missing operators are assumed to be +.

Enable Pipeline On or Off When this option is on, DSP Builder registers the output from each stage in
the adder tree, resulting in a pipeline length that is equal to
ceil(log2(number of inputs)).

Clock Phase Selection User Defined When you enable pipeline, you can specify the phase selection as a binary
string, where a 1 indicates the phase in which the block is enabled. For
example:

1—The block is always enabled and captures all data passing through
the block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the
second data of (sampled at the rate 1) passes through. That is, the data
on phases 1, 3, and 4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Complex Type Library 3–5
Complex AddSub

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 3–6 shows the Complex AddSub block I/O formats.

Figure 3–2 shows an example with the Complex AddSub block.

Table 3–6. Complex AddSub Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1Real([L1].[R1])Imag([L1].[R1])

...

InReal([Ln].[Rn])Imag([Ln].[Rn])

I(n+1)[1]

I(n+2)[1]

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

...

InReal: in STD_LOGIC_VECTOR({LPn + RPn - 1} DOWNTO 0)

InImag: in STD_LOGIC_VECTOR({LPn + RPn - 1} DOWNTO 0)

I(n+1): in STD_LOGIC

I(n+2): in STD_LOGIC

Implicit

Implicit

Implicit

Implicit

O O1Real(max(L1,Ln) + 1),(max(RI,Rn) +

1)Imag(max(L1,Ln)

+ 1),(max(RI,Rn) + 1)

O1Real: out STD_LOGIC_VECTOR({max(LI,Ln) + max(RI,Rn)} DOWNTO 0)

O1Imag: out STD_LOGIC_VECTOR({max(LI,Ln) + max(RI,Rn)} DOWNTO 0)

Implicit

Implicit

Notes to Table 3–6:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 3–2. Complex AddSub Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–6 Chapter 3: Complex Type Library
Complex Conjugate

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Complex Conjugate
The Complex Conjugate block outputs a fixed-point complex conjugate value by
performing simple arithmetic operations on the complex inputs. The operation can
optionally be conjugate, negative, or negative conjugate. For an input w = x + iy, the
block returns:

■ Conjugate: x – iy

■ Negative: –x – iy

■ Negative Conjugate: –x + iy

Table 3–7 shows the Complex Conjugate block inputs and outputs.

Table 3–8 shows the Complex Conjugate block parameters.

Table 3–9 shows the Complex Conjugate block I/O formats.

Table 3–7. Complex Conjugate Block Inputs and Outputs

Signal Direction Description

w Input Complex inputs.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

c Output Fixed point complex conjugate output.

Table 3–8. Complex Conjugate Block Parameters

Name Value Description

Operation Conjugate, Negative,
Negative Conjugate

Specify the operation to perform.

Register Inputs On or Off Turn on to register the inputs and to enable the optional clock enable
and asynchronous clear options.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

Table 3–9. Complex Conjugate Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1Real([L1].[R1])Imag([L1].[R1])

I2[1]

I3[1]

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Implicit

Implicit

O O1Real([L1] + 1.[R1])Imag([L1] +

1.[R1])

O1Real: in STD_LOGIC_VECTOR({LP1 + RP1} DOWNTO 0)

O1Imag: in STD_LOGIC_VECTOR({LP1 + RP1} DOWNTO 0)

Implicit

Implicit

Notes to Table 3–9:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Complex Type Library 3–7
Complex Conjugate

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 3–3 shows an example with Complex Conjugate blocks to output conjugate,
negative and negative conjugate values.

Figure 3–3. Complex Conjugate Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–8 Chapter 3: Complex Type Library
Complex Constant

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Complex Constant
The Complex Constant block outputs a fixed-point complex constant value.

Table 3–10 shows the Complex Constant block parameters.

Table 3–11 shows the Complex Constant block I/O formats.

Figure 3–4 shows an example with Complex Constant blocks as inputs to a
Complex AddSub block.

Table 3–10. Complex Constant Block Parameters

Name Value Description

Real Part User Defined Specify the value of the real part of the constant.

Imaginary Part User Defined Specify the value of the imaginary part of the constant.

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

Specify the number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point, including the sign bit.
This parameter does not apply to single-bit buses.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specify the clock signal name.

Table 3–11. Complex Constant Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

O O1Real([L1].[R1])Imag([L1].[R1]) O1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

O1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Explicit

Notes to Table 3–11:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 3–4. Complex Constant Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Complex Type Library 3–9
Complex Delay

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Complex Delay
The Complex Delay block delays the incoming data by an amount specified by the
Number of Pipeline Stages parameter. The input must be a complex number.

Table 3–12 shows the Complex Delay block inputs and outputs.

Table 3–13 shows the Complex Delay block parameters.

Table 3–14 shows the Complex Delay block I/O formats.

Table 3–12. Complex Delay Block Inputs and Outputs

Signal Direction Description

d Input Input data.

ena Input Optional clock enable.

sclr Input Optional synchronous clear.

q Output Delayed output data.

Table 3–13. Complex Delay Block Parameters

Name Value Description

Number of Pipeline Stages >= 1 Specify the delay length of the block.

Clock Phase Selection User
Defined

When you enable pipeline, you can indicate the phase selection with a binary
string, where a 1 indicates the phase in which the block is enabled. For
example:

1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second
data of (sampled at the rate 1) passes through. That is, the data on phases
1, 3, and 4 do not pass through the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous Clear Port On or Off Turn on to use the synchronous clear input (sclr).

Table 3–14. Complex Delay Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1Real([L1].[R1])Imag([L1].[R1])

I2[1]

I3[1]

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Implicit

Implicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–10 Chapter 3: Complex Type Library
Complex Multiplexer

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 3–5 shows an example with the Complex Delay block.

Complex Multiplexer
The Complex Multiplexer block multiplexes N complex inputs to one complex
output. The select port sel is a non-complex scalar.

Table 3–15 shows the Complex Multiplexer block inputs and outputs.

Table 3–16 shows the Complex Multiplexer block parameters.

O O1Real([L1].[R1])Imag([L1].[R1]) O1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

O1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Implicit

Notes to Table 3–14:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 3–14. Complex Delay Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 3–5. Complex Delay Block Example

Table 3–15. Complex Multiplexer Block Inputs and Outputs

Signal Direction Description

sel Input Non-complex select line.

0 to N—1 Input Complex inputs.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

unnamed Output Result.

Table 3–16. Complex Multiplexer Block Parameters

Name Value Description

Number of Input Data Lines >= 2 Number of complex input data lines.

Number of Pipeline Stages >= 0 Specify the delay length of the block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous Clear Port On or Off Turn on to use the asynchronous clear input (aclr).

One Hot Select Bus On or Off Turn on to use one-hot selection for the select signal instead of full binary.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Complex Type Library 3–11
Complex Product

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 3–17 shows the Complex Multiplexer block I/O formats.

Figure 3–6 shows an example with the Complex Multiplexer block.

Complex Product
The Complex Product block performs output multiplication of two scalar complex
inputs. Operand a is multiplied by operand b and the result output on r as the
following equation shows:

r = a × b

Table 3–17. Complex Multiplexer Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1Real([L1].[R1])Imag([L1].[R1])

I2Real([L2].[R2])Imag([L2].[R2])

I3[1]

I4[1]

I5[1]

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I2Real: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)

I2Imag: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)

I3: in STD_LOGIC

I4: in STD_LOGIC

I5: in STD_LOGIC

Implicit

Implicit

O O1Real(max(L1,L2)),(max(RI,R2))

Imag(max(L1,L2)),(max(RI,R2))

O1Real: in STD_LOGIC_VECTOR({max(LI,L2) + max(RI,R2) - 1} DOWNTO 0)

O1Imag: in STD_LOGIC_VECTOR({max(LI,L2) + max(RI,R2) - 1} DOWNTO 0)

Implicit

Notes to Table 3–17:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 3–6. Complex Multiplexer Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–12 Chapter 3: Complex Type Library
Complex Product

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 3–18 shows the Complex Product block inputs and outputs.

Table 3–19 shows the Complex Product block parameters.

Table 3–20 shows the Complex Product block I/O formats.

Table 3–18. Complex Product Block Inputs and Outputs

Signal Direction Description

a Input Complex operand a.

b Input Complex operand b.

ena Input Optional clock enable.

aclr Input Optional asynchronous clear.

r Output Result.

Table 3–19. Complex Product Block Parameters

Name Value Description

Bus Type Inferred, Signed Integer,
Signed Fractional,
Unsigned Integer

Specify the bus number format that you want to use. Inferred means
that the format is automatically set by the format of the connected
signal.

[number of bits].[] >= 0 (Parameterizable) Specify the number of bits to the left of the binary point.

[].[number of bits] >= 0 (Parameterizable) Specify the number of bits to the right of the binary point. This option
applies only to signed fractional formats.

Pipeline Register No Register, Inputs Only,
Multiplier Only, Adder Only,
Inputs and Multiplier,
Inputs and Adder,
Multiplier and Adder,
Inputs Multiplier and Adder

Specify the elements that you want pipelined. The clock enable and
asynchronous clear ports are available only if the block is registered.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port

On or Off Turn on to use the asynchronous clear input (aclr).

Use Dedicated
Circuitry

On or Off If you target devices that support DSP blocks, turn on to implement the
functionality in DSP blocks instead of logic elements.

Table 3–20. Complex Product Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1Real([L1].[R1])Imag([L1].[R1])

I2Real([L2].[R2])Imag([L2].[R2])

I3[1]

I4[1]

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I2Real: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)

I2Imag: in STD_LOGIC_VECTOR({LP2 + RP2 - 1} DOWNTO 0)

I3: in STD_LOGIC

I4: in STD_LOGIC

Implicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Complex Type Library 3–13
Complex to Real-Imag

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 3–7 shows an example with the Complex Product block.

Complex to Real-Imag
The Complex to Real-Imag block constructs a fixed-point real and fixed-point
imaginary output from a complex input.

Table 3–21 shows the Complex to Real-Imag block inputs and outputs.

Table 3–22 shows the Complex to Real-Imag block parameters.

O O1Real(2 x max(LI,L2)),(2 x max(

RI,R2))

Imag(2 x max(LI,L2)),(2 x max(RI,R

2))

O1Real: in STD_LOGIC_VECTOR({(2 x max(LI,L2)) + (2 x max(RI,R2)) -1}
DOWNTO 0)

O1Imag: in STD_LOGIC_VECTOR({(2 x max(LI,L2)) + (2 x max(RI,R2)) -1}
DOWNTO 0)

Implicit

Notes to Table 3–20:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 3–20. Complex Product Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 3–7. Complex Product Block Example

Table 3–21. Complex to Real-Imag Block Inputs and Outputs

Signal Direction Description

c Input Complex input.

r Output Real part output.

i Output Imaginary part output.

Table 3–22. Complex to Real-Imag Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

Specify the number format you want to use for the bus.

[number of bits].[] >= 0
(Parameterizable)

Select the number of data input bits to the left of the binary point, including
the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Select the number of data input bits to the right of the binary point. This
option applies only to signed fractional formats.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–14 Chapter 3: Complex Type Library
Real-Imag to Complex

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 3–23 shows the Complex to Real-Imag block I/O formats.

Figure 3–8 shows an example with the Complex to Real-Imag block.

Real-Imag to Complex
The Real-Imag to Complex block constructs a fixed-point complex output from
real and imaginary inputs.

Table 3–24 shows the Real-Imag to Complex block has the inputs and outputs.

Table 3–23. Complex to Real-Imag Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1Real([L1].[R1])Imag([L1].[R1]) I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Implicit

O O1Real([L1].[R1])

O2Imag([L1].[R1])

O1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

O2Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Explicit

Notes to Table 3–23:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 3–8. Complex to Real-Imag Block Example

Table 3–24. Real-Imag to Complex Block Inputs and Outputs

Signal Direction Description

r Input Real part input.

i Input Imaginary part input.

c Output Complex output.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 3: Complex Type Library 3–15
Real-Imag to Complex

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 3–25 shows the Real-Imag to Complex block parameters.

Table 3–26 shows the Real-Imag to Complex block I/O formats.

Figure 3–9 shows an example with the Real-Imag to Complex block.

Table 3–25. Real-Imag to Complex Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

Specify the number format you want to use for the bus.

[number of bits].[] >= 0
(Parameterizable)

Select the number of data input bits to the left of the binary point, including
the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Select the number of data input bits to the right of the binary point. This
option applies only to signed fractional formats.

Table 3–26. Real-Imag to Complex Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1Real([L1].[R1])

I2Imag([L1].[R1])

I1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

I1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Implicit

O O1Real([L1].[R1])Imag([L1].[R1]) O1Real: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

O1Imag: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0)

Explicit

Notes to Table 3–26:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 3–9. Real-Imag to Complex Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

3–16 Chapter 3: Complex Type Library
Real-Imag to Complex

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

4. Gate & Control Library

The blocks in the Gate &Control library support gate and other related control
functions.

The Gate & Control library contains the following blocks:

■ Binary to Seven Segments

■ Bitwise Logical Bus Operator

■ Case Statement

■ Decoder

■ Demultiplexer

■ Flipflop

■ If Statement

■ LFSR Sequence

■ Logical Bit Operator

■ Logical Bus Operator

■ Logical Reduce Operator

■ Multiplexer

■ Pattern

■ Single Pulse

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–2 Chapter 4: Gate & Control Library
Binary to Seven Segments

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Binary to Seven Segments
The Binary to Seven Segments block converts a 4-bit unsigned input bus to a
7-bit output for connection to a seven-segment displays.

The seven-segment display is set to display the hexadecimal representation of the
input number.

Table 4–1 shows the Binary to Seven Segments block inputs and outputs.

Table 4–2 shows the 4-bit to 7-bit conversion performed by the Binary to Seven
Segments block.

Table 4–3 shows the Binary to Seven Segments block I/O formats.

Table 4–1. Binary to Seven Segments Block Inputs and Outputs

Signal Direction Description

(3:0) Input 4-bit data input.

(6:0) Output 7-bit data output.

Table 4–2. Binary to Seven Segments

Input Output

Binary Decimal Hex Binary Decimal

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

A

b

C

d

E

F

1000000

1111001

0100100

0110000

0011001

0010010

0000010

1111000

0000000

0010000

0001000

0000011

1000110

1000001

0000110

0001110

64

121

36

48

25

18

2

120

0

16

8

3

70

33

6

14

Table 4–3. Binary to Seven Segments Display Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[4].[0] I1: in STD_LOGIC_VECTOR(3 DOWNTO 0) Explicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–3
Bitwise Logical Bus Operator

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 4–1 shows an example with the Binary to Seven Segments block.

Bitwise Logical Bus Operator
The Bitwise Logical Bus Operator block performs bitwise AND, OR, or XOR
logical operations on two input buses.

Table 4–4 shows the Bitwise Logical Bus Operator block inputs and outputs.

O O1[7].[0] O1: in STD_LOGIC_VECTOR(6 DOWNTO 0) Explicit

Notes to Table 4–3:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 4–3. Binary to Seven Segments Display Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 4–1. Binary to Seven Segments Block Example

Table 4–4. Bitwise Logical Bus Operator Block Inputs and Outputs

Signal Direction Description

a Input Data input a.

b Input Data input b.

q Output Data output.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–4 Chapter 4: Gate & Control Library
Bitwise Logical Bus Operator

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 4–5 shows the Bitwise Logical Bus Operator block parameters.

Table 4–6 shows the Bitwise Logical Bus Operator block I/O formats.

Figure 4–2 shows an example with the Bitwise Logical Bus Operator block.

Table 4–5. Bitwise Logical Bus Operator Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

Specify the bus number format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point, including the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point.

Logic Operation AND, OR, XOR Specify the logical operation to perform.

Table 4–6. Bitwise Logical Bus Operator Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[L1].[R1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

Explicit

Explicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Notes to Table 4–6:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 4–2. Bitwise Logical Bus Operator Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–5
Case Statement

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Case Statement
This Case Statement block contains boolean operators, which you can use for
combinational functions.

The Case Statement block compares the input signal (which must be a signed or
unsigned integer) with a set of values (or cases). A single-bit output generates for each
case. You can implement multiple cases with a comma (,) to separate each case. A
comma at the end of the case values is ignored.

You can have multiple conditions for each case with a pipe (|) to separate the
conditions. For example, for four cases if the first has two conditions, enter
1|2,3,4,5 in the Case Values box.

Table 4–7 shows the Case Statement block inputs and outputs.

Table 4–8 shows the Case Statement block parameters.

Table 4–9 shows the Case Statement block I/O formats.

Table 4–7. Case Statement Block Inputs and Outputs

Signal Direction Description

unnamed Input Data input.

0 to n Output A separate output is provided for each case.

Table 4–8. Case Statement Block Parameters

Name Value Description

Case Statement User defined
(Parameterizable)

Specify the values with which you want to compare the input. Use a comma
between each case and separate conditions by a pipe (|). For example:
1|2|3,4,5|-1,7

Data Bus Type Signed Integer,
Unsigned Integer

Specify the bus number format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point, including the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point.

Enable Pipeline On or Off Turn on if you want pipeline the output result.

Provide Default Case On or Off Turn on if you want the others output signal to go high when all the other
outputs are false.

Table 4–9. Case Statement Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({LP1 + RP1 - 1} DOWNTO 0) Explicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–6 Chapter 4: Gate & Control Library
Case Statement

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 4–3 shows an example model with the Case Statement block.

The following VHDL code generates from the model in Figure 4–3:

caseproc:process(input)
begin

case input is
when "00000001" | "00000010" | "00000011" =>

r0 <= '1';
r1 <= '0';
r2 <= '0';
r3 <= '0';
r4 <= '0';

when "00000100" =>
r0 <= '0';
r1 <= '1';
r2 <= '0';
r3 <= '0';
r4 <= '0';

when "00000100" | "00000110" =>
r0 <= '0';

O O1[1]

…

Oi[1]

….

On[1]

O1: out STD_LOGIC

…

Oi: out STD_LOGIC

….

On: out STD_LOGIC

Explicit

Notes to Table 4–9:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 4–9. Case Statement Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 4–3. Case Statement Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–7
Decoder

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

r1 <= '0';
r2 <= '1';
r3 <= '0';
r4 <= '0';

when "00000111" =>
r0 <= '0';
r1 <= '0';
r2 <= '0';
r3 <= '1';
r4 <= '0';

when others =>
r0 <= '0';
r1 <= '0';
r2 <= '0';
r3 <= '0';
r4 <= '1';

end case;
end process;

1 The Case Statement block output ports in the VHDL are named r<number>
where <number> is auto-generated.

Decoder
The Decoder block is a bus decoder that compares the input value against the
specified decoded value. If the values match, the block outputs a 1, if they do not
match it outputs a 0.

If the specified value is not representable in the data type of the input bus, it is
truncated to the data type of the input bus. For example: 5 (binary 101) as a 2 bit
unsigned integer results in 1 (binary 01).

Table 4–10 shows the Decoder block inputs and outputs.

Table 4–11 shows the Decoder block parameters.

Table 4–10. Decoder Block Inputs and Outputs

Signal Direction Description

in Input Data input.

match Output Data output (1 = match, 0 = mismatch).

Table 4–11. Decoder Block Parameters

Name Value Description

Input Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

Specify the bus number format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point for the gain. This
option is zero (0) unless Signed Fractional is selected.

Register Output On or Off Turn this option on if you want to register the output result.

Decoded Value User defined
(Parameterizable)

Specify the decoded value for matching.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–8 Chapter 4: Gate & Control Library
Demultiplexer

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 4–12 shows the Decoder block I/O formats.

Figure 4–4 shows an example with the Decoder block.

Demultiplexer
The Demultiplexer block is a 1-to-n demultiplexer that uses full encoded binary
values. The value of the input d is output to the selected output. All other outputs
remain constant.

The sel input is an unsigned integer bus.

Table 4–13 shows the Demultiplexer block inputs and outputs.

Table 4–12. Decoder Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

O O1[1].[0] O1: in STD_LOGIC Explicit

Notes to Table 4–12:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 4–4. Decoder Block Example

Table 4–13. Demultiplexer Block Inputs and Outputs

Signal Direction Description

d Input Data input port.

sel Input Select control port.

ena Input Optional clock enable port.

sclr Input Optional synchronous clear port.

0–(n-1) Output Output ports.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–9
Demultiplexer

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 4–14 describes the parameters for the Demultiplexer block.

Table 4–15 shows the Demultiplexer block I/O formats.

Figure 4–5 shows an example with the Demultiplexer block.

Table 4–14. Demultiplexer Block Parameters

Name Value Description

Number of Output Data Lines An integer greater than 1
(Parameterizable)

Specify how many outputs you want the demultiplexer to have.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous Clear Port On or Off Turn on to use the synchronous clear input (sclr).

Table 4–15. Demultiplexer Block I/O Formats (Note 2)

I/O Simulink (3), (4) VHDL Type (5)

I I1[L].[R]

I2[L].[R]

I3[1]

I4[1]

I1: in STD_LOGIC_VECTOR({L + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L - 1} DOWNTO 0)

I3: in STD_LOGIC

I4: in STD_LOGIC

Implicit

Implicit

O O1[L].[R]

...

On[L].[R] (1)

O1: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

...

On: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

Implicit

Implicit

Notes to Table 4–15:

(1) Where I is the number of outputs to the demultiplexer.
(2) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(3) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(4) I1[L].[R] is an input port. O1[L].[R] is an output port.
(5) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 4–5. Demultiplexer Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–10 Chapter 4: Gate & Control Library
Flipflop

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Flipflop
Set the Flipflop block as a D-type flipflop with enable (DFFE) or T-type flipflop
with enable (TFFE).

If the number of bits is set to more than 1, the block behaves as single-bit flipflops for
each bit. For example, for a TFFE flipflop with an n-bit signal, the signal is processed
with n 1-bit TFFE flipflops.

Table 4–16 shows the Flipflop block inputs and outputs.

DFFE mode:

if (0 == aclrn) Q = 0;
else if (0 == aprn) Q = 1;
else if (1 == ena) Q = D

TFFE mode:

if (0 == aclrn) Q = 0;
else if (0 == aprn) Q = 1;
else if (1 == ena) and (1 == T) Q = toggle

1 DSP Builder does not support (aclrn == 0) and (aprn == 0).

The aclrn port is an active-low asynchronous clear port. When active this sets the
output and internal state to 0 for the remainder/duration of the clock cycle.

The aprn port is an active-low asynchronous preset port. When active this sets the
output and internal state to 1 for the remainder/duration of the clock cycle.

Table 4–17 shows the Flipflop block parameters.

Table 4–16. Flipflop Block Inputs and Outputs

Signal Direction Description

input Input Data or togggle port.

ena Input Enable port.

aprn Input Asynchronous reset port.

aclrn Input Asynchronous clear port.

Q Output Output port.

Table 4–17. Flipflop Block Parameters

Name Value Description

Mode DFFE or TFFE Specify the type of flipflop to implement.

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

Specify the bus number format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point for the gain. This
option is zero (0) unless you select Signed Fractional.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–11
If Statement

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 4–18 shows the Flipflop block I/O formats.

Figure 4–6 shows an example with the Flipflop block.

If Statement
The If Statement block outputs a 0 or 1 result based on the IF condition
expression.

Table 4–19 shows the If Statement block inputs and outputs.

Table 4–18. Flipflop Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[0]

I2[1].[0]

I3[1].[0]

I4[1].[0]

I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

I4: in STD_LOGIC

Explicit

O O1[L1].[0] O1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0) Explicit

Notes to Table 4–18:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 4–6. Flipflop Block Example

Table 4–19. If Statement Block Inputs and Outputs

Signal Direction Description

a–j Input Input ports.

n Input Optional ELSE IF input port.

true Output Output port (high when true).

false Output Optional ELSE output port (high when false).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–12 Chapter 4: Gate & Control Library
If Statement

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

You can build an IF condition expression with the signal values 0 or 1 and any of the
permitted operators given in Table 4–20.

When writing expressions in an If Statement block, ensure that the operators are
always operating on the same types. That is, bus signals compare with and operate
with bus signals; and booleans (the 'true' or 'false' result of such operations) only
compare with and operate with booleans. In other words, the types must be the same
on either side of an operator.

Treat an If statement expression, 0 and 1, as signals rather than as booleans,
otherwise you receive an error at HDL generation of the following form:

Can't determine definition of operator "<mixed operator>" -- found 0
possible definitions

If you receive this error, carefully check the expressions specified in the If
Statement blocks.

The following examples of bad syntax give errors:

■ (a>b)&c, where a,b and c are all input values to the If Statement.

Here (a>b) returns a boolean ('true' or 'false') and is ANDed with signal c. This
operation is ill defined and results in the following error:

Can't determine definition of operator ""&"" -- found 0 possible
definitions

■ ((a>b)~0)

Again (a>b) returns a boolean ('true' or 'false'). 0 is treated as a signal not a
boolean, so the hardware generation fails with an error:

Can't determine definition of operator ""/="" -- found 0 possible
definitions"

where /= is the hardware translation of the 'not equal to' operator. Here the ~0
incorrectly means 'not false', and is unnecessary. The correct syntax for this
expression is just (a>b).

Table 4–20. Supported If Statement Block Operators

Operator Operation

& AND

| OR

$ XOR

= Equal To

~ Not Equal To

> Greater Than

< Less Than

() Parentheses

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–13
If Statement

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 4–21 shows the If Statement block parameters.

Table 4–22 shows the If Statement block I/O formats.

Table 4–21. If Statement Block Parameters

Name Value Description

Number of Inputs 2–10 Specify the number of inputs to the If Statement.

IF Expression User Defined Specify the if condition with any of the following operators: &, |, $, =, ~, >, <,
or (), the variables a, b, c, d, e, f, g, h, i, or j, and the single digit numerals 0,
1.

Data Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer
Single Bit, Inferred

Specify the bus number format that you want to use. The selected type must
be capable of expressing 0 and 1 exactly.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point for the gain. This
option is zero (0) unless Signed Fractional is selected.

Use ELSE Output Port On or Off This option turns on the false output, which implements an ELSE
condition and goes high if the condition evaluated by the If Statement
block is false.

Use ELSE IF Input
Port

On or Off This option turns on the else input, which implements an ELSE IF input,
when you want to cascade multiple IF Statement blocks together or as
an enable for the block.

Table 4–22. If Statement Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

….

Ii[LI].[RI]

…

In[LN].[RN]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

…

Ii: in STD_LOGIC_VECTOR({LI + RI - 1} DOWNTO 0)

….

In: in STD_LOGIC_VECTOR({LN + RN - 1} DOWNTO 0)

Implicit

O O1[1]

O2[1]

O1: out STD_LOGIC

O2: out STD_LOGIC

Explicit

Notes to Table 4–22:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–14 Chapter 4: Gate & Control Library
LFSR Sequence

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 4–7 shows an example of the If Statement block, which implements the
conditional statement:

Quantizer:
if (Input<-4) Output = -100
else if ((Input>=-4) & (Input<10)) Output = 0
else Output = 100

LFSR Sequence
The LFSR Sequence block implements a linear feedback shift register that shifts one
bit across L registers. The register output bits shift from LSB to most significant bit
(MSB) with the output sout connected to the MSB of the shift register. The register
output bits can optionally be XORed or XNORed together.

For example, when choosing an LFSR sequence of length eight, the default
polynomial is x8 + x4 + x3 + x2 + 1 with the circuitry that Figure 4–8 shows.

In this default structure:

■ The polynomial is a primitive or maximal-length polynomial

■ All registers are initialized to one

■ The feedback gate type is XOR

■ The feedback structure is an external n-input gate or many to one

You can modify the implemented LFSR sequence by changing the parameter values.

Figure 4–7. If Statement Block Example

Figure 4–8. Default LFSR Sequence Block with Length 8 Circuitry

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–15
LFSR Sequence

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

For example, after changing the feedback structure to an internal two-inputs gate,
DSP Builder implements the circuitry (Figure 4–9).

This circuitry changes the sequence from:

1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1

to:

1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0

Table 4–23 shows the LFSR Sequence block inputs and outputs.

Table 4–24 shows the LFSR Sequence block parameters.

Figure 4–9. Internal 2-Input Gate Circuitry

Table 4–23. LFSR Sequence Block Inputs and Outputs

Signal Direction Description

ena Input Optional clock enable port.

rst Input Optional reset port.

sout Output Serial output port for MSB of the LFSR.

pout Output Optional parallel output port for LFSR unsigned value.

Table 4–24. LFSR Sequence Block Parameters (Part 1 of 2)

Name Value Description

LFSR Length User Defined
(Parameterizable)

Specify the LFSR length as an integer.

Feedback Structure External n-inputs gate,
Internal two-inputs gate

Specify whether you want an external n-inputs gate (many-to-one) or
internal two-inputs gate (one-to-many) structure.

Feedback Gate Type XOR or XNOR Specify the type of feedback gate to implement.

Initial Register Value
(Hex)

Any Hexadecimal Number
(Parameterizable)

Specify the initial values in the register. If this value is larger than is
represented in the shift register (set by LFSR Length) the
unrepresentable bits are truncated.

Primitive Polynomial
Tap Sequence

User-Defined Array of
Polynomial Coefficients
(Parameterizable)

Specify where the taps occur in the shift register, 1 denotes the LSB and
the LFSR length denotes the MSB. There must be a minimum of 2 taps.
The numbers should be enclosed in square brackets.
For example, [0 3 10].

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined
(Parameterizable)

Specify the name of the clock signal.

Use Parallel Output On or Off Turn on to use the parallel output (pout).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–16 Chapter 4: Gate & Control Library
Logical Bit Operator

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 4–25 shows the LFSR Sequence block I/O formats.

Figure 4–10 shows an example with the LFSR Sequence block.

Logical Bit Operator
The Logical Bit Operator block performs logical operations on single-bit inputs.
You can specify a variable number of inputs. If the integer is positive, it is interpreted
as a boolean 1, otherwise it is interpreted as 0. The number of inputs is variable.

Table 4–26 shows the Logical Bit Operator block parameters.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous
Clear Port

On or Off Turn on to use the synchronous clear input (sclr).

Table 4–24. LFSR Sequence Block Parameters (Part 2 of 2)

Name Value Description

Table 4–25. LFSR Sequence Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type

I I1[1].[0]

I2[1].[0]

I1: in STD_LOGIC

I2: in STD_LOGIC

—

—

O O1[1].[0]

O2[L].[0]

O1: out STD_LOGIC

O2: out STD_LOGIC_VECTOR(L-1 DOWNTO 0)

—

—

Notes to Table 4–25:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.

Figure 4–10. LFSR Sequence Block Example

Table 4–26. Logical Bit Operator Block Parameters

Name Value Description

Logical Operator AND, OR, XOR,
NAND, NOR, NOT

Specify the operator you want to use.

Number of Inputs 1–16
(Parameterizable)

Specify the number of inputs. This parameter defaults to 1 if the NOT logical
operator is selected.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–17
Logical Bus Operator

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 4–27 shows the Logical Bit Operator block I/O formats.

Figure 4–11 shows an example with the Logical Bit Operator block.

Logical Bus Operator
The Logical Bus Operator block performs logical operations on a bus such as
AND, OR, XOR, and invert. You can perform masking by entering a mask value in
decimal notation, or a shift (rotate) operation by entering the number of bits. By
default, a right shift operation preserves the input data sign (for signed inputs).

Table 4–27. Logical Bit Operator Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[1]

…

Ii[1]

….

In[1]

I1: in STD_LOGIC

…

Ii: in STD_LOGIC

….

In: in STD_LOGIC

Explicit

O O1[1] O1: out STD_LOGIC Explicit

Notes to Table 4–27:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 4–11. Logical Bit Operator Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–18 Chapter 4: Gate & Control Library
Logical Bus Operator

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 4–28 shows the Logical Bus Operator block inputs and outputs.

Table 4–29 shows the Logical Bus Operator block parameters.

Table 4–30 shows the Logical Bus Operator block I/O formats.

Table 4–28. Logical Bus Operator Block Inputs and Outputs

Signal Direction Description

d Input Input data.

q Output Output data.

Table 4–29. Logical Bus Operator Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

Specify the bus number format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point, including the sign
bit.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point.

Logical Operation AND, OR, XOR,
Invert, Shift Left,
Shift Right,
Rotate Left,
Rotate Right

Specify the logical operation to perform.

Mask Value Integer
(Parameterizable)

Specify the mask value for an AND, OR, or XOR operation as an unsigned
integer representing the required mask, which must have the same number of
bits as the input.

Number of Bits to Shift User Defined
(Parameterizable)

Specify how many bits you want to shift when you chose a shift or rotate
operation.

Sign Extend On or Off Turn on to preserve the input data sign when right shifting signed data.

Table 4–30. Logical Bus Operator Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

O O1[L1].[R1] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Notes to Table 4–30:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–19
Logical Reduce Operator

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 4–12 shows an example with the Logical Bus Operator block.

Logical Reduce Operator
The Logical Reduce Operator block performs logical reduction operations on a
bus such as AND, OR, XOR. The logical operation is applied bit-wise to the input bus to
give a single bit result.

Table 4–31 shows the Logical Reduce Operator block inputs and outputs.

Table 4–32 shows the Logical Reduce Operator block parameters.

Figure 4–12. Logical Bus Operator Block Example

Table 4–31. Logical Reduce Operator Block Inputs and Outputs

Signal Direction Description

d Input Input data.

q Output Output result.

Table 4–32. Logical Reduce Operator Block Parameters (Part 1 of 2)

Name Value Description

Bus Type Inferred,
Signed Integer,
Signed Fractional,
Unsigned Integer

Specify the bus number format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits to the left of the binary point, including the sign bit.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–20 Chapter 4: Gate & Control Library
Multiplexer

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 4–33 shows the Logical Reduce Operator block I/O formats.

Figure 4–13 shows an example with the Logical Reduce Operator block.

Multiplexer
The Multiplexer block operates as either a n-to-1 one-hot or full-binary bus
multiplexer with one select control. The output width of the multiplexer is equal to
the maximum width of the input data lines. The block works on any data type and
sign extends the inputs if there is a bit width mismatch.

Table 4–34 shows the Multiplexer block inputs and outputs.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point.

Logical Reduction
Operation

AND, OR, XOR,
NAND, NOR

Specify the logical operation to perform.

Table 4–32. Logical Reduce Operator Block Parameters (Part 2 of 2)

Name Value Description

Table 4–33. Logical Reduce Operator Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

O O1[1] O1: out STD_LOGIC Explicit

Notes to Table 4–30:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 4–13. Logical Reduce Operator Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–21
Multiplexer

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 4–35 shows the Multiplexer block parameters.

Table 4–36 shows the Multiplexer block I/O formats.

Figure 4–14 shows an example with the Multiplexer block.

Table 4–34. Multiplexer Block Inputs and Outputs

Signal Direction Description

sel Input Select control port.

0–(n-1) Input Data input ports.

ena Input Optional enable port.

aclr Input Optional asynchronous clear port.

<unnamed> Output Output port.

Table 4–35. Multiplexer Block Parameters

Name Value Description

Number of Input Data Lines An integer greater than
1 (Parameterizable)

Specify how many inputs the multiplexer has.

Number of Pipeline Stages >= 0 (Parameterizable) Specify the number of pipeline stages.

One Hot Select Bus On or Off Turn on to use one-hot selection for the bus select signal instead of
full binary.

Use Enable Port On or Off Turn on to use the clock enable input (ena). This option is available
only when the number of pipeline stages is greater than 0.

Use Asynchronous Clear
Port

On or Off Turn on to use the asynchronous clear input (aclr). This option is
available only when the number of pipeline stages is greater than 0.

Table 4–36. Multiplexer Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[LS].[0] (select
input)

I2[L2].[R2]

….

Ii[Li].[Ri]

…

In[Ln].[Rn]

In+1[1]

In+2[1]

I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L2 + R2 - 1} DOWNTO 0)

…

Ii: in STD_LOGIC_VECTOR({Li + Ri - 1} DOWNTO 0)

….

In: in STD_LOGIC_VECTOR({Ln + Rn - 1} DOWNTO 0)

In+1: STD_LOGIC

In+2: STD_LOGIC

Implicit

O O1[max(Li)].[max(Ri)]

with (0 < I < i + 1)

O1: out STD_LOGIC_VECTOR({max(Li)) + max(Ri) - 1} DOWNTO 0) Implicit

Notes to Table 4–36:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–22 Chapter 4: Gate & Control Library
Pattern

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Pattern
The Pattern block generates a repeating periodic bit sequence in time. You can enter
the required pattern as a binary sequence.

For example, the pattern 01100 outputs the repeating pattern:

0110001100011000110001100011000110001100

You can change the output data rate for a registered block by feeding the clock enable
input with the output of the Pattern block.

1 With a sequence of length 1, the Pattern block acts as a constant, holding its output
to the specified value at all times. There is no artificial limit to the pattern length.

Table 4–37 shows the Pattern block inputs and outputs.

Table 4–38 shows the Pattern block parameters.

Figure 4–14. Multiplexer Block Example

Table 4–37. Pattern Block Inputs and Outputs

Signal Direction Description

ena Input Optional clock enable port.

sclr Input Optional synchronous clear port.

<unnamed> Output Output data port.

Table 4–38. Pattern Block Parameters (Part 1 of 2)

Name Value Description

Binary Sequence User Defined Specify the sequence that you want to use.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined
(Parameterizable)

Specify the name of the required clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 4: Gate & Control Library 4–23
Single Pulse

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 4–39 shows the Pattern block I/O formats.

Figure 4–15 shows an example with the Pattern block.

Single Pulse
The Single Pulse block generates a single pulse output signal. The output signal is
a single bit that takes only the values 1 or 0. The signal generation type can be an
impulse, a step up (0 to 1), or a step down (1 to 0).

The output of a impulse starts at 0 changing to 1 after a specified delay and changing
to 0 again after a specified length. The output of a step up starts at 0 changing to 1
after a specified delay. The output of a step down starts at 1 changing to 0 after a
specified delay.

Table 4–40 shows the Single Pulse block inputs and outputs.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous Clear Port On or Off Turn on to use the synchronous clear input (sclr).

Table 4–38. Pattern Block Parameters (Part 2 of 2)

Name Value Description

Table 4–39. Pattern Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[1]

I2[1]

I1: in STD_LOGIC

I2: in STD_LOGIC

Explicit - optional

Explicit - optional

O O1[1] O1: out STD_LOGIC Explicit

Notes to Table 4–39:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 4–15. Pattern Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

4–24 Chapter 4: Gate & Control Library
Single Pulse

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 4–41 shows the Single Pulse block parameters.

Table 4–42 shows the Single Pulse block I/O formats.

Figure 4–16. shows an example of a Single Pulse block.

Table 4–40. Single Pulse Block Inputs and Outputs

Signal Direction Description

ena Input Optional clock enable port.

sclr Input Optional synchronous clear port.

<unnamed> output Output port.

Table 4–41. Single Pulse Block Parameters

Name Value Description

Signal Generation Type Step Up,
Step Down,
Impulse

Specify the type of single pulse.

Impulse Length Integer
(Parameterizable)

Specify the number of clock cycles for which the output signal is
transitional from 0 to 1 for an Impulse type output.

Delay Integer
(Parameterizable)

Specify the number of clock cycles that occur before the pulse
transition.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined
(Parameterizable)

Specify the name of the required clock signal.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous Clear Port On or Off Turn on to use the synchronous clear input (sclr).

Table 4–42. Single Pulse Block I/O Formats

I/O Simulink (1) VHDL Type

I I1[1]

I2[1]

I1: in STD_LOGIC

I2: in STD_LOGIC

Optional trigger

Optional reset

O O1[1] O1: out STD_LOGIC —

Notes to Table 4–42:

(1) I1[1] is an input port. O1[1] is an output port.

Figure 4–16. Single Pulse Output Signal Types

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

5. Interfaces Library

Use the blocks in the Interfaces library to build custom logic blocks that support the
Avalon® Memory-Mapped (Avalon-MM) and Avalon Streaming (Avalon-ST)
interfaces.

The Interfaces library contains the following blocks:

■ Avalon-MM Master

■ Avalon-MM Slave

■ Avalon-MM Read FIFO

■ Avalon-MM Write FIFO

■ Avalon-ST Packet Format Converter

■ Avalon-ST Sink

■ Avalon-ST Source

Avalon Memory-Mapped Blocks
The Avalon-MM blocks automate the process of specifying master and slave ports
that are compatible with the Avalon-MM bus.

After you build a model of your DSP Builder peripheral, you can add the following
blocks to control the peripheral’s inputs and outputs:

■ Configurable master and slave blocks that contain the ports required to connect
peripherals that use the Avalon-MM bus.

■ Wrapped versions of the Avalon-MM slave that implement an Avalon-MM read
FIFO buffer and Avalon-MM write FIFO.

f For more information about the Avalon-MM interface, refer to the Avalon Interface
Specifications.

After you synthesize your model and compile it in the Quartus II software, use SOPC
Builder to add it to your Nios II system.

Your design automatically appears under the DSP Builder category in the SOPC
Builder component browser peripherals listing if the MDL file is in the same directory
as the SOPC file.

A file mydesign.mdl creates a component mydesign_interface in SOPC Builder.

1 For the peripheral to appear in SOPC Builder, the working directory for your SOPC
Builder project must be the same as your DSP Builder working directory.

f For information about using SOPC Builder to create Nios II designs, refer to the Nios II
Hardware Development Tutorial.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–2 Chapter 5: Interfaces Library

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 5–1 shows SOPC Builder with an on-chip RAM memory, Nios II processor, and
a DSP Builder created peripheral topavalon.

Figure 5–2 shows the design flow with DSP Builder and SOPC Builder.

Figure 5–1. SOPC Builder with DSP Builder Peripheral

Figure 5–2. DSP Builder & SOPC Builder Design Flow

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–3
Avalon-MM Master

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 5–3 shows an example model with Avalon-MM blocks.

Avalon-MM Master
The Avalon-MM Master block defines a collection of ports for connection to an
SOPC Builder system when your design functions as an Avalon-MM master interface.

Table 5–1 lists the signals supported by the Avalon-MM Master block.

Figure 5–3. Avalon-MM Blocks Example

Table 5–1. Signals Supported by the Avalon-MM Master Block (Part 1 of 2)

Signal Direction Description

waitrequest Input This signal forces the master port to wait until you are ready to proceed with the
transfer.

address Output The address signal represents a byte address but is asserted on word boundaries only.

read Output Available with Read or Read/Write address type. Read request signal. Not required if
there are no read transfers. If used, also use readdata.

readdata Input Available when Read or Read/Write address type is chosen. Data lines for read
transfers. Not required if there are no read transfers. If used, also use read.

write Output Available when Write or Read/Write address type is chosen. Write request signal. Not
required if there are no write transfers. If used, also use writedata.

writedata Output Available when Write or Read/Write address type is chosen. Data lines for write
transfers. Not required if there are no write transfers. If used, also use write.

byteenable Output Available when Write or Read/Write address type is chosen and the bit width is greater
than 8. Enables specific byte lane(s) during write transfers to memories of width greater
than 8 bits. All byteenable lines must be enabled during read transfers.

endofpacket Input Available when Allow Flow Control is on. Indicates an end-of-packet condition.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–4 Chapter 5: Interfaces Library
Avalon-MM Master

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

1 The direction in Table 5–1 refers to the direction in respect of the DSP Builder block
interface.

Figure 5–2 shows the Avalon-MM Master block parameters.

readdatavalid Input Available when Allow Pipeline Transfers is on. Use for pipelined read transfers with
latency. Indicates that valid data is present on the readdata lines.

flush Output Available when Allow Pipeline Transfers and Use Flush Signal are on. Can be asserted
to clear any pending transfers in the pipeline.

burstcount Output Available when Allow Burst Transfers is on. Indicates the number of transfers in a burst.

irq Input Available when Receive IRQ is on. Indicates when one or more ports have requested an
interrupt.

irqnumber Input Available when Receive IRQ is on and IRQ mode is set to Prioritized. Indicates the
interrupt priority. Lower value means higher priority.

Table 5–1. Signals Supported by the Avalon-MM Master Block (Part 2 of 2)

Signal Direction Description

Table 5–2. Avalon-MM Master Block Parameters (Part 1 of 2)

Name Value Description

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specifies the clock signal name.

Address Width 1–32 Specifies the number of address bits.

Address Type Read, Write,
Read/Write

The address type for the bus.

Data Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign
bit. Read and write buses must have the same number of bits.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Allow Byte Enable On or Off Turn on to use the Byte Enable signal. This option is available when the
address type is set to Write or Read/Write and the bit width is greater than 8.

Allow Flow Control On or Off Turn on to enable flow control. Flow control allows a slave port to regulate
incoming transfers from a master port, so that a transfer only begins when the
slave port indicates that it has valid data or is ready to receive data.

Allow Pipeline
Transfers

On or Off Turn on to allow pipeline transfers. Pipeline transfers increase the bandwidth
for synchronous slave peripherals that require several cycles to return data for
the first access, but can return data every cycle thereafter. This option is
available when the address type is Read or Read/Write.

Use Flush Signal On or Off Turn on to clear any pending transfers in the pipeline. This option is available
when Allow Pipeline Transfers is on.

Allow Burst Transfers On or Off Turn on to allow burst transfers. A burst executes multiple transfers as a unit,
and maximize the throughput for slave ports that achieves the greatest
efficiency when handling multiple units of data from one master port at a time.

Maximum Burst Size 2–32 Specifies the maximum width of a burst transfer. This option is available when
Allow Burst Transfers is on.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–5
Avalon-MM Master

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 5–4 shows an Avalon-MM Master block with all signals enabled.

f For general information about Avalon-MM blocks, refer to “Avalon Memory-Mapped
Blocks” on page 5–1.

Receive IRQ On or Off Turn on to enable interrupt requests from the slave port.

IRQ Mode Prioritized,
Individual Signals

The interrupt request mode. This option is available when Receive IRQ is on.

Table 5–2. Avalon-MM Master Block Parameters (Part 2 of 2)

Name Value Description

Figure 5–4. Avalon-MM Master Block with All Signals Enabled

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–6 Chapter 5: Interfaces Library
Avalon-MM Slave

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Avalon-MM Slave
The Avalon-MM Slave block defines a collection of ports for connection to an SOPC
Builder system when your design functions as an Avalon-MM slave interface.

Table 5–3 lists the signals supported by the Avalon-MM Slave block.

1 The direction in Table 5–3 refers to the direction in respect of the DSP Builder block
interface.

Table 5–4 shows the Avalon-MM Slave block parameters.

Table 5–3. Signals Supported by the Avalon-MM Slave Block

Signal Direction Description

address Output Address lines to the slave port. Specifies a word offset into the slave address
space.

read Output Available when Read or Read/Write address type is chosen. Read-request
signal. Not required if there are no read transfers. If used, also use readdata.

readdata Input Available when Read or Read/Write address type is chosen. Data lines for read
transfers. Not required if there are no read transfers. If used, also use read.

write Output Available when Write or Read/Write address type is chosen. Write-request
signal. Not required if there are no write transfers. If used, also use
writedata.

writedata Output Available when Write or Read/Write address type is chosen. Data lines for write
transfers. Not required if there are no write transfers. If used, also use write.

byteenable Output Available when Allow Byte Enable is on and the bit width is greater than 8.
Byte-enable signals to enable specific byte lane(s) during write transfers to
memories of width greater than 8 bits. If used, also use writedata.

readyfordata Input Available when Write or Read/Write access is chosen and Allow Flow Control is
on. Indicates that the peripheral is ready for a write transfer.

dataavailable Input Available when Read or Read/Write access is chosen and Allow Flow Control is
on. Indicates that the peripheral is ready for a read transfer.

endofpacket Input Available when Allow Flow Control is on. Indicates an end-of-packet condition.

readdatavalid Input Available when Allow Pipeline Transfers is on and variable read latency is
chosen. Marks the rising clock edge when readdata asserts.

waitrequest Input Available when variable wait-state format is chosen. Use to stall the interface
when the slave port cannot respond immediately.

beginbursttransfer Output Available when Allow Burst Transfers is on. Asserted for the first cycle of a burst
to indicate when a burst transfer is starting.

burstcount Output Available when Allow Burst Transfers is on. Indicates the number of transfers in
a burst. If used, also use waitrequest.

irq Input Available when Output IRQ is on. Interrupt request. Asserted when a port needs
to be serviced.

begintransfer Output Available when Receive Begin Transfer is on. Asserted during the first cycle of
every transfer.

chipselect Output Available when Use Chip Select is on. The slave port ignores all other
Avalon-MM signal inputs unless chipselect is asserted.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–7
Avalon-MM Slave

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 5–4. Avalon-MM Slave Block Parameters

Name Value Description

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specifies the clock signal name.

Address Width 1–32 Specifies the number of address bits.

Address Alignment Native, Dynamic Use native address alignment or dynamic bus sizing.

Address Type Read, Write,
Read/Write

The address type for the bus.

Data Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign
bit. Read and write buses must have the same number of bits.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Allow Byte Enable On or Off Turn on to use the Byte Enable signal. This option is available only when
the address type is set to Write or Read/Write.

Allow Flow Control On or Off Turn on to enable flow control. Flow control allows a slave port to regulate
incoming transfers from a master port, so that a transfer only begins when
the slave port indicates that it has valid data or is ready to receive data.

Allow Pipeline
Transfers

On or Off Turn on to allow pipeline transfers. Pipeline transfers increase the bandwidth
for synchronous slave peripherals that require several cycles to return data
for the first access, but can return data every cycle thereafter. This option is
available only when the address type is set to Read or Read/Write.

Wait-State Format Fixed, Variable The required wait-state format.

Read Wait-State Cycles 0–255 Specifies the number of read wait-state cycles. This option is available only
when the wait-state format is set to Fixed.

Write Wait-State Cycles 0–255 Specifies the number of write wait state cycles. This option is available only
when the wait-state format is set to Fixed.

Read Latency Format Fixed, Variable The required read latency format. This option is available only when Allow
Pipeline Transfers is on.

Read Latency Cycles 0–8 Specifies the pipeline read latency. Latency determines the length of the data
phase, independently of the address phase. For example, a pipelined slave
port (with no wait-states) can sustain one transfer per cycle, even though it
may require several cycles of latency to return the first unit of data. This
option is available only when Allow Pipeline Transfers is on and Fixed read
latency format is set.

Allow Burst Transfers On or Off Turn on to allow burst transfers. A burst executes multiple transfers as a unit,
and maximize the throughput for slave ports that achieves the greatest
efficiency when handling multiple units of data from one master port at a
time.

Maximum Burst Size 4–232 Specifies the maximum width of a burst transfer. This option is available only
when Allow Burst Transfer is on.

Output IRQ On or Off Turn on to enable interrupt requests from the slave port.

Receive BeginTransfer On or Off Turn on to receive begintransfer signals.

Use Chip Select On or Off Turn on to enable the chipselect signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–8 Chapter 5: Interfaces Library
Avalon-MM Slave

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 5–5 shows an Avalon-MM Slave block with all signals enabled.

f For general information about Avalon-MM blocks refer to “Avalon Memory-Mapped
Blocks” on page 5–1.

Figure 5–5. Avalon-MM Slave Block with All Signals Enabled

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–9
Avalon-MM Read FIFO

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Avalon-MM Read FIFO
The Avalon-MM Read FIFO block is essentially an Avalon-MM Slave block
configured to implement a read FIFO. It is accessed by other Avalon-MM peripherals
to obtain data when connected in SOPC Builder.

For information about the Avalon-MM Slave block, refer to “Avalon-MM Slave” on
page 5–6.

Table 5–5 lists the signals supported by the Avalon-MM Read FIFO block.

Table 5–6 shows the Avalon-MM Read FIFO block parameters.

Table 5–5. Signals Supported by the Avalon-MM Read FIFO Block

Signal Direction Description

Stall Input This port must be connected to Simulink blocks. It simulates stall conditions of the
Avalon-MM bus and hence back pressure to the SOPC component. For any simulation
cycle where the Stall signal is asserted, no Avalon-MM reads take place and the
internal FIFO buffer fills. When full, the Ready output is de-asserted so that no data is
lost.

Data Input This port should be connected to DSP Builder blocks and should be connected to
outgoing data from the user design.

DataValid Input This port should be connected to DSP Builder blocks and should be asserted whenever
the signal on the Data port corresponds to real data.

TestDataOut Output This port should be connected to Simulink blocks and corresponds to the data received
over the Avalon-MM bus.

TestDataValid Output This port should be connected to Simulink blocks and is asserted whenever
TestDataOut corresponds to real data.

Ready Output When asserted, indicates that the block is ready to receive data.

Table 5–6. Avalon-MM Read FIFO Block Parameters

Name Value Description

Data Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.
This parameter does not apply to single-bit buses.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

FIFO Depth > 2 Specifies the depth of the FIFO.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–10 Chapter 5: Interfaces Library
Avalon-MM Read FIFO

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 5–6 shows an Avalon-MM Read FIFO block.

Figure 5–7 shows the content of the Avalon-MM Read FIFO block.

Figure 5–6. Avalon-MM Read FIFO

Figure 5–7. Avalon-MM Read FIFO Content

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–11
Avalon-MM Write FIFO

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Avalon-MM Write FIFO
The Avalon-MM Write FIFO block is essentially an Avalon-MM Slave block
configured to implement a write FIFO.

f For information about the Avalon-MM Slave block, refer to “Avalon-MM Slave” on
page 5–6.

Table 5–7 lists the signals supported by the Avalon-MM Write FIFO block.

Table 5–8 shows the Avalon-MM Write FIFO block parameters.

Figure 5–8 shows an Avalon-MM Write FIFO block.

Table 5–7. Signals Supported by the Avalon-MM Write FIFO Block

Signal Direction Description

TestData Input This port must be connected to Simulink blocks. It provides simulation data to the Avalon-MM
write FIFO. The data is passed to the DataOut port one cycle after the Ready input port is
asserted.

Stall Input This port must be connected to Simulink blocks. It simulates stall conditions of the Avalon-MM
bus and hence underflow to the SOPC component. For any simulation cycle where Stall is
asserted, the test data is cached by the Avalon-MM write converter and released in order, one
sample per clock, when stall is de-asserted.

Ready Input This port must be connected to DSP Builder blocks. It indicates that the downstream hardware
is ready for data.

DataOut Output This port should be connected to DSP Builder blocks and corresponds to the oldest unsent
data sample received on the TestData port.

DataValid Output This port should be connected to DSP Builder blocks and is asserted whenever DataOut
corresponds to real data.

Table 5–8. Avalon-MM Write FIFO Block Parameters

Name Value Description

Data Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.
This parameter does not apply to single-bit buses.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter applies
only to signed fractional buses.

FIFO Depth > 2 Specifies the depth of the FIFO buffer.

Figure 5–8. Avalon-MM Write FIFO

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–12 Chapter 5: Interfaces Library
Avalon-ST Packet Format Converter

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 5–9 shows the content of the Avalon-MM Write FIFO block.

Avalon Streaming Blocks
The Avalon Streaming blocks automate the process of specifying ports that are
compatible with an Avalon-ST interface. The blocks include an Avalon-ST Packet
Format Converter, Avalon-ST Sink and Avalon-ST Source.

f For information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Avalon-ST Packet Format Converter
The Avalon-ST Packet Format Converter (PFC) block transforms packets
received from one block to a different packet format required by another block.

The PFC takes packet data from one or more input interfaces, and provides field
reassignment in time and space to one or more output packet interfaces. You specify
the input packet format and the desired output packet format, then the appropriate
control logic automatically generates.

The PFC operates on a single clock domain, and supports multicast data, where an
input field is broadcast copied to multiple output fields. The ready latency of the PFC
block is zero and it can only connect to other Avalon-ST interfaces with a ready
latency of zero.

1 Verilog HDL generates for the PFC block and you must therefore have a license that
supports Verilog HDL when simulating in ModelSim.

Figure 5–9. Avalon-MM Write FIFO Content

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–13
Avalon-ST Packet Format Converter

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 5–10 shows the basic operation of the PFC.

The PFC performs data mapping on a packet by packet basis, so that there is exactly
one input packet on each input interface for one output packet on each output
interface. The interface with the longest packet limits the packet rate of the converter.

When the PFC has multiple output interfaces, the packets on each output interface are
aligned so that the startofpacket signal is presented on the same clock cycle.

If each interface supports fixed-length packets, you can select a Multi-Packet
Mapping option. The PFC can then map fields from multiple input packets to
multiple output packets. The PFC does not support bursts or blocks on its output
interfaces.

Use the Split Data option to split the input or output data signals across additional
ports named data0 through dataN.

Each input interface consists of the ready, valid, startofpacket, endofpacket,
empty, and data signals. Each output interface has an additional error signal that
asserts to indicate a frame delineation error.

f For more information about these signal types, refer to the Avalon Interface
Specifications.

1 The PFC block does not support Avalon-ST bursts or blocks on its output interfaces.

Table 5–9 lists the signals supported by the Avalon-ST Packet Format
Converter block.

Figure 5–10. Basic Packet Format Converter

Table 5–9. Signals Supported by the Avalon-ST Packet Format Converter Block (Part 1 of 2)

Signal Direction Description

reset_n Input Active-low reset signal.

inX_dataN Input Data input bus for sink interface X.

inX_empty Input Indicates the number of empty symbols for sink interface X during cycles that
mark the end of a packet.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–14 Chapter 5: Interfaces Library
Avalon-ST Packet Format Converter

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 5–10 shows the Avalon-ST Packet Format Converter block parameters.

inX_endofpacket Input This signal marks the active cycle containing the end of the packet for sink
interface X.

inX_startofpacket Input This signal marks the active cycle containing the start of the packet for sink
interface X.

inX_valid Input Indicates DSP Builder can accept data for sink interface X.

outY_ready Input Indicates that the sink driven by the source interface Y is ready to accept data.

aclr Input Optional asynchronous clear port.

inX_ready Output Indicates that sink interface X is ready to output data.

outY_dataN Output Data output bus for source interface Y.

outY_empty Output Indicates the number of empty symbols for source interface Y during cycles that
mark the end of a packet.

outY_endofpacket Output This signal marks the active cycle containing the end of the packet for source
interface Y.

outY_startofpacket Output This signal marks the active cycle containing the start of the packet for source
interface Y.

outY_valid Output Indicates that valid data is available on source interface Y.

outYerror Output Indicates an error condition when asserted high.

Table 5–9. Signals Supported by the Avalon-ST Packet Format Converter Block (Part 2 of 2)

Signal Direction Description

Table 5–10. Avalon-ST Packet Format Converter Block Parameters

Name Value Description

Number of Sinks 1–16 Specifies the number of sink interfaces X.

Number of Sources 1–16 Specifies the number of source interfaces Y.

Split Data On or Off When on, the data signals on the sink and source interface are split into signals
named data0 through dataN with widths corresponding to the specified
symbol width.

Multi-Packet Mapping On or Off When off, one input packet is matched to one output packet and the input and
output packets must have the name number of instances in each field. When on,
the PFC maps the input packets to output packets such that all instances of every
data field are accounted for.

Symbol Width >= 1 Specifies the number of bits per symbol that all the PFC sink and source
interfaces use.

Use Asynchronous Clear
Port

On or Off Turn on to use the asynchronous clear input (aclr).

Sink Format X string A quoted string or MATLAB variable that describes the packet format for sink
interface X.

Sink X Symbols Per Beat 1–32 Specifies the number of symbols per beat for sink interface X.

Source Format Y string A quoted string or MATLAB variable that describes the packet format for source
interface Y.

Source Y Symbols Per Beat 1–32 Specifies number of symbols per beat for source interface Y.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–15
Avalon-ST Packet Format Converter

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

PFC Data Flow
The PFC spools data into a FIFO-like memory as it arrives, and spools it out in a
different order as it leaves. DSP Builder can provide the data at the output of each
interface as soon as it writes it into the memory and all previous output data is
transferred. When the PFC has multiple output interfaces, the startofpacket
signal for all the interfaces is asserted at the same time.

The PFC stops data input on input interfaces by deasserting the ready signal
whenever there is a risk of overwriting data that it has not yet output. If a
downstream block pauses output data by deasserting the ready signal to the PFC,
the PFC accepts data until it risk overwriting unsent data. At this point, the PFC
deasserts the ready signals on its own input interface, causing the upstream block to
stop sending data.

In a similar way, if the upstream block starves the PFC of data by deasserting the
valid signals to the PFC, then the PFC output interface continues to send data until
the memory drains. It then stops sending data by deasserting the output valid
signals.

For multiple interface PFC blocks, back pressuring an output interface or starving an
input interface affects all other interfaces. When an output interface is back pressured,
the input interfaces are back pressured, causing the other outputs to be starved of
data. Likewise, if an input interface is starved of data, the output interfaces eventually
stop, causing the other input interfaces to be back pressured.

Packet Format Description
For each input and output interface, the number of symbols per beat and the packet
description describe the basic format of the packet.

The number of symbols per beat defines, for each interface, the number of symbols
that present in parallel on every active cycle. The packet description is a string that
describes the fields in the packet.

A basic packet description is a comma-separated list of field names, where a field
name includes any of the characters a-z, A-Z, _, or 0-9 but must start with a letter.
For example: Field1, Red, Green, Blue, and DestinationAddress. Field names
are case sensitive. Do not use whitespace in a packet description.

If fields repeat in a packet, parentheses delineate the repeated group (of one or more
fields), and a positive integer follows the group to indicate the number of repeats. The
following examples describe the parenthesis further:

■ Dest,Source,(Data)128,(CRC)4 indicates a packet that has destination and
source address symbols followed by 128 data symbols and 4 CRC symbols.

■ (Red,Green,Blue)100 refers to a frame with 100 repetitions of a symbol of
Red, followed by a symbol of Green, followed by a symbol of Blue.

■ Nest repeats, so that (F1,(F2)3,F3)2,F4 is equivalent to (F1,F2,F2,F2,F3)2,F4 or
F1,F2,F2,F2,F3,F1,F2,F2,F2,F3,F4.

Use a + instead of a positive integer, such as (Red,Green,Blue)+, to repeat a group
an unspecified number of times in a packet. However, such a group must compose the
entire packet. Therefore, none of the following examples are valid: A,(B,C)+,
(A,B)+,C, or((A)+)2.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–16 Chapter 5: Interfaces Library
Avalon-ST Packet Format Converter

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 5–11 summarizes the packet description syntax for the PFC.

Table 5–12 shows some example packets. All these examples use the convention
<packet description> / <symbols per beat>, so that R,G,B/2 refers to an interface where
the packet description is R,G,B and the number of symbols per beat is 2.

Table 5–11. Packet Description Syntax

Packet Descriptor: Group | (Group)+

where + indicates that the preceding Group is repeated an unknown
number of times

Group repeatedGroup | simpleGroup

repeatedGroup (Group)N

where N is a positive integer indicating the number of times the preceding
group is repeated

simpleGroup FieldName[,Group]

Table 5–12. Packet Description Examples

Packet Description / Symbols Per Beat Example Packets

(R,G,B)4

(R,G,B)4/3

(Y,Cr,Y,Cb)/2

((A)2,B,C,(A)2,B,D)3/4

((((A)2,B)2,C)2,D)2

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–17
Avalon-ST Packet Format Converter

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 5–11 shows an example of the packet formats for a PFC with two input and
two output interfaces.

Packet Mapping
Packet mapping is the process of determining where the data for each field in each
output interface is coming from (as an {input interface, position} pair).

To achieve packet mapping, compare the field name strings. For example, the source
of data for the Red field in a given output interface is the field on an input interface
with the name Red. It is not valid for any field name to exist on multiple-input
interfaces; no two input interfaces may have a Red field. It is valid, however, for
multiple-output interfaces to have the same field; you may copy the Red data to two
or more output interfaces.

A single input or output interface can have multiple instances of the same field. For
example, Red,Green,Red,Blue represents a packet with two red symbols per
packet. The PFC matches the nth instance of a field on an input interface to the nth
instance of the same field on an output interface. If an output interface has
Blue,Green,Red,Red, the data for the first Red field is taken from the first Red
field in the input packet.

Each output interface may or may not use a given input field, but unless you set the
Multi-Packet Mapping option (and if the input field is used) there must be the same
number of instances of the field in each output as there is in the input. For example,
Green and Red,Red,Green are both valid, but Red,Green is not.

Multi-Packet Mapping
Set the Multi-Packet Mapping option, so that the PFC is not limited to mapping a
single input packet on each port to a single output packet on each port. It can map
multiple input packets to multiple output packets.

For example, (Red,Green,Blue)2 maps to (Red,Green,Blue)3 by using three
input packets for every two output packets.

Figure 5–11. Example of a Packet Format Converter with Two Input and Two Output Interfaces

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–18 Chapter 5: Interfaces Library
Avalon-ST Sink

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

The ratio of input fields to output fields must be constant.

For example, Red,Red,Green,Blue does not map to (Red,Green,Blue)2
because each output packet requires one input packet for Red, but two input packets
for Green and Blue.

DSP Builder supports multiple interfaces but the packet ratio must be constant across
all {input interface, output interface} pairs.

For example, two input interfaces with the formats (Red,Green)2 and Blue map to
output interface (Red)6,Blue(3),Green(6) because three input packets are
required for two output packets for all input and output pairs. The same inputs do not
map to (Red)3,Blue(3),Green(3), because to make two output packets, three of
the first input's packets and six of the second input's packets are required.

1 DSP Builder does not support packets of unknown length.

Error Handling
The PFC contains internal counters that keep track of the current position in the
packet for each input and uses these counters to detect frame delineation errors. Every
time a startofpacket or endofpacket signal asserts on an input interface, the
PFC uses its knowledge of the frame structure to ensure that the assertion is on a valid
cycle. For PFC variants where the packet size is known, the PFC also checks that the
startofpacket and endofpacket signals assert when they should do, and are not
missed.

The PFC only has a single output error bit to report frame delineation errors. The
output error bit asserts on all outputs as soon as DSP Builder detects an error, and it
asserts for each output interface independently until an endofpacket asserts for that
output interface.

After the endofpacket asserts, the PFC presents no more data to that output
interface. When all output interfaces stop, the PFC resets and resumes normal
operation. The PFC stops independently on the endofpacket signal for each output,
and components downstream of the PFC should never see partial frames.

While errors assert to the output interfaces and the core is reset, the input interfaces
are not back pressured. This action prevents loss of any synchronization between
input interfaces by uneven back pressuring during error conditions.

When the PFC starts again, it waits until it sees a startofpacket signal for each
input interface before accepting data for that interface. It is not possible to guarantee
synchronization of output interfaces when frame delineation errors are present.

The PFC does not support relaying errors from an upstream component to a
downstream component.

When simulating the PFC block, connect the reset port to a pulse generator (such as
the Single Pulse block in the DSP Builder Gate & Control library) that is
configured to output an initial 0, then a 1 for the remainder of the simulation.

Avalon-ST Sink
The Avalon-ST Sink block defines a collection of ports for connection to an SOPC
Builder system when your design functions as an Avalon-ST sink.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–19
Avalon-ST Sink

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

f For information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Table 5–13 lists the signals supported by the Avalon-ST Sink block.

Table 5–14 shows the Avalon-ST Sink block parameters.

Table 5–13. Signals Supported by the Avalon-ST Sink Block

Signal Direction Description

DataIn Input Data input bus.

Valid Input Data valid signal that indicates the validity of the input data signals.

Ready Output Data input ready signal. Indicates that the sink can accept data.

startofpacket Input This signal is available when Use startofpacket is on and marks the active cycle
containing the start of the packet.

endofpacket Input This signal is available when Use endofpacket is on and marks the active cycle
containing the end of the packet.

empty Input This signal is available when Use empty is turned on and the bit width is greater than the
symbol width. It specifies how many of the symbols in a packet are empty. For example,
a 32-bit wide bus with 8-bit symbols can have an empty value from 0 to 3.

Table 5–14. Avalon-ST Sink Block Parameters

Name Value Description

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specifies the clock signal name.

Data Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.
Read and write buses must have the same number of bits.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter applies
only to signed fractional buses.

Symbol Width >= 1 Specifies the symbol width in bits.

Use endofpacket On or Off When this option is on, the endofpacket port is available on the Avalon-ST
Sink block.

Use startofpacket On or Off When this option is on, the startofpacket port is available on the
Avalon-ST Sink block.

Use empty On or Off When this option is on and the bit width is greater than the symbol width, the
empty port is available on the Avalon-ST Sink block.

Ready Latency 0 or 1 Defines the relationship between assertion or deassertion of the Ready signal and
cycles the ones ready for data transfer separately for each interface.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–20 Chapter 5: Interfaces Library
Avalon-ST Source

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 5–12 shows an Avalon-ST Sink block with all signals enabled.

Avalon-ST Source
The Avalon-ST Source block defines a collection of ports for connection to an
SOPC Builder system when your design functions as an Avalon-ST source.

f For information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Table 5–15 lists the signals supported by the Avalon-ST Source block.

Table 5–16 on page 5–21 shows the Avalon-ST Source block parameters.

Figure 5–12. Avalon-ST Sink Block with All Signals Enabled

Table 5–15. Signals Supported by the Avalon-ST Source Block

Signal Direction Description

DataOut Output Data input bus.

Valid Output Data valid signal that indicates the validity of the output data signals.

Ready Input Data output ready signal. Indicates that the source can accept data.

startofpacket Output This signal is available when the Use startofpacket parameter is on and marks the active
cycle containing the start of the packet.

endofpacket Output This signal is available when the Use endofpacket parameter is on and marks the active
cycle containing the end of the packet.

empty Output This signal is available when Use empty is turned on and the bit width is greater than the
symbol width. It specifies how many of the symbols in a packet are empty. For example,
a 32-bit wide bus with 8-bit symbols can have an empty value from 0 to 3.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 5: Interfaces Library 5–21
Avalon-ST Source

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 5–13 shows an Avalon-ST Source block with all signals enabled.

Table 5–16. Avalon-ST Source Block Parameters

Name Value Description

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined Specifies the clock signal name.

Data Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.
Read and write buses must have the same number of bits.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter applies
only to signed fractional buses.

Symbol Width 1–512 Specifies the symbol width in bits.

Use endofpacket On or Off When this option is on, the endofpacket port is available on the Avalon-ST
Source block.

Use startofpacket On or Off When this option is on, the startofpacket port is available on the
Avalon-ST Source block.

Use empty On or Off When this option is on and the bit width is greater than the symbol width, the
empty port is available on the Avalon-ST Sink block.

Ready Latency 0 or 1 Defines the relationship between assertion/deassertion of the Ready signal and
cycles the ones ready for data transfer separately for each interface.

Figure 5–13. Avalon-ST Source Block with All Signals Enabled

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

5–22 Chapter 5: Interfaces Library
Avalon-ST Source

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

6. IO & Bus Library

The blocks in the IO & Bus library manipulate signals and buses to perform
operations such as truncation, saturation, bit extraction, or bus format conversion.

The IO & Bus library contains the following blocks:

■ AltBus

■ Binary Point Casting

■ Bus Builder

■ Bus Concatenation

■ Bus Conversion

■ Bus Splitter

■ Constant

■ Extract Bit

■ Global Reset

■ GND

■ Input

■ Non-synthesizable Input

■ Non-synthesizable Output

■ Output

■ Round

■ Saturate

■ VCC

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–2 Chapter 6: IO & Bus Library
AltBus

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

AltBus
The AltBus block modifies the bus format of a DSP Builder signal. Only use this
block as an internal node in a system, not as an input to or output from the system. If
the specified bit width is wider than the input bit width, the bus is sign extended to
fit. If it is smaller than the input bit width, you can specify to either truncate or
saturate the excess bits.

Table 6–1 shows the AltBus block parameters.

Table 6–2 shows the AltBus block I/O formats.

Table 6–3 and Figure 6–1 on page 6–3 illustrate how a floating-point number
(4/3 = 1.3333) is cast into signed binary fractional format with three different binary
point locations.

Table 6–1. AltBus Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.
This parameter does not apply to single-bit buses.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Saturate Output On or Off When this option is on, if the output is greater than the maximum positive or
negative value to be represented, the output is forced (or saturated) to the
maximum positive or negative value, respectively. When off, the MSB is truncated.

Table 6–2. AltBus Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–2:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 6–3. Floating-Point Numbers Cast to Signed Binary Fractional

Bus Notation Input Simulink VHDL

[4].[1] 4/3 1.00 2

[2].[3] 4/3 1.25 10

[1].[4] 4/3 -0.6875 (1) -11

Note to Table 6–3:

(1) In this case, more bits are needed to represent the integer part of the number.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–3
AltBus

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 6–2 illustrates the usage of AltBus to convert a 20-bit bus with a ([10].[10])
signed binary fractional format to a 4-bit bus with a [2].[2] signed binary fractional
format.

In VHDL, this results in extracting a 4-bit bus (AltBus(3 DOWNTO 0)) from a 20-bit
bus (AltBus(19 DOWNTO 0)) with the assignment:

AltBus3(3 DOWNTO 0)) AltBus(11 DOWNTO 8))

Figure 6–1. Floating-Point Conversion

Figure 6–2. Internal Format Conversion

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–4 Chapter 6: IO & Bus Library
Binary Point Casting

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 6–3 shows AltBus blocks for sign extension.

1 You can also perform additional internal bus manipulation with the Altera Bus
Conversion, Extract Bit, or Bus Builder blocks.

Binary Point Casting
The Binary Point Casting block changes the binary point position for a signed
fractional bus type, or converts an integer to a fractional bus type.

The output bit width remains equal to the input bit width.

Table 6–4 shows the Binary Point Casting block parameters.

Table 6–5 shows the Binary Point Casting block I/O formats.

Figure 6–3. Sign Extension

Table 6–4. Binary Point Casting Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Output Binary
Point Position

>= 0
(Parameterizable)

Specifies the binary point location of the output.

Table 6–5. Binary Point Casting Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[Li].[Ri] I1: in STD_LOGIC_VECTOR({Li + Ri - 1} DOWNTO 0) Explicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–5
Bus Builder

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 6–4 shows a design example with the Binary Point Casting block.

Bus Builder
The Bus Builder block constructs an output bus from single-bit inputs. The output
bus is signed integer, unsigned integer, or signed binary fractional format. You can
specify the number of bits in each case.

The HDL mapping of the Bus Builder block is a simple wire.

The input MSB is at the bottom left of the symbol and the input LSB displays at the
top left of the symbol.

1 The Bus Builder block does not support sign extension. Instead use a an AltBus
block (Figure 6–3 on page 6–4).

Table 6–6 shows the Bus Builder block parameters.

O O1[LO].[RO] O1: out STD_LOGIC_VECTOR({LO + RO - 1} DOWNTO 0) Explicit

Notes to Table 6–5:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 6–5. Binary Point Casting Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 6–4. Binary Point Casting Block Example

Table 6–6. Bus Builder Block Parameters (Part 1 of 2)

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–6 Chapter 6: IO & Bus Library
Bus Builder

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 6–7 shows the Bus Builder block I/O formats.

Figure 6–5 shows a design example with the Bus Builder block.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed binary fractional buses.

Table 6–6. Bus Builder Block Parameters (Part 2 of 2)

Name Value Description

Table 6–7. Bus Builder Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[1]

…

Ii[1]

….

In[1]

I1: in STD_LOGIC

…

Ii: in STD_LOGIC

….

In: in STD_LOGIC

Explicit

...

Explicit

...

Explicit

O O1[LP].[RP] with LP + RP = n

where n is the number of inputs

O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–7:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 6–5. Bus Builder Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–7
Bus Concatenation

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Bus Concatenation
The Bus Concatenation block concatenates two buses.

The block has two inputs, a and b. These may be signed integer or unsigned integer.
The output width is width(a) + width(b).

Input a becomes the MSB part of the output, input b becomes the LSB part.

Table 6–8 shows the Bus Concatenation block parameters.

Table 6–9 shows the Bus Concatenation block I/O formats.

Figure 6–6 shows an example with the Bus Concatenation block.

Table 6–8. Bus Concatenation Block Parameters

Name Value Description

Output Is Signed On or Off Turn on if the output bus is signed.

Width of Input a >= 1
(Parameterizable)

Specifies the width of the first bus to concatenate.

Width of Input b >= 1
(Parameterizable)

Specifies the width of the second bus to concatenate.

Table 6–9. Bus Concatenation Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[N1]

I2[N2]

I1: in STD_LOGIC_VECTOR({N1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({N2 - 1} DOWNTO 0)

Explicit

O O1[N1 + N2] O1: out STD_LOGIC_VECTOR({N1 + N2 - 1} DOWNTO 0) Explicit

Notes to Table 6–9:

(1) For signed integers, the MSB is the sign bit.
(2) [N] is the number of bits.
(3) I1[N] is an input port. O1[N] is an output port.
(4) Explicit means that the port bit width information is a block parameter.

Figure 6–6. Bus Concatenation Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–8 Chapter 6: IO & Bus Library
Bus Conversion

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Bus Conversion
The Bus Conversion block extracts a subsection of a bus including bus type and
width conversion. If the input is in signed binary fractional format, you should
specify a left bit width (number of integer bits) and a right bit width (number of
fractional bits) for the output bus. If the input is an integer, specify the input bit to
connect to the output LSB.

1 If Input Bit Connected To Output LSB is on, the input bit indexing starts from 0. Do
not use this option with signed fractional type or with rounding.

Table 6–10 shows the Bus Conversion block parameters.

Table 6–11 shows the Bus Conversion block I/O formats.

Table 6–10. Bus Conversion Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The input bus type for the simulator, VHDL or both.

Input [number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point including the
sign bit.

Input [].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed binary fractional buses.

Output [number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point.

Output [].[number of bits] >= 0
(Parameterizable)

Specifies the number of bit on the right side of the binary point. This
parameter applies only to signed binary fractional buses.

Input Bit Connected to
Output LSB

>= 0
(Parameterizable)

Specifies the slice of the input bus to use. This parameter designates the
start point of the slice that is transferred to the output LSB and applies to
signed or unsigned integer buses only.

Round On or Off Turn on to round the output away from zero. When this option is off, the
LSM is truncated: <int>(input +0.5).

Saturate On or Off When this option is on, if the output is greater than the maximum positive
or negative value to be represented, the output is forced (or saturated) to
the maximum positive or negative value, respectively. If off, the MSB is
truncated.

Table 6–11. Bus Conversion Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[LPi].[RPi] I1: in STD_LOGIC_VECTOR({LPi + RPi - 1} DOWNTO 0) Explicit

O O1[LPO].[RPO] O1: out STD_LOGIC_VECTOR({LPO + LPO - 1} DOWNTO 0) Explicit

Notes to Table 6–11:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–9
Bus Splitter

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 6–7 shows a design example with the Bus Conversion block.

Bus Splitter
The Bus Splitter block splits a bus into single-bit outputs.

The output ports are numbered from LSB to MSB. You can specify the bus type that
you want to use, and specify the number of bits on either side of the binary point.

Table 6–12 shows the Bus Splitter block parameters.

Table 6–13 shows the Bus Splitter block I/O formats.

Figure 6–7. Bus Conversion Block Example

Table 6–12. Bus Splitter Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed binary fractional buses.

Table 6–13. Bus Splitter Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[LP].[RP] with LP + RP = n

where n is the number of inputs

I1: in STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–10 Chapter 6: IO & Bus Library
Constant

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 6–8 shows a design example with the Bus Splitter block.

Constant
The Constant block specifies a constant bus. The options available depend on the
selected bus type.

Table 6–14 shows the Constant block parameters.

O O1[1]

…

On[1]

O1: in STD_LOGIC

…

On: in STD_LOGIC

Explicit

...

Explicit

Notes to Table 6–7:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 6–13. Bus Splitter Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 6–8. Bus Splitter Block Example

Table 6–14. Constant Block Parameters (Part 1 of 2)

Name Value Description

Constant Value Double
(Parameterizable)

Specifies the constant value that is formatted with the specified bus type.

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

The number format of the bus.

[number of bits].[] >= 0 (Parameterizable) Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[].[number of bits] >= 0 (Parameterizable) Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–11
Constant

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 6–15 shows the Constant block I/O formats.

Figure 6–9 shows an example with the Constant block.

Rounding Mode Truncate,
Round Towards Zero,
Round Away From Zero,
Round To Plus Infinity,
Convergent Rounding

The rounding mode. Refer to the description of the Round block for more
information about the rounding modes.

Saturation Mode Wrap, Saturate The saturation mode.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined
(Parameterizable)

Specifies the name of the required clock signal.

Table 6–14. Constant Block Parameters (Part 2 of 2)

Name Value Description

Table 6–15. Constant Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–15:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 6–9. Constant Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–12 Chapter 6: IO & Bus Library
Extract Bit

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Extract Bit
The Extract Bit block reads a Simulink bus in the specified format and outputs the
single bit specified.

The selected bit is indexed starting from zero for the LSB and increasing to (total bit
width - 1) for the MSB.

Table 6–16 shows the Extract Bit block parameters.

Table 6–17 shows the Extract Bit block I/O formats.

Figure 6–10 shows a design example with the Extract Bit block.

Table 6–16. Extract Bit Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

Specifies the number format of the bus.

[number of bits].[] >= 0 (Parameterizable) Specifies the number of bits to the left of the binary point, including the
sign bit.

[].[number of bits] >= 0 (Parameterizable) Specifies the number of bits to the right of the binary point.

Select the Bit to be
Extracted From the Bus

>= 0 (Parameterizable) Specifies the input bit to extract.

Table 6–17. Extract Bit Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

O O1[1] O1: out STD_LOGIC Explicit

Notes to Table 6–17:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 6–10. Extract Bit Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–13
Global Reset

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Global Reset
The Global Reset (or SCLR) block provides a single bit reset signal. All signals
driven by the block are connected to the global reset for that clock domain. In
simulation, this block outputs a constant 0.

Table 6–18 shows the Global Reset block parameters.

Table 6–19 shows the Global Reset block I/O formats.

GND
The GND block is a single bit that outputs a constant 0. Table 6–20 shows the GND block
parameters.

Table 6–21 shows the GND block I/O formats.

Figure 6–11 shows a design example with the GND block.

Table 6–18. Global Reset Block Parameters

Name Value Description

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined (Parameterizable) Specifies the name of the required clock signal.

Table 6–19. Global Reset Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

O O1[1].[0] O1: out STD_LOGIC Explicit

Notes to Table 6–19:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 6–20. GND Block Parameters

Name Value Description

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined (Parameterizable) Specifies the name of the required clock signal.

Table 6–21. GND Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

O O1[1].[0] O1: out STD_LOGIC Explicit

Notes to Table 6–21:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–14 Chapter 6: IO & Bus Library
Input

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Input
The Input block defines the input boundary of a hardware system and casts
floating-point Simulink signals (from generic Simulink blocks) to signed binary
fractional format (feeding DSP Builder blocks).

Table 6–22 shows the Input block parameters.

Table 6–23 on page 6–15 shows the Input block I/O formats.

Figure 6–11. GND Block Example

Table 6–22. Input Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

Specifies the number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.
This parameter does not apply to single-bit buses.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined
(Parameterizable)

Specifies the name of the required clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–15
Non-synthesizable Input

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Non-synthesizable Input
The Non-synthesizable Input block marks an entry point to a non-synthesizable
DSP Builder system. Use a corresponding Non-synthesizable Output block to
mark the exit point. Because DSP Builder registers its own type with Simulink, this
block is required when the DSP Builder blocks are not intended to be synthesized.

Table 6–24 shows the Non-synthesizable Input block parameters.

Table 6–25 shows the Non-synthesizable Input block I/O formats.

Table 6–23. Input Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–23:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 6–24. Non-synthesizable Input Block Parameters

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

Specifies the number format of the bus.

[number of bits].[] >= 0
(Parameterizable)

Specifies the number of bits to the left of the binary point, including the sign bit.
This parameter does not apply to single-bit buses.

[].[number of bits] >= 0
(Parameterizable)

Specifies the number of bits to the right of the binary point. This parameter
applies only to signed fractional buses.

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined
(Parameterizable)

Specifies the name of the required clock signal.

Table 6–25. Non-synthesizable Input Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–23:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–16 Chapter 6: IO & Bus Library
Non-synthesizable Output

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Non-synthesizable Output
The Non-synthesizable Output block marks an exit point from a
non-synthesizable DSP Builder system. Use a corresponding Non-synthesizable
Input block to mark the entry point. Because DSP Builder registers its own type with
Simulink, this block is required when the DSP Builder blocks are not intended to be
synthesized. You can also use this block to create an non-synthesizable output from a
synthesizable system.

You can optionally specify the external Simulink type. If set to Simulink Fixed
Point Type, the bit width is the same as the DSP Builder input type. If set to
Double, the width may be truncated if the bit width is greater than 52.

Table 6–26 shows the Non-synthesizable Output block parameters.

Table 6–27 shows the Non-synthesizable Output block I/O formats.

Table 6–26. Non-synthesizable Output Block Parameters

Name Value Description

Bus Type Inferred, Signed Integer,
Unsigned Integer,
Signed Fractional,
Single Bit

Specifies the number format of the bus.

[number of bits].[] >= 0 (Parameterizable) Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[].[number of bits] >= 0 (Parameterizable) Specifies the number of bits to the right of the binary point. This
parameter applies only to signed fractional buses.

External Type Inferred,
Simulink Fixed Point Type,
Double

Specifies whether the external type is inferred from the Simulink block it
is connected to or explicitly set to either Simulink Fixed Point or Double
type. The default is Inferred.

Table 6–27. Non-synthesizable Output Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–29:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–17
Output

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Output
The Output block defines the output boundary of a hardware system and casts
signed binary fractional format (from DSP Builder blocks) to floating-point Simulink
signals (feeding generic Simulink blocks).

Output blocks map to output ports in VHDL and mark the edge of the generated
system. You normally connect these blocks to Simulink simulation blocks in your
testbench. Their outputs should not be connected to other Altera blocks.

You can optionally specify the external Simulink type. If set to Simulink Fixed
Point Type, the bit width is the same as the input. If set to Double, the width may
be truncated if the bit width is greater than 52.

Table 6–28 shows the Output block parameters.

Table 6–29 shows the Output block I/O formats.

Table 6–28. Output Block Parameters

Name Value Description

Bus Type Inferred, Signed Integer,
Unsigned Integer,
Signed Fractional,
Single Bit

The number format of the bus.

[number of bits].[] >= 0 (Parameterizable) Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[].[number of bits] >= 0 (Parameterizable) Specifies the number of bits to the right of the binary point. This
parameter applies only to signed fractional buses.

External Type Inferred,
Simulink Fixed Point Type,
Double

Specifies whether the external type is inferred from the Simulink block it
is connected to or explicitly set to either Simulink Fixed Point or Double
type. The default is Inferred.

Table 6–29. Output Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit - Optional

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–29:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–18 Chapter 6: IO & Bus Library
Round

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Round
The Round block rounds the input to the closest possible representation in the
specified output bus format. If the nearest two possibilities are equidistant, you can
specify from the available rounding modes:

■ Truncate: Remove discarded bits without changing the other bits; effectively,
specify the lower value. This is the simplest and fastest mode to implement in
hardware.

■ Round Towards Zero: Specify the value closer to zero.

■ Round Away From Zero: Specify the value further from zero (round downwards
for negative values, upwards for positive values). This was the rounding behavior
in DSP Builder version 7.0 and before. When using this mode —the maximum
positive value overflows the available representation. For example, when
rounding from an 8-bit signed input to a 6-bit signed output, 01111111 (127)
becomes 100000 (-32). If you use this mode, it is best to use saturation logic to
prevent this from happening.

■ Round To Plus Infinity: Specify the higher value.

■ Convergent Rounding: Specify the even value. For a large sample of random
input values there is no bias —on average the same number of values round
upwards as downwards.

1 When using Simulink fixed-point types, MATLAB supports the following rounding
options: Zero, Nearest (equivalent to Round Away From Zero), Ceiling, Floor
(equivalent to Truncate), and Simplest. The MATLAB Zero and Ceiling modes round
all intermediate values up or down and have no DSP Builder equivalent. This is
because the DSP Builder modes (except Truncate) always specify the nearest
representable value and the rounding mode applies only to values that are equidistant
from two representable values. For example, 0.9 rounds to 1 (for all modes except
Truncate) but the MATLAB Zero mode rounds 0.9 to 0. Similarly 0.1 rounds to 0 but
the MATLAB Ceiling mode rounds 0.1 to 1.

Table 6–30 shows the Round block parameters.

Table 6–30. Round Block Parameters (Part 1 of 2)

Name Value Description

Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 2 (Parameterizable) Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[].[number of bits] >= 0 (Parameterizable) Specifies the number of bits to the right of the binary point. This
parameter applies only to signed fractional buses.

Number of LSB Bits
to Remove

>= 0 (Parameterizable) Specifies how many bits to remove.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–19
Round

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 6–31 shows the Round block I/O formats.

Figure 6–12 shows a design example with the Round block.

Rounding Mode Truncate,
Round Towards Zero,
Round Away From Zero,
Round To Plus Infinity,
Convergent Rounding

The rounding mode.

Enable Pipeline On or Off Turn on if you want to pipeline the function.

Use Enable Port (1) On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port (1)

On or Off Turn on to use the asynchronous clear input (aclr).

Note to Table 6–30:

(1) These ports are available only when you enable pipeline.

Table 6–30. Round Block Parameters (Part 2 of 2)

Name Value Description

Table 6–31. Round Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[1]

I3[1]

I1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Explicit

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–31:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 6–12. Round Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–20 Chapter 6: IO & Bus Library
Saturate

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Saturate
The Saturate block limits output to a maximum value. If the output is greater than
the maximum positive or negative value to be represented, the output is forced (or
saturated) to the maximum positive or negative value, respectively. Alternatively, you
can truncate the MSB.

Table 6–32 shows the Saturate block parameters.

Table 6–32. Saturate Block Parameters

Name Value Description

Input Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The number format of the bus.

[number of bits].[] >= 2 (Parameterizable) Specifies the number of bits to the left of the binary point, including the
sign bit. This parameter does not apply to single-bit buses.

[].[number of bits] >= 0 (Parameterizable) Specifies the number of bits to the right of the binary point. This
parameter applies only to signed fractional buses.

Number of MSB Bits to
Remove

>= 0 (Parameterizable) Specifies how many bits to remove.

Saturation Type Saturate,
Truncate MSB,
Enter Saturation Limits

Saturate, truncate, or specify the saturation limits for the output.

Upper Saturation Limit Integer
(Parameterizable)

Specifies the upper saturation limit when Saturation Type is set to Enter
Saturation Limits.

Lower Saturation Limit Integer
(Parameterizable)

Specifies the lower saturation limit when Saturation Type is set to Enter
Saturation Limits.

Enable Pipeline On or Off Turn on if you want to pipeline the function.

Use Saturation
Occurred Port

On or Off Turn on to use the saturation occurred input (sat_flag).

Use Enable Port (1) On or Off Turn on to use the clock enable input (ena).

Use Asynchronous
Clear Port (1)

On or Off Turn on to use the asynchronous clear input (aclr).

Note to Table 6–30:

(1) These ports are available only when you enable pipeline.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 6: IO & Bus Library 6–21
VCC

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 6–33 shows the Saturate block I/O formats.

Figure 6–13 shows a design example with the Saturate block.

VCC
The VCC block outputs a single-bit constant 1.

Table 6–34 shows the VCC block parameters.

Table 6–33. Saturate Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[1]

I3[1]

I4[1]

I1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

I4: in STD_LOGIC

Explicit

O O1[LP].[RP] O1: out STD_LOGIC_VECTOR({LP + RP - 1} DOWNTO 0) Explicit

Notes to Table 6–33:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 6–13. Saturate Block Example

Table 6–34. VCC Block Parameters

Name Value Description

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock User defined
(Parameterizable)

Specifies the name of the required clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

6–22 Chapter 6: IO & Bus Library
VCC

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 6–35 shows the VCC block I/O formats.

Figure 6–14 shows a design example with the VCC block.

Table 6–35. VCC Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

O O1[1] O1: out STD_LOGIC Explicit

Notes to Table 6–35:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 6–14. VCC Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

7. Rate Change Library

The Rate Change library contains the following blocks that allow you to control the
clock assignment to registered DSP Builder blocks, such as Delay or Increment
Decrement blocks:

■ Clock

■ Clock_Derived

■ Dual-Clock FIFO

■ Multi-Rate DFF

■ PLL

■ Tsamp

f For information about the Clock and Clock_Derived blocks, refer to Chapter 1,
AltLab Library. For information about the Dual-Clock FIFO block, refer to
Chapter 9, Storage Library.

Multi-Rate DFF
The Multi-Rate DFF block implements a D-type flipflop and typically specifies
sample rate transitions.

1 Simulation of the Multi-Rate DFF block may not match hardware because of
limitations in the way DSP Builder simulates multiclock designs. Typically,
differences may occur when moving from a slow to a fast clock domain. In such cases,
an error message of the following form issues in the MATLAB command window:

Warning: simulation will not match hardware

If your design allows, increasing the latency of the Multi-Rate DFF block to at least
one slow clock period should result in correct simulation results.

If the clocks are asynchronous, simulations do not match hardware. Do not use a
Multi-Rate DFF block to cross asynchronous clock domains, otherwise data is
corrupted or lost. Use a Dual-Clock FIFO block instead to guarantee correct data
transfer.

Table 7–1 shows the Multi-Rate DFF block inputs and outputs.

Table 7–1. Multirate DFF Block Inputs and Outputs

Signal Direction Description

d Input Input data port.

q Output Output data port.

ena Input Optional clock enable port.

sclr Input Optional synchronous clear port.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–2 Chapter 7: Rate Change Library
Multi-Rate DFF

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 7–2 shows the Multi-Rate DFF block parameters.

Table 7–3 shows the Multi-Rate DFF block I/O formats.

Figure 7–1 shows an design example with the Multi-Rate DFF block.

Table 7–2. Multi-Rate DFF Block Parameters

Name Value Description

Number of Pipeline
Stages

>= 1
(Parameterizable)

Adds more pipeline stages to the block. Increased delay reduces the likelihood of
metastability.

Use Base Clock On or Off Turn on to use the base clock.

Clock Name User specified Specify the name of the clock signal.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous
Clear Port

On or Off Turn on to use the synchronous clear input (sclr).

Table 7–3. Multi-Rate DFF Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[R]

I2[1]

I3[1]

I1: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Implicit

O O1[L].[R] O1: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0) Implicit

Notes to Table 7–3:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 7–1. Multirate DFF Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Rate Change Library 7–3
PLL

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

PLL
The PLL block generates a clock signal that is based on a reference clock.

Phase-locked loops (PLL) have become an important building block of most
high-speed digital systems today. Their use ranges from improving timing as zero
delay lines to full-system clock synthesis. The Arria, Cyclone, and Stratix series device
families offer advanced on-chip PLL features that were previously offered only by the
most complex discrete devices.

Each PLL has multiple outputs that can source any of the 40 system clocks in the
devices to give you complete control over your clocking needs. The PLLs offer full
frequency synthesis capability (the ability to multiply up or divide down the clock
period) and phase shifting for optimizing I/O timing. Additionally, the PLLs have
high-end features such as programmable bandwidth, spread spectrum, and clock
switchover.

The PLL block generates internal clocks with frequencies that are multiples of the
frequency of the system clock. PLLs on the FPGA can simultaneously multiply and
divide the reference clock. The PLL block checks the validity of the parameters.

1 If you use a PLL block to define clock signals when there is no Clock block in your
design, the PLL-derived clocks might not pass the derived period correctly to the
blocks referencing the PLL-derived clock. Always explicitly include a Clock block
with a PLL block.

The number of PLL internal clock outputs supported by each device family depends
on the specific device packaging.

f For information about the built-in PLLs, refer to the device handbook for the device
family you target.

The following restrictions apply when you use a PLL block:

■ Your design may contain more than one PLL block but they must be at the top
level.

■ Each output clock of the PLL has a zero degree phase shift and 50% duty cycle.

Table 7–4 shows the PLL block parameters.

Table 7–4. PLL Block Parameters (Part 1 of 2)

Name Value Description

Input Clock: User specified Specify the name of the input clock signal.

Use Base Clock On or Off Turn on to use the base clock.

Number of Output Clocks 1–9 The number of PLL clock outputs.

Output Clocks <PLL block name>_clk0 to
<PLL block name>_clk8

Select the PLL clock that you want to set frequency multiplier and
divider factors for.

Period Multiplier (1) Multiply the reference clock period by this value.

Period Divider (1) Divide the reference clock period by this value.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–4 Chapter 7: Rate Change Library
Tsamp

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Tsamp
The Tsamp block sets the clock domain inherited by all downstream blocks.

1 When you use the Tsamp block, you must select a variable step solver in the Simulink
configuration parameters. Unless the downstream clock is an exact, slower multiple
of the upstream clock, the simulation results may not match ModelSim; in this case it
is better to use a Multi-Rate DFF block.

Table 7–5 shows the Tsamp block inputs and outputs.

Table 7–6 shows the Tsamp block parameters.

Table 7–7 shows the Tsamp block I/O formats.

Figure 7–2 on page 7–5 shows an design example with the Tsamp block.

Export As Output Pin On or Off Turn on to export this clock as an output pin.

Note to Table 7–4:

(1) Refer to the device documentation for the device family you target.

Table 7–4. PLL Block Parameters (Part 2 of 2)

Name Value Description

Table 7–5. Tsamp Block Inputs and Outputs

Signal Direction Description

<unnamed> Input Input data port.

<unnamed> Output Output data port.

Table 7–6. Tsamp Block Parameters

Name Value Description

Specify Clock On or Off Turn on to explicitly specify the clock name.

Clock Name User specified Specify the name of the Clock block that specifies the clock signal.

Table 7–7. Tsamp Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L].[R] I1: in STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0) Implicit

O O1[L].[R] O1: out STD_LOGIC_VECTOR({L + R - 1} DOWNTO 0) Implicit

Notes to Table 7–7:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 7: Rate Change Library 7–5
Tsamp

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

This design example is available in the <DSP Builder install path>\DesignExamples
\Demos\Filters\Filters\CicFilter directory.

Figure 7–2. Tsamp Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

7–6 Chapter 7: Rate Change Library
Tsamp

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

8. Simulation Library

The Simulation library contains the following simulation-only blocks that do not
synthesize to HDL when Signal Compiler runs:

■ External RAM

■ Multiple Port External RAM

External RAM
The External RAM block is a simulation model of an external RAM. The External
RAM block stores and retrieves data from a range of addresses and is compatible with
the Avalon-MM interface.

f For information about the Avalon-MM interface, refer to Avalon Interface Specifications.

This block is not cycle-accurate and a warning issues if you use it in a gate level
(cycle-accurate) simulation.

1 If 64 or 128 bit data width is specified, the block attempts to use a Simulink
fixed-point license. If you do not have a Simulink fixed-point license., you can only
use 8, 16 or 32 bit data widths.

f For information about fixed-point licenses, refer to the Simulink Help.

This is a simulation only block, and does not generate any HDL when Signal
Compiler is run.

Table 8–1 shows the External RAM block inputs and outputs.

Table 8–1. External RAM Block Inputs and Outputs (Part 1 of 2)

Signal Direction Description

WriteData Input Data lines for write transfers. Not required if there are no write transfers. If used,
also use Write.

WriteAddress Input Address lines for write transfers.

ReadAddress Input Address lines for read transfers.

Read Input Read request signal. Not required if there are no read transfers. If used, also use
ReadData.

Write Input Write request signal. Not required if there are no write transfers. If used, also use
WriteData.

ReadData Output Data lines for read transfers. Not required if there are no read transfers. If used, also
use Read.

WriteWaitRequest Output Stalls the interface when the Avalon-MM interface cannot respond immediately to a
write request.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–2 Chapter 8: Simulation Library
External RAM

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 8–2 shows the External RAM block parameters.

Figure 8–1 shows an design example with the External RAM block.

ReadWaitRequest Output Stalls the interface when the Avalon-MM interface cannot respond immediately to a
read request.

ReadDataValid Output Marks the rising clock edge when ReadData is asserted. Indicates that valid data
is present on the ReadData lines.

Table 8–1. External RAM Block Inputs and Outputs (Part 2 of 2)

Signal Direction Description

Table 8–2. External RAM Block Parameters

Name Value Description

Data Width 8, 16, 32, 64,
or 128

Specifies the number of bits for the data. No other values are supported. 64 and
128 bit data widths require a Simulink fixed-point license.

Address Width 1–32 Specifies the number of bits n for the address.

Wait States Per Write 0–10 Specifies a fixed number of wait states for each write transfer.

Maximum Latency 1–255 Specifies the latency for pipelined read transfers.

Size 1–2n (Note 1) Specifies the total size of the RAM in bytes (the number of addresses when you
use a range of addresses).

Offset 1–2n (Note 1) Specifies an offset for the RAM start address (the start address when you use a
range of addresses.

Notes to Table 8–2

(1) The size added to the offset must be less than 2n where n is the address width.

Figure 8–1. External RAM Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 8: Simulation Library 8–3
Multiple Port External RAM

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Multiple Port External RAM
The Multiple Port External RAM block is a simulation model of a multiple port
external RAM block. It stores and retrieves data from a range of addresses and is
compatible with the Avalon-MM interface.

f For information about the Avalon-MM interface, refer to Avalon Interface Specifications.

This block is not cycle-accurate and a warning issues if you use it in a gate level
(cycle-accurate) simulation.

1 If 64 or 128 bit data width is specified, the block attempts to use a Simulink
fixed-point license. If you do not have a Simulink fixed-point license., you can only
use 8, 16 or 32 bit data widths.

f For information about fixed-point licenses, refer to the Simulink Help.

This is a simulation only block, and does not generate any HDL when you run Signal
Compiler.

The ports on the block symbol update when you change the number of write or read
interfaces. However, the port names do not automatically show on the block symbol.
To display the updated block symbol correctly, perform the following steps:

1. Click on the block, point to Link Options in the popup menu and click Break
Link.

2. While the block is still selected, run the following command in MATLAB:

alt_dspbuilder_update_external_RAM

Table 8–3 shows the Multiple Port External RAM block inputs and outputs.

Table 8–3. Multiple Port External RAM Block Inputs and Outputs

Signal Direction Description

WriteDataN Input Data lines for write transfers on port N.

WriteAddressN Input Address lines for write transfers on port N.

WriteEnableN Input Write enable for transfers on port N.

WriteBurstCountN Input Write burst count for transfers on port N.

ReadAddressN Input Address lines for read transfers on port N.

ReadEnableN Input Read enable for transfers on port N.

ReadBurstCountN Input Read burst count for transfers on port N.

WriteWaitRequestN Output Stalls the interface when the Avalon-MM interface cannot respond immediately to a
write request on port N.

ReadDataN Output Data lines for read transfers on port N.

ReadDataValidN Output Marks the rising clock edge when ReadDataN is asserted. Indicates that valid
data is present on the ReadDataN lines.

ReadWaitRequestN Output Stalls the interface when the Avalon-MM interface cannot respond immediately to a
read request on port N.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

8–4 Chapter 8: Simulation Library
Multiple Port External RAM

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 8–4 shows the Multiple Port External RAM block parameters.

Table 8–4. Multiple Port External RAM Block Parameters

Name Value Description

Number of Write Interfaces 0–5 Specifies the number of write ports.

Number of Read Interfaces 0–5 Specifies the number of read ports.

Data Width 8, 16, 32, 64,
or 128

Specifies the number of bits for the data. No other values are supported. 64
and 128 bit data widths require a Simulink fixed-point license.

Address Width 1–32 Specifies the number of bits n for the address.

Wait States Per Write 0–10 Specifies a fixed number of wait states for each write transfer.

Maximum Latency 1–255 Specifies the latency for pipelined read transfers.

Size 1–2n (Note 1) Specifies the total size of the RAM in bytes (the number of addresses when
you use a range of addresses).

Offset 1–2n (Note 1) Specifies an offset for the RAM start address (the start address when you use
a range of addresses.

Notes to Table 8–4

(1) The size added to the offset must be less than 2n where n is the address width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

9. Storage Library

The Storage library contains the following blocks, which support storage and
associated control functions:

■ Delay

■ Down Sampling

■ Dual-Clock FIFO

■ Dual-Port RAM

■ FIFO Buffer

■ LUT (Look-Up Table)

■ Memory Delay

■ Parallel To Serial

■ ROM

■ Serial To Parallel

■ Shift Taps

■ Single-Port RAM

■ True Dual-Port RAM

■ Up Sampling

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–2 Chapter 9: Storage Library
Delay

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Delay
The Delay block delays the incoming data by an amount specified by the number of
pipeline stages. The block accepts any data type as inputs.

Table 9–1 shows the Delay block inputs and outputs.

Table 9–2 shows the Delay block parameters.

Table 9–3 shows the Delay block I/O formats.

Table 9–1. Delay Block Inputs and Outputs

Signal Direction Description

<unnamed> Input Input data port.

ena Input Optional clock enable port.

sclr Input Optional synchronous clear port.

<unnamed> Output Output data port.

Table 9–2. Delay Block Parameters

Name Value Description

Number of Pipeline
Stages

User Defined
(Parameterizable)

Specify the pipeline length of the block. The delay must be greater than or equal to
1.

Clock Phase
Selection

User Defined Specify the phase selection with a binary string, where a 1 indicates the phase in
which the Delay block is enabled. For example:

1—The block is always enabled and captures all data passing through the block
(sampled at the rate 1).

10—The block is enabled every other phase and every other data (sampled at
the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second data
of (sampled at the rate 1) passes through. That is, the data on phases 1, 3, and
4 do not pass through the delay block.

Use Enable Port On or Off Turn on to use the clock enable input (ena).

Use Synchronous
Clear Port

On or Off Turn on to use the synchronous clear input (sclr).

Reset To Constant
(Non-Zero) Value

On or Off Turn on to specify a non-zero reset value. Specifying a reset value increases the
hardware resources.

Reset Value User Defined
(Parameterizable)

Specify the reset value.

Table 9–3. Delay Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[1]

I3[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Implicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–3
Down Sampling

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 9–1 shows an example with the Delay block.

Down Sampling
The Down Sampling block decreases the output sample rate from the input sample
rate. The output data is sampled at every Nth cycle where N is the down sampling
rate. The output data is then held constant for the next N input cycles.

Table 9–4 shows the Down Sampling block inputs and outputs.

Table 9–5 shows the Down Sampling block parameters.

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Notes to Table 9–3:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 9–3. Delay Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 9–1. Delay Block Example

Table 9–4. Down Sampling Block Inputs and Outputs

Signal Direction Description

d Input Input data port.

q Output Output data port.

Table 9–5. Down Sampling Block Parameters

Name Value Description

Down Sampling Rate An integer greater than 1
(Parameterizable)

Specify the down sampling rate.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–4 Chapter 9: Storage Library
Dual-Clock FIFO

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 9–6 shows the Down Sampling block I/O formats.

Figure 9–2 shows an example with the Down Sampling block.

Dual-Clock FIFO
The Dual-Clock FIFO block implements a parameterized, dual-clock FIFO buffer
controlled by separate read-side and write-side clocks.

1 The Dual-Clock FIFO block simulation in Simulink is functionally equivalent to
hardware, but not cycle-accurate.

Table 9–7 shows the Dual-Clock FIFO block inputs and outputs.

Table 9–6. Down Sampling Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Notes to Table 9–6:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–2. Down Sampling Block Example

Table 9–7. Dual-Clock FIFO Block Inputs and Outputs (Part 1 of 2)

Signal Direction Description

d Input Data input to the FIFO buffer.

wrreq Input Write request control. The d[] port is written to the FIFO buffer.

rdreq Input Read request control. The oldest data in the FIFO buffer goes to the q[] port.

aclr Input Optional asynchronous clear input, which flushes the FIFO.

q Output Data output from the FIFO buffer.

rdfull Output Optional output synchronized to the read clock. Indicates that the FIFO buffer is full and
disables the wrreq port.

rdempty Output Optional output synchronized to the read clock. Indicates that the FIFO buffer is empty and
disables the rdreq port.

rdusedw Output Optional output synchronized to the read clock. Indicates the number of words that are in the
FIFO buffer.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–5
Dual-Clock FIFO

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 9–8 shows the Dual-Clock FIFO block parameters.

wrfull Output Optional output synchronized to the write clock. Indicates that the FIFO buffer is full and
disables the wrreq port.

wrempty Output Optional output synchronized to the write clock. Indicates that the FIFO buffer is empty and
disables the rdreq port.

wrusedw Output Optional output synchronized to the write clock. Indicates the number of words that are in the
FIFO buffer.

Table 9–7. Dual-Clock FIFO Block Inputs and Outputs (Part 2 of 2)

Signal Direction Description

Table 9–8. Dual-Clock FIFO Block Parameters

Name Value Description

Number of Words in the FIFO Integer
(Parameterizable)

Specify the FIFO depth

Input Bus Type Signed Integer,
Unsigned Integer,
Signed Fractional

The bus type format.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits stored on the left side of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option
applies only to signed fractional formats.

Memory Block Type AUTO, M512, M4K,
M9K, MLAB, M144K

The FPGA RAM type. Some memory types are not available for all
device types.

Use Base Clock for Read Side On or Off Turn on to use the base clock signal for the read-side clock.

Read-Side Clock User defined Specify the read-side clock signal when not using the base clock.

Use Base Clock for Write
Side

On or Off Turn on to use the base clock signal for the write-side clock.

Write-Side Clock User defined Specify the write-side clock signal when not using the base clock.

Use Read-Side Synchronized
EMPTY Port

On or Off Turn on to use the read-side empty port (rdempty).

Use Read-Side Synchronized
FULL Port

On or Off Turn on to use the read-side full port (rdfull).

Use Read-Side Synchronized
USEDW Port

On or Off Turn on to use the read-side words port (rdusedw).

Use Write-Side Synchronized
EMPTY Port

On or Off Turn on to use the write-side empty port (wrempty).

Use Write-Side Synchronized
EMPTY Port

On or Off Turn on to use the write-side empty port (wrfull).

Use Write-Side Synchronized
USEDW Port

On or Off Turn on to use the write-side words port (wrusedw).

Use Asynchronous Clear Port On or Off Turn on to use the asynchronous clear port (aclr).

Register Output On or Off Turn on to register the output ports. This mode is faster but larger.

Implement FIFO with logic
Cells Only

On or Off Turn on to implement the FIFO buffer with logic cells only.

Use Show-Ahead Mode of
Read Request

On or Off Turn on to use the show-ahead mode of read-request.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–6 Chapter 9: Storage Library
Dual-Clock FIFO

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 9–9 shows the Dual-Clock FIFO block I/O formats.

Figure 9–3 shows an example with the Dual-Clock FIFO block.

Table 9–9. Dual-Clock FIFO Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[1]

I3[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Explicit

Explicit

Explicit

O O1[L1].[R1]

O2[1]

O3[1]

O4[1]

O5[1]

O6[L2].[0]

O7[L2].[0]

O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

O2: out STD_LOGIC

O3: out STD_LOGIC

O4: out STD_LOGIC

O5: out STD_LOGIC

O6: out STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)

O7: out STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)

Explicit

Explicit

Explicit

Explicit

Explicit

Explicit-optional

Explicit-optional

Notes to Table 9–9:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–3. Dual-Clock FIFO Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–7
Dual-Port RAM

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Dual-Port RAM
The Dual-Port RAM block maps data to an embedded RAM (embedded array block,
EAB; or embedded system block, ESB) in Altera devices. The read and write ports are
separate.

The Dual-Port RAM block accepts any data type as input. The input port always
registers and the output port can optionally be registered.

1 The input address bus must be unsigned. The clock enable signal (ena) bypasses any
output register.

Turning on DONT_CARE may give a higher fMAX for your design, especially if the
memory implements as a MLAB. When this option is on, the output is not
double-registered (and therefore, in the case of MLAB implementation, uses fewer
external registers), and you gain an extra half-cycle on the output. The default is off,
which outputs old data for read-during-write.

f For more information about this option, refer to the Read-During-Write Output Behavior
section in the RAM Megafunction User Guide.

The contents of the RAM are pre-initialized to zero by default. Use an Intel
Hexadecimal (.hex) file or MATLAB array to specify them. Use the Quartus II
software to generate a.hex file that must be in your DSP Builder working directory.

The data in a standard .hex file is formatted in multiples of eight and the output bit
width should also be in multiples of eight. The Quartus II software does allow you to
create non-standard .hex files but pads 1's to the front for negative numbers to make
them multiples of eight. Thus, large numbers with less bits may be treated as negative
numbers. A warning issues if you specify a non-standard .hex file. If you require a
different bit width, you should set the output bit width to the same as that in the .hex
file but use an AltBus block to convert to the required bit width. DSP Builder
supports 32-bit addressing with extended linear address records in the .hex file.

f For instructions on creating this file, refer to Creating a Memory Initialization File or
Hexadecimal (Intel-Format) File in the Quartus II Help.

The MATLAB array parameter must be a one dimensional MATLAB array with a
length less than or equal to the number of words. Specify the array from the MATLAB
workspace or directly in the MATLAB Array box.

Table 9–10 shows the Dual-Port RAM block inputs and outputs.

Table 9–10. Dual-Port RAM Block Inputs and Outputs

Signal Direction Description

d Input Input data port.

rd_add Input Read address bus.

wr_add Input Write address bus.

wren Input Write enable.

ena Input Optional clock enable port

q_a Output Output data port.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–8 Chapter 9: Storage Library
Dual-Port RAM

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 9–11 shows the Dual-Port RAM block parameters.

Table 9–11. Dual-Port RAM Block Parameters (Part 1 of 2)

Name Value Description

Number of words >= 1
(Parameterizable)

Specify the address width in words.

Data Type Inferred,
Signed Integer,
Unsigned Integer,
Signed Fractional

The input data type format.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits stored on the left side of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option
applies only to signed fractional formats.

Memory Block Type AUTO, M512, M4K,
M-RAM, M9K,
MLAB, M144K

The FPGA RAM memory block type. Some RAM memory types are not
available for all device types. If you specify M-RAM, the RAM is always
initialized to unknown in the hardware and simultaneous read/writes to
the same address also give unknown in hardware. Simulink does not
modify the unknowns , and comparisons with ModelSim shows
differences.

Use DONT_CARE when
reading from and writing
to the same address

On or Off If the memory block type is set to AUTO, setting DONT_CARE gives more
flexibility in RAM block placement. If the implementation is set to MLAB,
the design uses fewer external registers, because the output is not double
registered, and the resulting memory block can often be run at a higher
fMax. However, the output in hardware when reading from and writing to
the same address is unpredictable. In ModelSim simulation, unknowns
(X) are output when reading from and writing to the same address. The
Simulink simulation is unchanged whether or not you use this option, but
a warning message issues on every simultaneous read/write to the same
address. If you compare the simulation results to ModelSim, you see
mismatches associated with any read/write to the same address events.
When this option is set, ensure that the same address is not read from
and written to at the same time or that your design does not depend on
the read output in these circumstances. By default this option is off, and
data is always read before write.

Initialization Blank, From HEX file,
From MATLAB array

Specify the initialization. If Blank is selected, the contents of the RAM
are pre-initialized to zero.

Input HEX File User defined Specify the name of a .hex file, which must be in your DSP Builder
working directory. For example: input.hex. DSP Builder supports
32-bit addressing with extended linear address records in the .hex file.

MATLAB Array User defined
(Parameterizable)

Specify a one-dimensional MATLAB array with a length less than or equal
to the number of words. For example: [0:1:15]

Register output Port On or Off Turn on to register the output port.

Use Enable Port On or Off Turn on to use the optional clock enable input (ena).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–9
Dual-Port RAM

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 9–12 shows the Dual-Port RAM block I/O formats.

Figure 9–4 shows an example with the Dual-Port RAM block.

Clock Phase Selection User Defined Specify the phase selection with a binary string, where a 1 indicates the
phase in which the block enables. For example:

1—The block is always enabled and captures all data passing through
the block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the
second data of (sampled at the rate 1) passes through. That is, the
data on phases 1, 3, and 4 do not pass through the block.

Table 9–11. Dual-Port RAM Block Parameters (Part 2 of 2)

Name Value Description

Table 9–12. Dual-Port RAM Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[L2].[0]

I3[L2].[0]

I4[1]

I5[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)

I3: in STD_LOGIC_VECTOR({L3 - 1} DOWNTO 0)

I4: in STD_LOGIC

I5: in STD_LOGIC

Explicit

O O1[L1].[R1] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Notes to Table 9–12:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–4. Dual-Port RAM Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–10 Chapter 9: Storage Library
FIFO Buffer

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

FIFO Buffer
The FIFO block implements a parameterized, single-clock FIFO buffer.

1 Reading an empty FIFO buffer may give unknown (X) in hardware.

Table 9–13 shows the FIFO block inputs and outputs.

Table 9–14 shows the FIFO block parameters.

Table 9–13. FIFO Block Inputs and Outputs

Signal Direction Description

d Input Data input to the FIFO buffer.

wrreq Input Write request control. The d[] port is written to the FIFO buffer.

rreq Input Read request control. The oldest data in the FIFO buffer goes to the q[] port.

sclr Input Optional synchronous clear port that flushes the FIFO.

q Output Data output from the FIFO buffer.

full Output Indicates that the FIFO buffer is full and disables the wrreq port.

empty Output Indicates that the FIFO buffer is empty and disables the rreq port.

usdw Output Indicates the number of words that are in the FIFO buffer.

Table 9–14. FIFO Block Parameters

Name Value Description

Number of Words in
the FIFO

User Defined
(Parameterizable)

Specify how many words you want in the FIFO buffer. The default is 64.

Data Type Inferred,
Signed Integer,
Signed Fractional,
Unsigned Integer

The data input type format.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits stored on the left side of the binary point
including the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits stored on the right side of the binary point. This
option applies only to signed fractional.

Memory Block Type AUTO, M512, M4K,
M9K, MLAB, M144K

The RAM block type. Some memory types are not available for all device
types.

Use Synchronous
Clear Port

On or Off Turn on to use the synchronous clear port (sclr).

Implement FIFO with
logic Cells Only

On or Off Turn on to implement the FIFO buffer with logic cells only.

Use Show-Ahead
Mode of Read Request

On or Off Turn on to use the show-ahead mode of read-request.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–11
LUT (Look-Up Table)

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 9–15 shows the FIFO block I/O formats.

Figure 9–5 shows an example with the FIFO block.

LUT (Look-Up Table)
The LUT (Look-Up Table) block stores data as 2(address width) words of data in a look-up
table. The values of the words are specified in the data vector field as a MATLAB
array.

Depending on the look-up table size, the synthesis tool may use logic cells or
embedded array blocks (EABs), embedded system blocks (ESBs), or TriMatrix™
memory.

1 If you want to use a .hex to store data, use the ROM block not the LUT block.

Table 9–15. FIFO Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[1]

I3[1]

I4[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

I4: in STD_LOGIC

Explicit

O O1[L1].[R1]

O2[1]

O3[1]

O4[L2].[0]

O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

O2: out STD_LOGIC

O3: out STD_LOGIC

O4: out STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)

Explicit

Notes to Table 9–15:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–5. FIFO Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–12 Chapter 9: Storage Library
LUT (Look-Up Table)

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 9–16 shows the LUT block parameters.

Table 9–17 shows the LUT block I/O formats.

Table 9–16. LUT Block Parameters

Name Value Description

Address Width 2–16 The address width as an unsigned integer.

Data Type Signed Integer,
Signed Fractional,
Unsigned Integer,
Single Bit

The data type format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of data bits stored on the left side of the binary point
including the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of data bits stored on the right side of the binary point.

MATLAB Array User Defined
(Parameterizable)

This field must be a one-dimensional MATLAB array with a length smaller than
2 to the power of the address width. A warning is given if the values in the
MATLAB array cannot be exactly represented in the chosen data format.

Use Enable Port On or Off Turn on to use the optional clock enable input (ena).

Register Data On or Off Turn on to register the output result.

Use LPM On or Off When on, the look-up table implements as case conditions with the lpm_rom
library of parameterized modules (LPM) function. You should turn on this
option for large look-up tables, for example, greater than 8 bits. The input
address always registers when this option is on.

Register Address On of Off When register address is on, the input address bus generates. If you use LPM,
the input address is always registered.

Memory Block Type AUTO, M512, M4K,
M9K, MLAB, M144K

The RAM block type. Some memory types are not available for all device types.

Table 9–17. LUT Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[0]

I2[1]

I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)

I2: in STD_LOGIC

Explicit

O O1[LPO].[RPO] O1: out STD_LOGIC_VECTOR({LPO + LPO - 1} DOWNTO 0)

Notes to Table 9–17:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–13
Memory Delay

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 9–6 shows an example with the LUT block.

Memory Delay
The Memory Delay block implements a shift register that uses the Altera device’s
embedded memory blocks, when possible. You should typically use this block for
delays greater than 3.

Table 9–21 shows the Memory Delay block inputs and outputs.

Table 9–19 shows the Memory Delay block parameters.

Figure 9–6. LUT Block Example

Table 9–18. Memory Delay Block Inputs and Outputs

Signal Direction Description

d Input Input data port.

ena Input Optional clock enable port.

sclr Input Optional synchronous clear port.

q Output Output data port.

Table 9–19. Memory Delay Block Parameters

Name Value Description

Data Type Inferred,
Signed Integer,
Signed Fractional,
Unsigned Integer

The data type format that you want to use.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of data bits stored on the left side of the binary
point including the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of data bits stored on the right side of the binary
point.

Number of Pipeline Stages 0 to number of bits
(Parameterizable)

When non-zero, adds pipeline stages to increase the data throughput.
The clock enable and synchronous clear ports are available only if the
block is registered (that is, if the number of pipeline stages is greater
than or equal to 1).

Memory Block Type AUTO, M512, M4K,
M9K, MLAB, M144K

The RAM block type. Some memory types are not available for all
device types.

Use Enable Port On or Off Turn on to use the clock enable input.

Use Synchronous Clear Port On or Off Turn on to use the synchronous clear port (sclr).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–14 Chapter 9: Storage Library
Parallel To Serial

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 9–20 shows the Memory Delay block I/O formats.

Figure 9–7 shows an example with the Memory Delay block.

Parallel To Serial
The Parallel To Serial block takes a bus input on load and outputs the
individual bits one cycle at a time with either the MSB or LSB first.

You can specify to continually output the last bit until the last load. For example, if
input is an 8-bit unsigned integer value 1 the output is:

 0 ... 0 ... 0 ... 0 ... 0 ... 0 ... 0 ... 1 ... 1 ... 1 ... 1
 <--------------- data values ---------------->|<- last bit repeated until next load ->

Alternatively, if this option is off, you can output 0 after the data has finished, that is,
for the same example:

 0 ... 0 ... 0 ... 0 ... 0 ... 0 ... 0 ... 1 ... 0 ... 0 ... 0
 <--------------- data values ---------------->|<----- zeros until next load ---->

Table 9–20. Memory Delay Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[1]

I3[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

Implicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Notes to Table 9–20:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–7. Memory Delay Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–15
Parallel To Serial

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 9–21 shows the Parallel To Serial block inputs and outputs.

Table 9–22 shows the Parallel To Serial block parameters.

Table 9–23 shows the Parallel To Serial block I/O formats.

Table 9–21. Parallel To Serial Block Inputs and Outputs

Signal Direction Description

d Input Parallel input port.

load Input Load port.

ena Input Optional clock enable port.

sclr Input Optional synchronous clear port.

sd Output Serial output port.

Table 9–22. Parallel To Serial Block Parameters

Name Value Description

Data Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The bus type format.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits stored on the left side of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits stored on the right side of the binary point. This option
applies only to signed fractional formats.

Serial Bit Order MSB First,
LSB First

Transmit the MSB or LSB first.

Repeat Last Bit
Until Next Load

On or Off Turn on to repeat the last bit until the next load.

Use Enable Port On or Off Turn on to use the clock enable input.

Use Synchronous
Clear Port

On or Off Turn on to use the synchronous clear port (sclr).

Table 9–23. Parallel To Serial Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[1]

I3[1]

I4[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

I3: in STD_LOGIC

I4: in STD_LOGIC

Explicit

O O1[1] O1: out STD_LOGIC Explicit

Notes to Table 9–23:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–16 Chapter 9: Storage Library
ROM

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 9–8 shows an example with the Parallel To Serial block.

ROM
The ROM block maps data to an embedded RAM (embedded array block, EAB; or
embedded system block, ESB) in Altera devices, with read-only access. The ROM block
can store any data type. The address port is registered, and you can optionally register
the data output port.

1 The input address bus must be Unsigned. The clock enable signal (ena) bypasses
any output register.

The contents of the ROM are pre-initialized from an Intel Hexadecimal (.hex) format
file, or from a MATLAB array.

Use the Quartus II software to generate a .hex file that you must save in your DSP
Builder working directory.

The data in a standard .hex file is formatted in multiples of eight and the output bit
width should also be in multiples of eight. The Quartus II software does allow you to
create non-standard .hex files but pads 1's to the front for negative numbers to make
them multiples of eight. Thus, large numbers with less bits may be treated as negative
numbers. A warning issues if you specify a non-standard .hex file. If you require a
different bit width, you should set the output bit width to the same as that in the .hex
file but use an AltBus block to convert to the required bit width. DSP Builder
supports 32-bit addressing with extended linear address records in the .hex file.

f For instructions on creating a .hex file, refer to Creating a Memory Initialization File or
Hexadecimal (Intel-Format) File in the Quartus II Help.

The MATLAB array parameter must be a one dimensional MATLAB array with a
length less than or equal to the number of words. Specify the array from the MATLAB
workspace or directly in the MATLAB Array box.

Figure 9–8. Parallel To Serial Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–17
ROM

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 9–24 shows the ROM block inputs and outputs.

Table 9–25 shows the ROM block parameters.

Table 9–24. ROM Block Inputs and Outputs

Signal Direction Description

addr Input Input data port.

ena Input Optional clock enable port.

q Output Output data port.

Table 9–25. ROM Block Parameters

Name Value Description

Number of Words User Defined
(Parameterizable)

Specify the depth of the ROM in words.

Data Type Signed Integer,
Signed Fractional,
Unsigned Integer

The data type format.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits stored on the left side of the binary point including
the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits stored on the right side of the binary point. This
option applies only to signed fractional formats.

Memory Block
Type

AUTO, M512, M4K,
M9K, MLAB, M144K

The RAM block type. Some memory types are not available for all device types.

Initialization From HEX file,
From MATLAB array

Specify whether the ROM is initialized from a .hex file or from a MATLAB array.

Input HEX File User defined Specify the name of a.hex file that must be in your DSP Builder working
directory. For example: input.hex.

DSP Builder supports 32-bit addressing with extended linear address records
in the .hex file.

MATLAB Array User defined
(Parameterizable)

Specify a one-dimensional MATLAB array with a length less than or equal to the
number of words. For example: [0:1:15]

Register output
Port

On or Off Turn on to register the output port.

Use Enable Port On or Off Turn on to use the optional clock enable input (ena).

Clock Phase
Selection

User Defined Specify the phase selection with a binary string, where a 1 indicates the phase
in which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).

10—The block is enabled every other phase and every other data (sampled
at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second
data of (sampled at the rate 1) passes through. That is, the data on phases 1,
3, and 4 do not pass through the delay block.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–18 Chapter 9: Storage Library
Serial To Parallel

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Table 9–26 shows the ROM block I/O formats.

Figure 9–9 shows an example with the ROM block that reads a 256×8 ramp waveform
.hex file.

Serial To Parallel
The Serial To Parallel block implements a serial (input sd) to parallel bus
conversion (output d). Treat the input bit stream as either MSB first, or LSB first.

Table 9–27 shows the Serial To Parallel block inputs and outputs.

Table 9–26. ROM Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[0]

I2[1]

I1: in STD_LOGIC_VECTOR({L1 - 1} DOWNTO 0)

I2: in STD_LOGIC

Explicit

O O1[LPO].[RPO] O1: out STD_LOGIC_VECTOR({LPO + RPO - 1} DOWNTO 0) Explicit

Notes to Table 9–26:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–9. ROM Block Example

Table 9–27. Serial To Parallel Block Inputs and Outputs

Signal Direction Description

sd Input Serial input port.

ena Input Optional clock enable port.

sclr Input Optional synchronous clear port.

d Output Parallel output port.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–19
Serial To Parallel

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 9–28 shows the Serial To Parallel block parameters.

Table 9–29 shows the Serial To Parallel block I/O formats.

Figure 9–10 shows an example with the Serial To Parallel block.

Table 9–28. Serial To Parallel Block Parameters

Name Value Description

Data Bus Type Signed Integer,
Signed Fractional,
Unsigned Integer

The bus type format.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits stored on the left side of the binary point including
the sign bit.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits stored on the right side of the binary point. This
option applies only to signed fractional formats.

Serial Bit Order MSB First, LSB First Transmit the MSB or LSB first.

Use Enable Port On or Off Turn on to use the clock enable input.

Use Synchronous
Clear Port

On or Off Turn on to use the synchronous clear port (sclr).

Table 9–29. Serial To Parallel Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[1]

I2[1]

I3[1]

I1: in STD_LOGIC

I2: in STD_LOGIC

I3: in STD_LOGIC

Explicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Notes to Table 9–29:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–10. Serial To Parallel Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–20 Chapter 9: Storage Library
Shift Taps

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Shift Taps
The Shift Taps block implements a shift register that you can use for filters or
convolution.

In Stratix IV, Stratix III, Stratix II, Stratix II GX, Stratix GX, Arria GX, Arria II GX,
Cyclone III, Cyclone II, and Cyclone devices, the block implements a RAM-based shift
register that is useful for creating very large shift registers efficiently. The block
outputs occur at regularly spaced points along the shift register (that is, taps).

In Stratix devices, this block implements in the small memory.

Table 9–30 shows the Shift Taps block inputs and outputs.

Table 9–31 shows the Shift Taps block parameters.

Table 9–32 shows the Shift Taps block I/O formats.

Table 9–30. Shift Taps Block Inputs and Outputs

Signal Direction Description

d Input Data input port.

ena Input Optional clock enable port.

t0–tn Output Output ports for taps 0–n.

sout Output Optional shift out port.

Table 9–31. Shift Taps Block Parameters

Name Value Description

Number of Taps User Defined
(Parameterizable)

Specifies the number of regularly spaced taps along the shift register.

Distance Between
Taps

User Defined
(Parameterizable)

Specifies the distance between the regularly spaced taps in clock cycles, which
translates to the number of RAM words that DSP Builder uses.

Use Shift Out Port On or Off Turn on to create an output from the end of the shift register for cascading.

Use Enable port On or Off Turn on to use an additional clock enable control input.

Use Dedicated
Circuitry

On or Off Turn on to enable selection of the memory block type. This option is only valid
when the Distance Between Taps is greater than 2.

Memory Block
Type

AUTO, M512, M4K,
M9K, MLAB, M144K

The RAM block type. Some memory types are not available for all device types.

Table 9–32. Shift Taps Block I/O Formats (Part 1 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC

Implicit

Explicit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–21
Single-Port RAM

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Figure 9–11 shows an example with the Shift Taps block.

Single-Port RAM
The Single-Port RAM block maps data to an embedded RAM (embedded array
block, EAB; or embedded system block, ESB) in Altera devices. A single read/write
port allow simple access.

The Single-Port RAM block accepts any type as data input. The input port is
registered, and the output port can optionally be registered. The input address bus
must be Unsigned. The clock enable signal (ena) bypasses any output register.

The contents of the RAM are pre-initialized to zero by default. Use an Intel
Hexadecimal (.hex) file or a MATLAB array to specify them.

O O1[L1].[R1]

….

Oi[L1].[R1]

…

On[L1].[R1]

On+1[1]

O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

….

Oi: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

….

On: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

On+1: out STD_LOGIC

Implicit

Explicit

Notes to Table 9–32:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Table 9–32. Shift Taps Block I/O Formats (Part 2 of 2) (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

Figure 9–11. Shift Taps Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–22 Chapter 9: Storage Library
Single-Port RAM

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Use the Quartus II software to generate a .hex file that must be in your DSP Builder
working directory.

The data in a standard .hex file is formatted in multiples of eight and the output bit
width should also be in multiples of eight. The Quartus II software does allow you to
create non-standard .hex files but pads 1's to the front for negative numbers to make
them multiples of eight. Thus, large numbers with less bits may be treated as negative
numbers. A warning issues if you specify a non-standard .hex file. If you require a
different bit width, you should set the output bit width to the same as that in the .hex
file but use an AltBus block to convert to the required bit width. DSP Builder
supports 32-bit addressing with extended linear address records in the .hex file.

f For instructions on creating this file, refer to Creating a Memory Initialization File or
Hexadecimal (Intel-Format) File in the Quartus II Help.

The MATLAB array parameter must be a one dimensional MATLAB array with a
length less than or equal to the number of words. Specify the array from the MATLAB
work-space or directly in the MATLAB Array box.

Table 9–33 shows the Single-Port RAM block inputs and outputs.

Table 9–34 shows the Single-Port RAM block parameters.

Table 9–33. Single-Port RAM Block Inputs and Outputs

Signal Direction Description

d Input Input data port.

addr Input Address bus.

wren Input Write enable.

ena Input Optional clock enable port

q_a Output Output data port.

Table 9–34. Single-Port RAM Block Parameters (Part 1 of 2)

Name Value Description

Number of words >= 1
(Parameterizable)

Specify the address width in words.

Data Type Inferred,
Signed Integer,
Unsigned Integer,
Signed Fractional

The input data type format.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits stored on the left side of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option applies
only to signed fractional formats.

Memory Block
Type

AUTO, M512, M4K,
M-RAM, M9K,
MLAB, M144K

The FPGA RAM memory block type. Some memory types are not available for
all device types. If you specify M-RAM, the RAM is always initialized to
unknown in the hardware and simultaneous read/writes to the same address
also give unknown in hardware. The unknowns are not modeled in
Simulink, and comparisons with ModelSim shows differences.

Initialization Blank, From HEX file,
From MATLAB array

Specify the initialization. If Blank is selected, the contents of the RAM are
pre-initialized to zero.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–23
Single-Port RAM

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 9–35 shows the Single-Port RAM block I/O formats.

Input HEX File User defined Specify the name of a .hex file that must be in your DSP Builder working
directory. For example: input.hex.

DSP Builder supports 32-bit addressing with extended linear address records
in the .hex file.

MATLAB Array User defined
(Parameterizable)

Specify a one-dimensional MATLAB array with a length less than or equal to
the number of words. For example: [0:1:15]

Register output
Port

On or Off Turn on to register the output port.

Use Enable Port On or Off Turn on to use the optional clock enable input (ena).

Clock Phase
Selection

User Defined Specify the phase selection with a binary string, where a 1 indicates the phase
in which the block is enabled. For example:

1—The block is always enabled and captures all data passing through the
block (sampled at the rate 1).

10—The block is enabled every other phase and every other data (sampled
at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the second
data of (sampled at the rate 1) passes through. That is, the data on phases
1, 3, and 4 do not pass through the delay block.

Table 9–34. Single-Port RAM Block Parameters (Part 2 of 2)

Name Value Description

Table 9–35. Single-Port RAM Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[L2].[0]

I3[1]

I4[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)

I3: in STD_LOGIC

I4: in STD_LOGIC

Explicit

O O1[L1].[R1] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Notes to Table 9–12:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–24 Chapter 9: Storage Library
True Dual-Port RAM

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 9–12 shows an example with the Single-Port RAM block.

True Dual-Port RAM
The True Dual-Port RAM block maps data to an embedded RAM (embedded array
block, EAB; or embedded system block, ESB) in Altera devices. Two read and two
write ports allow true dual access.

The True Dual-Port RAM block accepts any data type as input. The input port is
always registered and the output port can optionally be registered.

Turning on the DONT_CARE option may give a higher fMAX for your design,
especially if the memory implements as a MLAB. When this option is on, the output is
not double-registered (and therefore, in the case of MLAB implementation, uses fewer
external registers), and you gain an extra half-cycle on the output. The default is off,
which outputs old data for read-during-write.

f For more information about this option, refer to the Read-During-Write Output Behavior
section in the RAM Megafunction User Guide.

The contents of the RAM are pre-initialized to zero by default. Use an Intel
Hexadecimal (.hex) file or from a MATLAB array to specify them. Use the Quartus II
software to generate a .hex file that must be in your DSP Builder working directory.

The data in a standard .hex file is formatted in multiples of eight and the output bit
width should also be in multiples of eight. The Quartus II software does allow you to
create non-standard .hex files but pads 1's to the front for negative numbers to make
them multiples of eight. Thus, large numbers with less bits may be treated as negative
numbers. A warning issues if you specify a non-standard .hex file. If you require a
different bit width, you should set the output bit width to the same as that in the .hex
file but use an AltBus block to convert to the required bit width. DSP Builder
supports 32-bit addressing with extended linear address records in the .hex file.

f For instructions on creating this file, refer to Creating a Memory Initialization File or
Hexadecimal (Intel-Format) File in the Quartus II Help.

The MATLAB array parameter must be a one dimensional MATLAB array with a
length less than or equal to the number of words. Specify the array from the MATLAB
workspace or directly in the MATLAB Array box.

Figure 9–12. Single-Port RAM Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–25
True Dual-Port RAM

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

The input address bus must be Unsigned. The clock enable signal (ena) bypasses
any output register.

c If you write to the same address simultaneously with the a and b inputs, the data
written to the RAM is indeterminate (corrupt). In ModelSim simulations, the data at
this address is set to Unknown (all bits X). In DSP Builder simulation, the data at this
address is set to zero, and a warning is given:

"Warning: True Dual-Port RAM: simultaneous a and b side writing to
address <addr>. Memory contents at this address will be Unknown (X)
in hardware."

If this data is read, DSP Builder warns that you are reading corrupt data:

"Warning: True Dual-Port RAM: <a|b>-side reading corrupt RAM data at
address <addr>. Memory contents at this address will be Unknown (X)
in hardware."

If you execute a testbench comparison to hardware, you may get simulation
mismatches if you are making use of corrupt data in your design or outputting the
read memory contents to a pin.

Table 9–36 shows the True Dual-Port RAM block inputs and outputs.

Table 9–37 shows the True Dual-Port RAM block parameters.

Table 9–36. True Dual-Port RAM Block Inputs and Outputs

Signal Direction Description

data_a Input Input data port a

addr_a Input Address bus a.

wren_a Input Write enable a

data_b Input Input data port b

addr_b Input Address bus b

wren_b Input Write enable b

ena Input Optional clock enable port

q_a Output Output data port a

q_b Output Output data port b

Table 9–37. True Dual-Port RAM Block Parameters (Part 1 of 2)

Name Value Description

Number of words >= 1
(Parameterizable)

Specify the address width in words.

Data Type Inferred,
Signed Integer,
Unsigned Integer,
Signed Fractional

The input data type format.

[number of bits].[] >= 0
(Parameterizable)

Specify the number of bits stored on the left side of the binary point.

[].[number of bits] >= 0
(Parameterizable)

Specify the number of bits to the right of the binary point. This option
applies only to signed fractional formats.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–26 Chapter 9: Storage Library
True Dual-Port RAM

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Memory Block Type AUTO, M512, M4K,
M-RAM, M9K,
MLAB, M144K

The FPGA RAM memory block type. Some memory types are not
available for all device types. If you specify M-RAM, the RAM is always
initialized to unknown in the hardware and simultaneous read/writes to
the same address give unknown in hardware. The unknowns are not
modeled in Simulink, and comparisons with ModelSim shows
differences.

Use DONT_CARE when
reading from and writing
to the same address

On or Off If the memory block type is set to AUTO, setting DONT_CARE gives more
flexibility in RAM block placement. If the implementation is set to MLAB,
the design uses fewer external registers, because the output is not double
registered, and the resulting memory block can often be run at a higher
fMax. However, the output in hardware when reading from and writing to
the same address is unpredictable. In ModelSim simulation, unknowns
(X) are output when reading from and writing to the same address. The
Simulink simulation is unchanged whether or not you use this option, but
a warning message issues on every simultaneous read/write to the same
address. If you compare the simulation results to ModelSim, you see
mismatches associated with any read/write to the same address events.
When this option is set, ensure that the same address is not read from
and written to at the same time or that your design does not depend on
the read output in these circumstances. By default this option is off, and
data is always read before write.

Initialization Blank, From HEX file,
From MATLAB array

Specify the initialization. If Blank is selected, the contents of the RAM
are pre-initialized to zero.

Input HEX File User defined Specify the name of an .hex file, which must be in your DSP Builder
working directory. For example: input.hex.

DSP Builder supports 32-bit addressing with extended linear address
records in the .hex file.

MATLAB Array User defined
(Parameterizable)

Specify a one-dimensional MATLAB array with a length less than or equal
to the number of words. For example: [0:1:15]

Register output Ports On or Off Turn on to register the output ports.

Use Enable Port On or Off Turn on to use the optional clock enable input (ena).

Clock Phase Selection User Defined Specify the phase selection with a binary string, where a 1 indicates the
phase in which the block is enabled. For example:

1—The block is always enabled and captures all data passing through
the block (sampled at the rate 1).

10—The block is enabled every other phase and every other data
(sampled at the rate 1) passes through.

0100—The block is enabled on the second phase of and only the
second data of (sampled at the rate 1) passes through. That is, the
data on phases 1, 3, and 4 do not pass through the block.

Table 9–37. True Dual-Port RAM Block Parameters (Part 2 of 2)

Name Value Description

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 9: Storage Library 9–27
True Dual-Port RAM

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Table 9–38 shows the True Dual-Port RAM block I/O formats.

Figure 9–13 shows an example with the True Dual-Port RAM block.

Table 9–38. True Dual-Port RAM Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1]

I2[L2].[0]

I3[L2].[0]

I4[L1].[R1]

I5[L2].[0]

I6[L2].[0]

I7[1]

I8[1]

I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0)

I2: in STD_LOGIC_VECTOR({L2 - 1} DOWNTO 0)

I3: in STD_LOGIC_VECTOR({L3 - 1} DOWNTO 0)

I4: in STD_LOGIC_VECTOR({L4 + R4 - 1} DOWNTO 0)

I5: in STD_LOGIC_VECTOR({L5 - 1} DOWNTO 0)

I6: in STD_LOGIC_VECTOR({L6 - 1} DOWNTO 0)

I7: in STD_LOGIC

I8: in STD_LOGIC

Explicit

O O1[L1].[R1] O1: out STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Explicit

Notes to Table 9–12:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–13. True Dual-Port RAM Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

9–28 Chapter 9: Storage Library
Up Sampling

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Up Sampling
The Up Sampling block increases the output sample rate from the input sample rate.
The output data is sampled every N cycles where N is equal to the up sampling rate.
The output holds this value for 1 cycle, then for the next N-1 cycles the output is zero.

Table 9–39 shows the Up Sampling block inputs and outputs.

Table 9–40 shows the Up Sampling block parameter.

Table 9–41 shows the Up Sampling block I/O formats.

Figure 9–14 shows an example with the Up Sampling block.

Table 9–39. Up Sampling Block Inputs and Outputs

Signal Direction Description

d Input Input data port.

q Output Output data port.

Table 9–40. Up Sampling Block Parameter

Name Value Description

Up Sampling Rate An integer greater than 1
(Parameterizable)

Specify the up sampling rate.

Table 9–41. Up Sampling Block I/O Formats (Note 1)

I/O Simulink (2), (3) VHDL Type (4)

I I1[L1].[R1] I1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

O O1[L1].[R1] O1: in STD_LOGIC_VECTOR({L1 + R1 - 1} DOWNTO 0) Implicit

Notes to Table 9–41:

(1) For signed integers and signed binary fractional numbers, the MSB is the sign bit.
(2) [L] is the number of bits on the left side of the binary point; [R] is the number of bits on the right side of the binary point. For signed or unsigned

integers R = 0, that is, [L].[0]. For single bits, R = 0, that is, [1] is a single bit.
(3) I1[L].[R] is an input port. O1[L].[R] is an output port.
(4) Explicit means that the port bit width information is a block parameter. Implicit means that the port bit width information is set by the datapath

bit width propagation mechanism. To specify the bus format of an implicit input port, use a Bus Conversion block to set the width.

Figure 9–14. Up Sampling Block Example

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

10. State Machine Functions Library

The State Machine Functions library contains the following blocks:

■ State Machine Editor

■ State Machine Table

State Machine Editor
The State Machine Editor block provides access to the Quartus® II state machine
editor, which allows you to create graphic representations of state machines for use in
your design.

A state machine is a very efficient means to specify complex control logic that you can
then use to generate a HDL description and Simulink interface to the simulation
model.

You can define a state machine graphically by adding states and transitions directly
on the diagram, or by using a wizard interface to enter all the properties for the state
machine. When you use the wizard interface, a graphical state diagram view is
created with the states and transitions automatically placed for optimum readability.

Figure 10–1 shows the state machine that is created when you use the default options
in the wizard.

Table 10–1 shows the parameters that you can e set in the State Machine wizard.

Figure 10–1. Default State Machine Diagram View

Table 10–1. State Machine Wizard Parameters

Name Value Description

Which reset mode
do you want to use

Synchronous,
Asynchronous

Specifies whether the state machine has a synchronous or asynchronous reset.

Reset is active-high On, Off Turn on to uses an active-high reset or off if you want an active-low reset.

Register the output
ports

On, Off Turn on to register the state machine output ports.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

10–2 Chapter 10: State Machine Functions Library
State Machine Editor

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Use Verilog HDL syntax to specify the conditional statements that you specify for
state transitions and output actions. Table 10–2 shows the operators you can use to
define a conditional expression.

A conditional statement consists of a source state, a condition that causes a transition
to take place, and the destination state to which the state machine transitions. The
source state and destination state values must be valid state names, which you can
select from a drop down list in the wizard.

The state machine description is saved in a <block name>.smf file when you close the
state machine wizard.

The syntax of each conditional statement is automatically checked on entry and the
completed state machine is validated when you generate HDL to ensure that the state
machine is functionally correct.

f For more information including procedures for drawing a graphical state machine,
refer to the About the State Machine Editor topic in the Quartus II Help.

When you exit from the State Machine Editor, the generated HDL is compiled in the
Quartus II software and the ports updated on the block in your Simulink model.

Figure 10–2 shows an example of the default state machine that the State Machine
Editor wizard creates and includes in a simple Simulink model.

States user specified You can specify any number of state names that must be valid HDL identifiers.

Input ports user specified You can specify any number of input port names that must be valid HDL identifiers.

State transitions user specified You can specify any number of conditional statements for the transitions between
source and destination states.

Transition to source
state if not specified

On, Off Turn on to always transition to the source state if not all transition conditions are
specified.

Output ports user specified You can specify any number of output port names that must be valid HDL
identifiers.

Action conditions user specified You can specify actions assigned to each output port.

Table 10–1. State Machine Wizard Parameters

Name Value Description

Table 10–2. State Machine Editor Operators

Operator Description Priority Example

~ (unary) Negative 1 ~in1

(...) Brackets 1 (1)

== Numeric equality 2 in1==5

!= Not equal to 2 in1!=5

> Greater than 2 in1>in2

>= Greater than or equal to 2 in1>=in2

< Less than 2 in1<in2

<= Less than or equal to 2 in1<=in2

& AND 2 (in1==in2)&(in3>=4)

| OR 2 (in1==in2)|(in1>in2)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 10: State Machine Functions Library 10–3
State Machine Table

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

f For more information, refer to the Using the State Machine Editor Block chapter in the
DSP Builder Standard Blockset User Guide section in volume 2 of the DSP Builder
Handbook.

State Machine Table
The State Machine Table block represents a one-hot Moore-style state machine
where the output is equal to the current state (Figure 10–3).

The default state machine has five inputs and five states. Each state is represented by
an output.

While the state machine is operating, an output is assigned a logic level 1 if its
respective state is equal to the current state. All other outputs are assigned a logic
level 0. The inputs and outputs are represented as integers in Simulink. In VHDL, the
input and output are represented as standard logic vectors.

1 The State Machine Table block is not available on Linux and is deprecated on
Windows. Use the State Machine Editor block in new designs.

Figure 10–2. Example With the State Machine Editor Block

Figure 10–3. Moore Style State Machine

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

10–4 Chapter 10: State Machine Functions Library
State Machine Table

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 10–4 shows the default State Machine Table symbol .

The State Machine Builder dialog box allows you to specify the inputs, states, and
conditional statements, which control the transitions between the states.

Table 10–3 shows the controls available in the State Machine Builder dialog box.

Table 10–4 shows the operators that you can use to define a conditional expression.

Figure 10–4. Default State Machine Table Block

Table 10–3. State Transition Table Block Controls

Name Value Description

Add — Adds the specified input name, state name, or conditional statement to the table.

Change — Allows you to change the selected state name or conditional statement. Do not use this option
in the Inputs tab. You cannot change an input name or state name that the design uses in a
conditional statement.

Delete — Deletes the selected input name, state name or conditional statement. You cannot delete an
input or state that the design uses in a conditional statement.

Reset State state name This option is available in the States tab and allows you to specify the reset state from a list of
specified state names. You can change the reset state but you cannot delete or change the
name of the reset state.

Move Up

Move Down

— Available in the Conditional Statements tab and allows you to change the transition priority
when there is more than one condition leaving a state by moving the conditional statement up
or down the list.

Analyze — Available in the Design Rule Check tab to validate your state machine table.

Table 10–4. State Machine Table Operators

Operator Description Priority Example

- (unary) Negative 1 -1

(...) Brackets 1 (1)

= Numeric equality 2 in1=5

!= Not equal to 2 in1!=5

> Greater than 2 in1>in2

>= Greater than or equal to 2 in1>=in2

< Less than 2 in1<in2

<= Less than or equal to 2 in1<=in2

& AND 2 (in1=in2)&(in3>=4)

| OR 2 (in1=in2)|(in1>in2)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 10: State Machine Functions Library 10–5
State Machine Table

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

A conditional statement consists of a current state, a condition that causes a transition
to take place, and the next state to which the state machine transitions. The current
state and next state values must be state names defined in the States tab, which you
can select from drop down list in the dialog box.

1 To indicate in a conditional statement that a state machine always transitions from the
current state to the next state, specify the conditional expression to be one.

Figure 10–5 shows the dialog box that specifies a simple state transition table with the
default inputs and states.

1 When VHDL generates, the expression strings for the port names are replaced by
signals named <port name>_sig.

Specify at least one transition for each state. Otherwise, the block does not generate
legal VHDL.

You may experience problems when using very large input signals (greater than 225).

Design Rule Checks
The Analyze button in the Design Rule Checks tab of the State Machine Builder
dialog box performs the following checks:

■ At least two states must be defined

■ At least two conditional statements must be defined

■ All input port names must be unique

■ All state names must be unique

Figure 10–5. Simple State Transition Table

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

10–6 Chapter 10: State Machine Functions Library
State Machine Table

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

■ A single reset state must exist

■ A reset input port must exist

■ All current state and next state values must be valid

■ All conditional statements must be syntactically correct

Figure 10–6 shows an example with the State Machine Table block as a FIFO
controller.

f For more information, refer to the Using the State Machine Table Block chapter in the
DSP Builder Standard Blockset User Guide section in volume 2 of the DSP Builder
Handbook.

Figure 10–6. Example With the State Machine Table Block

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

11. Boards Library

The Boards library supports DSP development platforms for the following
prototyping boards:

■ Cyclone II DE2 Board

■ Cyclone II EP2C35 DSP Board

■ Cyclone II EP2C70 DSP Board

■ Cyclone III EP3C25 Starter Board

■ Cyclone III EP3C120 DSP Board

■ Stratix EP1S25 DSP Board

■ Stratix EP1S80 DSP Board

■ Stratix II EP2S60 DSP Board

■ Stratix II EP2S180 DSP Board

■ Stratix II EP2S90GX PCI Express Board

■ Stratix III EP3SL150 DSP Board

These development boards provide an economical solution for hardware and
software verification that enables you to debug and verify both functionality and
design timing.

When combined with DSP intellectual property (IP) from Altera or from the Altera
Megafunction Partners Program (AMPPSM), you can solve design problems that
formerly required custom hardware and software solutions.

Board Configuration
When targeting a development board, your design must contain the corresponding
board configuration block at the top hierarchical level. The configuration block
properties allow you to specify from a list of available pins to use for the clock and
global reset connections. It also displays details of the hardware device on the board.

The other blocks available for each board provide connections to the controls on each
board such as LEDs, push buttons, switches, 7-segment displays, connectors,
analog-to-digital converters (ADC), and digital-to-analog converters (DAC). By using
these blocks, you do not need to make pin assignments to connect the board
components.

PLL Output Clocks
You can manually add PLL blocks to your design and configure them to provide the
required output clocks with the Quartus II Pinout Assignments block to
assign pin locations to the PLL outputs.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–2 Chapter 11: Boards Library
Cyclone II DE2 Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

ADC Control Signals
The ADC control signals are not automatically assigned on the Cyclone II EP2C35
DSP Board or the Cyclone II EP2C70 DSP Board. For these boards, you must make
manual assignments with Quartus II Pinout Assignments blocks.

Figure 11–1 shows how to use VCC and GND blocks to set the signal levels for the
Cyclone II EP2C35 DSP Board.

Cyclone II DE2 Board
The Cyclone II DE2 development and education board provides a complete,
ready-to-teach platform based on the Altera Cyclone II 2C35 device for use in courses
on logic design and computer organization.

Table 11–1 lists the blocks available to support the Cyclone II DE2 board.

f For detailed information about the Cyclone II DE2 board, refer to Altera’s Development
and Education Board on the Altera website.

Figure 11–2 shows the design example for the Cyclone II DE2 board.

Figure 11–1. ADC Reset Pin Assignments

Table 11–1. Cyclone II DE2 Board Blocks

Block Description

LED0–LED17 Controls eighteen red user-definable LEDs.

LEDG0–LEDG8 Controls nine green user-definable LEDs.

PB0–PB3 Controls four user-definable active-low push buttons. You can optionally specify the
clock signal.

PROTO and
PROTO1

Two Santa Cruz connectors, which control the prototyping area I/O. You can
optionally specify Input or Output node type, specify the input clock signal, and
specify the pin location for each connector.

Display0-Display7 Control eight simple user-definable seven-segment LED displays.

 SW0–SW17 Controls eighteen user-definable active-low toggle switches. You can optionally
specify the clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–3
Cyclone II EP2C35 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Cyclone II EP2C35 DSP Board
The Cyclone II EP2C35 DSP board provides a low-cost hardware platform for
developing high performance DSP designs based on Altera Cyclone II FPGA devices.

Table 11–2 lists the blocks available to support the Cyclone II EP2C35 DSP board.

Figure 11–2. Design Example for the Cyclone II DE2 Board

Table 11–2. Cyclone II EP2C35 DSP Board Blocks (Part 1 of 2)

Block Description

A2D_1 Controls the 12-bit signed analog-to-digital converter (U26). You can optionally specify
the clock signal.

D2A_1 Controls the 14-bit unsigned digital-to-analog converter (U25).

Dip Switch Controls the user-definable dual in-line package switch (S1). You can optionally specify
the clock signal.

LED0–LED7 Controls eight user-definable LEDs (D2–D9).

PROTO and
PROTO1

Santa Cruz connectors, which control the prototyping area I/O. You can optionally
specify Input or Output node type, specify the input clock signal, and specify the
pin location for each connector (J15, J22, J23).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–4 Chapter 11: Boards Library
Cyclone II EP2C70 DSP Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

f For information about setting up the board, refer to the DSP Development Kit, Cyclone
II Getting Started User Guide. For information about supported hardware features, refer
to the Cyclone II DSP Development Board Reference Manual.

Figure 11–3 shows the design example for the Cyclone II EP2C35 DSP board.

Cyclone II EP2C70 DSP Board
The Cyclone II EP2C70 DSP board is an enhanced version of the EP2C35 board, which
has two 14-bit analog-to-digital converters and two 14-bit digital-to-analog
converters.

Table 11–3 lists the blocks available to support the Cyclone II EP2C70 DSP board.

Display0 and
Display1

Controls two simple user-definable seven-segment LED displays (U32, U33).

SW2–SW5,
USER_RESETN

Controls four user-definable push-button switches (SW2–SW5, and user reset
push-button SW6). You can optionally specify the clock signal.

Table 11–2. Cyclone II EP2C35 DSP Board Blocks (Part 2 of 2)

Block Description

Figure 11–3. Design Example for the Cyclone II EP2C35 DSP Board

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–5
Cyclone II EP2C70 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

f For information about setting up the board, refer to the DSP Development Kit, Cyclone
II Getting Started User Guide. For information about supported hardware features, refer
to the Cyclone II DSP Development Board Reference Manual.

Figure 11–4 shows the design example for the Cyclone II EP2C70 DSP board.

Table 11–3. Cyclone II EP2C70 DSP Board Blocks

Block Description

A2D_1 and A2D_2 Controls the 14-bit signed analog-to-digital converters. You can optionally specify
the clock signal.

D2A_1 and D2A_2 Controls the 14-bit unsigned digital-to-analog converters.

Dip Switch Controls the user-definable dual in-line package switch (S1). You can optionally
specify the clock signal.

LED0–LED7 Controls eight user-definable LEDs (D2–D9).

PROTO and
PROTO1

Santa Cruz connectors, which control the prototyping area I/O. You can optionally
specify Input or Output node type, specify the input clock signal, and specify the
pin location for each connector (J15, J22, J23).

Display0 and
Display1

Controls two simple user-definable seven-segment LED displays (U32, U33).

SW2–SW5,
USER_RESETN

Controls four user-definable push-button switches (SW2–SW5, and the user reset
push-button SW6). You can optionally specify the clock signal.

Figure 11–4. Design Example for the Cyclone II EP2C70 DSP Board

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–6 Chapter 11: Boards Library
Cyclone III EP3C25 Starter Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Cyclone III EP3C25 Starter Board
The Cyclone III EP3C25 starter board is a hardware platform that you can customize
with optional expansion connectors and daughtercards to evaluate the feature rich,
low-power Altera Cyclone III device.

Table 11–4 lists the blocks available to support the Cyclone III EP3C25 starter board.

f For information about setting up the board, refer to the Cyclone III FPGA Starter Kit
User Guide. For information about supported hardware features, refer to the Cyclone III
FPGA Starter Board Reference Manual.

Figure 11–5 shows the design example for the Cyclone III EP3C25 starter board.

Cyclone III EP3C120 DSP Board
The Cyclone III EP3C120 DSP board provides a hardware platform for developing
and prototyping low-power, high-volume, feature-rich designs that demonstrate the
Cyclone III device’s on-chip memory, embedded multipliers, and the Nios® II
embedded soft processor.

Table 11–5 lists the blocks available to support the Cyclone III EP3C120 DSP board.

Table 11–4. Cyclone III EP3C25 Starter Board Blocks

Block Description

LED1–LED4 Controls four user-definable LEDs.

SW1–SW4,
USER_RESETN

Controls four user-definable push-button switches and the user reset push button.
You can optionally specify the clock signal.

Figure 11–5. Design Example for the Cyclone III EP3C25 Starter Board

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–7
Cyclone III EP3C120 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

f For information about setting up the board, and supported hardware features, refer to
the Cyclone III Development Board, Reference Manual.

There are four design examples for the Cyclone III EP3C120 DSP board:

■ Test3C120Board_Leds.mdl: This design tests the LEDs and push-button switches
on the main development board.

■ Test3C120Board_QuadDisplay.mdl: This design tests the 7-segment display on
the main development board.

■ Test3C120Board_HSMA.mdl: This design tests the analog-to-digital and
digital-to-analog converters on the daughtercard connected to HSMC port A.

■ Test3C120Board_HSMB.mdl: This design tests the analog-to-digital and
digital-to-analog converters on the daughtercard connected to HSMC port B.

Figure 11–6 shows the test design for the LEDs and push buttons.

Table 11–5. Cyclone III EP3C120 DSP Board Blocks

Block Description

Display0 User defined 4-digit seven-segment LED display (U30).

A2D_1_HSMC_A,
A2D_1_HSMC_B,
A2D_2_HSMC_A,

A2D_2_HSMC_B

Controls 14-bit signed analog-to-digital converters on the optional high speed
mezzanine cards (HSMC). You can optionally specify the clock signal.

D2A_1_HSMC_A,
D2A_1_HSMC_B,
D2A_2_HSMC_A,
D2A_2_HSMC_B

Controls the 14-bit unsigned digital-to-analog converters on the optional high speed
mezzanine cards (HSMC).

Dip Switch Controls the user-definable dual in-line package switch (SW6). You can optionally
specify the clock signal.

LED0–LED7 Controls eight user-definable LEDs (D26–D33).

PB0–PB3,
CPU_RESETN

Controls four user-definable push-button switches (S1–S4) and the CPU reset
push-button (S5). You can optionally specify the clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–8 Chapter 11: Boards Library
Cyclone III EP3C120 DSP Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 11–7 shows the test design for the 7-segment display.

Figure 11–8 shows the test design for a high speed mezzanine card.

Figure 11–6. LED and Push-button Design Example for the Cyclone III EP3C120 DSP Board Blocks

Figure 11–7. 7-Segment Display Design Example for the Cyclone III EP3C120 DSP Board Blocks

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–9
Cyclone III EP3C120 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

1 Figure 11–8 shows the test design for the daughtercard connected to HSMC port A.
The test design for the daughtercard connected to HSMC port B is very similar.

Setting Up the Mezzanine Card Test Designs
The required pin and clock assignments are already set up in the design examples. If
necessary, you can set up your own test design as follows:

1. The following Quartus II Global project assignments must be set with the value
“Use AS REGULAR I/O”:

■ RESERVE_DATA1_AFTER_CONFIGURATION

■ CYCLONEII_RESERVE_NCEO_AFTER_CONFIGURATION

■ RESERVE_DCLK_AFTER_CONFIGURATION

These assignments enable you to use the programmer pins as I/O.

2. Assign signals to the output enable pins for both channels of the analog-to-digital
converters (A2D1_OEB and A2D2_OEB) and tie them to GND.

3. Assign signals to the SPI bus interface signals for the chip in static mode
(ADA_SPI_CSB and ADA_SPI_CSB) and tie them to VCC. When these signal are
pulled high, set the following signals:

AD_SCLK:

■ High: Two’s complement output (for FIR or similar)

■ Low: Straight binary from near midrange

AD_SDIO:

■ High: Duty cycle stabilizer (DCS) enabled to lower jitter

■ Low: DSC disabled

Figure 11–8. HSMC Design Example for the Cyclone III EP3C120 DSP Board Blocks

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–10 Chapter 11: Boards Library
Cyclone III EP3C120 DSP Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

4. Open a Quartus II project and configure a PLL to produce the required output
clocks:

a. Create a new block design file (for example, pll_clkout.bdf) and use the
MegaWizard™ Plug-in Manager to add an ALTPLL megafunction.

b. Configure the PLL with a 50MHz input clock (inclk0) and no other optional
inputs. (Turn off areset.) Turn on Create ‘locked’ output. Add two additional
output clocks with 180 and 270 degrees phase shift from the input clock (c1
and c2) and clock multiplication factor of 2.

Figure 11–9 shows the completed block design file.

1 Each output clock is negated in the block editor to produce a the signals pclk0p,
pclk0n, pclk1p, and pclk1n.

c. Click Create HDL File for Current File on the File menu.

5. Import the PLL into the test design model:

a. Add a Subsystem Builder block to your model. Double-click on the block
and browse for the HDL file created in step 4c then click Build to create the
subsystem.

b. Open the subsystem (pll_clkout) and remove the default input port. Specify
the clock name (such as clkin_50) in the block parameters for the HDL
Entity block. This name should match the clock name in the .bdf file.

c. Assign appropriate pin assignments for the four output clocks on the test
design model (Figure 11–10.)

Figure 11–9. Configured PLL in the Quartus II Block Design Editor

Figure 11–10. PLL Subsystem

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–11
Stratix EP1S25 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Stratix EP1S25 DSP Board
The Stratix EP1S25 DSP board is a powerful development platform for digital signal
processing (DSP) designs, and features the Stratix EP1S25 device in the speed grade
(-5) 780-pin package.

Table 11–6 lists the blocks available to support the Stratix EP1S25 DSP board.

f For information about setting up the board, refer to the DSP Development Kit, Stratix &
Stratix Professional Edition Getting Started User Guide. For information about the
supported hardware features, refer to the Stratix EP1S25 DSP Development Board Data
Sheet.

Figure 11–11 shows the design example for the Stratix EP1S25 DSP board.

Table 11–6. Stratix EP1S25 DSP Board Blocks

Block Description

A2D_1 and A2D_2 Controls the 12-bit signed analog-to-digital converters (U10, U30). You can
optionally specify the clock signal.

D2A_1 and D2A_2 Controls the 14-bit unsigned digital-to-analog converters (U21, U23)

DEBUGA and
DEBUGB

Mictor connectors, which control debugging ports A and B. You can optionally
specify Input or Output node type, specify the input clock signal, and specify the
pin location for each port (J9, J10).

Dip Switch Controls the user-definable dual in-line package switch (SW3). You can optionally
specify the clock signal.

EVAL IO IN and
EVAL IO OUT

Controls the evaluation inputs and outputs. You can optionally specify the input
clock signal for EVAL IO IN and specify the pin location for each input or output
(JP7, JP19, JP22, JP20, JP21, JP24, JP8).

LED0 and LED1 Controls two user-definable LEDs (D6, D7).

PROTO Expansion connector, which controls the prototyping area I/O. You can optionally
specify Input or Output node type, specify the input clock signal, and specify the
pin locations (J20, J21, J24).

RS232 ROUT and
RS232 TIN

Controls the RS232 serial receive output and transmit input (J8). You can optionally
specify the clock signal for RS232 TIN.

Display0 and
Display1

Controls a dual user-definable seven-segment LED display (D4).

SW0–SW2 Controls three user-definable push-button switches (SW0–SW2). You can optionally
specify the clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–12 Chapter 11: Boards Library
Stratix EP1S25 DSP Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 11–11. Design Example for the Stratix EP1S25 DSP Board

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–13
Stratix EP1S80 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Stratix EP1S80 DSP Board
The Stratix EP1S80 DSP board is a powerful development platform for digital signal
processing (DSP) designs, and features the Stratix EP1S80 device in the speed grade
(-6) 956-pin package.

Table 11–7 lists the blocks available to support the Stratix EP1S80 DSP board.

f For information about setting up the board, refer to the DSP Development Kit, Stratix &
Stratix Professional Edition Getting Started User Guide. For information about the
supported hardware features, refer to the Stratix EP1S80 DSP Development Board Data
Sheet.

Figure 11–12 shows the design example for the Stratix EP1S80 DSP board.

Table 11–7. Stratix EP1S80 DSP Board Blocks

Block Description

A2D_1 and A2D_2 Controls the 12-bit signed analog-to-digital converters (U10, U30). You can
optionally specify the clock signal.

D2A_1 and D2A_2 Controls the 14-bit unsigned digital-to-analog converters (U21, U23)

DEBUGA and
DEBUGB

Mictor connectors, which control debugging ports A and B. You can optionally
specify Input or Output node type, specify the input clock signal, and specify the
pin location for each port (J9, J10).

Dip Switch Controls the user-definable dual in-line package switch (SW3). You can optionally
specify the clock signal.

EVAL IO IN and
EVAL IO OUT

Controls the evaluation input and outputs. You can optionally specify the clock signal
for EVAL IO IN and specify the pin location for each input or output (JP7, JP19,
JP22, JP20, JP21, JP24, JP8).

LED0 and LED1 Controls two user-definable LEDs (D6, D7).

PROTO Expansion connector, which controls the prototyping area I/O. You can optionally
specify Input or Output node type, specify the input clock signal, and specify the
pin locations (J20, J21, J24).

RS232 ROUT and
RS232 TIN

Controls the RS232 serial receive output and transmit input (J8). You can optionally
specify the clock signal for RS232 TIN.

Display0 and
Display1

Controls a dual user-definable seven-segment LED display (D4).

SW0–SW2 Controls three user-definable push-button switches (SW0–SW2). You can optionally
specify the clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–14 Chapter 11: Boards Library
Stratix II EP2S60 DSP Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Stratix II EP2S60 DSP Board
The Stratix II EP2S60 DSP board is a development platform for high-performance
digital signal processing (DSP) designs, and features the Stratix II EP2S60 device in a
1020-pin package.

1 The Stratix II EP2S60 DSP board supports alternative EP2S60F1020C4 and
EP2S60F1020C4ES devices, which you can select in the configuration block properties.

Table 11–8 lists the blocks available to support the Stratix EP2S60 DSP board.

Figure 11–12. Design Example for the Stratix EP1S80 DSP Board

Table 11–8. Stratix EP2S60 DSP Board Blocks (Part 1 of 2)

Block Description

A2D_1 and A2D_2 Controls the 12-bit signed analog-to-digital converters (U1, U2). You can optionally
specify the clock signal.

D2A_1 and D2A_2 Controls the 14-bit unsigned digital-to-analog converters (U14, U15)

IO_DEV_CLRn Controls the board reset push-button switch (SW8). You can optionally specify the
clock signal.

LED0–LED7 Controls eight user-definable LEDs (D1–D8).

PROTO and
PROTO1

Santa Cruz connectors, which controls the prototyping area I/O. You can optionally
specify Input or Output node type, specify the input clock signal, and specify the
pin locations (J23– J25, J26–J28).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–15
Stratix II EP2S180 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

f For information about setting up the board, refer to the DSP Development Kit Getting
Started User Guide. For information about the supported hardware features, refer to
the Stratix II DSP Development Board Reference Manual.

Figure 11–13 shows a test design with the SignalTap II and EP2S60 DSP board blocks.
The 7-segment display and LEDs on the board respond to user-controlled switches
and the value of the incrementer.

Stratix II EP2S180 DSP Board
The Stratix II EP2S180 DSP board is a development platform for high-performance
digital signal processing (DSP) designs, and features the Stratix II EP2S180 device in a
1020-pin package.

Table 11–9 lists the blocks available to support the Stratix EP2S180 DSP board.

PROTO2 Mictor connector, which controls the debugging port. You can optionally specify
Input or Output node type, specify the input clock signal, and specify the pin
location for each port (J20).

PROTO3 External analog-to-digital converter interface connector. You can optionally specify
Input or Output node type, specify the input clock signal, and specify the pin
location for each port (J5, J6).

Display0 and
Display1

Controls a dual user-definable seven-segment LED display (U12, U13).

SW4–SW7 Controls four user-definable push-button switches (SW4–SW7). You can optionally
specify the clock signal.

Table 11–8. Stratix EP2S60 DSP Board Blocks (Part 2 of 2)

Block Description

Figure 11–13. Design Example for the Stratix II EP2S60 DSP Board

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–16 Chapter 11: Boards Library
Stratix II EP2S180 DSP Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

f For information about setting up the board, refer to the DSP Development Kit Getting
Started User Guide. For information about the supported hardware features, refer to
the Stratix II EP2S180 DSP Development Board Reference Manual.

Figure 11–14 shows the design example for the Stratix II EP2S180 DSP board. The
7-segment display and LEDs on the board respond to user-controlled switches and
the value of the incrementer.

Table 11–9. Stratix EP2S180 DSP Board Blocks

Block Description

A2D_1 and A2D_2 Controls the 12-bit signed analog-to-digital converters (U1, U2). You can optionally
specify the clock signal.

D2A_1 and D2A_2 Controls the 14-bit unsigned digital-to-analog converters (U14, U15)

IO_DEV_CLRn Controls the board reset push-button switch (SW8). You can optionally specify the
clock signal.

LED0–LED7 Controls eight user-definable LEDs (D1–D8).

PROTO and
PROTO1

Santa Cruz connectors, which controls the prototyping area I/O. You can optionally
specify Input or Output node type, specify the input clock signal, and specify the
pin locations (J23– J25, J26–J28).

PROTO2 Mictor connector, which controls the debugging port. You can optionally specify
Input or Output node type, specify the input clock signal, and specify the pin
location for each port (J20).

PROTO3 External analog-to-digital converter interface connector. You can optionally specify
Input or Output node type, specify the input clock signal, and specify the pin
location for each port (J5, J6).

Display0 and
Display1

Controls a dual user-definable seven-segment LED display (U12, U13).

SW4–SW7 Controls four user-definable push-button switches (SW4–SW7). You can optionally
specify the clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–17
Stratix II EP2S90GX PCI Express Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Stratix II EP2S90GX PCI Express Board
The Stratix II EP2S90GX PCI Express board is a hardware platform for developing
and prototyping high-performance PCI Express (PCIe)-based designs and also to
demonstrate the Stratix II GX device’s embedded transceiver and memory circuitry.

Table 11–10 on page 11–17 lists the blocks available to support the Stratix II EP2S90GX
PCI Express board.

f For information about setting up the board, refer to the PCI Express Development Kit,
Stratix II GX Edition, Getting Started User Guide. For information about the supported
hardware features, refer to the Stratix II GX PCI Express Development Board, Reference
Manual.

Figure 11–15 shows the design example for the Stratix II EP2S90GX PCI Express
board.

Figure 11–14. Design Example for the Stratix II EP2S180 DSP Board

Table 11–10. Stratix EP2S90GX PCI Express Board Blocks

Block Description

Dip Switch Controls the user-definable dual in-line package switch (S5). You can optionally
specify the clock signal.

LED0–LED7 Controls eight user-definable LEDs D9–D16).

SW2–SW4 Controls three user-definable push-button switches (S2–S4). You can optionally
specify the clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–18 Chapter 11: Boards Library
Stratix III EP3SL150 DSP Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Stratix III EP3SL150 DSP Board
The Stratix III EP3SL150 DSP board provides a hardware platform for developing and
prototyping low-power, high-volume, feature-rich designs that demonstrate the
Stratix III device’s on-chip memory, embedded multipliers, and the Nios® II
embedded soft processor.

Table 11–11 lists the blocks available to support the Stratix III EP3SL150 DSP board.

Figure 11–15. Design Example for the Stratix II EP2S90GX PCI Express Board

Table 11–11. Stratix III EP3SL150 DSP Board Blocks (Part 1 of 2)

Block Description

Display0 User defined 4-digit seven-segment LED display (U27).

A2D_1_HSMC_A,
A2D_1_HSMC_B,
A2D_2_HSMC_A,

A2D_2_HSMC_B

Controls 14-bit signed analog-to-digital converters on the optional high speed
mezzanine cards (HSMC). You can optionally specify the clock signal.

D2A_1_HSMC_A,
D2A_1_HSMC_B,
D2A_2_HSMC_A,
D2A_2_HSMC_B

Controls the 14-bit unsigned digital-to-analog converters on the optional high speed
mezzanine cards (HSMC).

Dip Switch Controls the user-definable dual in-line package switch (SW5). You can optionally
specify the clock signal.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 11: Boards Library 11–19
Stratix III EP3SL150 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

f For information about setting up the board and the supported hardware features,
refer to the Stratix III Development Board, Reference Manual.

Altera provides the following design examples for the Stratix III EP3SL150 DSP board:

■ Test3S150Board_Leds.mdl: tests the LEDs and push-button switches on the main
development board.

■ Test3S150Board_QuadDisplay.mdl: tests the 7-segment display on the main
development board.

■ Test3S150Board_HSMA.mdl: tests the analog-to-digital and digital-to-analog
converters on the daughtercard connected to HSMC port A.

■ Test3S150Board_HSMB.mdl: tests the analog-to-digital and digital-to-analog
converters on the daughtercard connected to HSMC port B.

Figure 11–16 shows the test design for the LEDs and push-button switches.

Figure 11–17 shows the test design for the 7-segment display.

LED0–LED7 Controls eight user-definable LEDs (D20–D27).

PB0–PB3,
CPU_RESETN

Controls four user-definable push-button switches (S2–S5) and the CPU reset
push-button (S6). You can optionally specify the clock signal.

Table 11–11. Stratix III EP3SL150 DSP Board Blocks (Part 2 of 2)

Block Description

Figure 11–16. LED and Push-button Design Example for the Stratix III EP3SL150 DSP Board Blocks

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

11–20 Chapter 11: Boards Library
Stratix III EP3SL150 DSP Board

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Figure 11–18 shows the test design for a high speed mezzanine card.

1 Figure 11–18 shows the test design for the daughtercard connected to HSMC port A.
The test design for the daughtercard connected to HSMC port B is very similar.

Setting Up the Mezzanine Card Test Designs
The required pin and clock assignments are already set up in the design examples. If
necessary, you can set up your own test design with similar procedures to the
procedures that Cyclone III EP3C120 DSP Board on page 11–9 describes.

Figure 11–17. 7-Segment Display Design Example for the Stratix III EP3SL150 DSP Board Blocks

Figure 11–18. HSMC Design Example for the Stratix III EP3SL150 DSP Board Blocks

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

12. MegaCore Functions Library

The MegaCore Functions library contains blocks that represent parameterizable IP
that installs with the Quartus II software.

DSP Builder supports the following Altera DSP IP:

■ CIC—implements a cascaded integrator-comb) filter.

f For more information, refer to the CIC MegaCore Function User Guide.

■ FFT—implements a high performance fast Fourier transform or inverse FFT
processor.

f For more information, refer to the FFT MegaCore Function User Guide.

■ FIR—implements a finite impulse response filter.

f For more information, refer to the FIR Compiler User Guide.

■ NCO—implements a customized numerically controlled oscillator.

f For more information, refer to the NCO MegaCore Function User Guide.

■ Reed-Solomon—implements a forward error correction encoder or decoder.

f For more information, refer to the Reed-Solomon Compiler User Guide.

■ Viterbi—Implements a high performance Viterbi decoder.

f For more information, refer to the Viterbi Compiler User Guide.

When you double-click on a MegaCore function block, the MegaWizard Plug-In
starts. The MegaWizard interface allows you to generate all the files required to
integrate a parameterized MegaCore function variation into your DSP Builder model.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

12–2 Chapter 12: MegaCore Functions Library

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

13. Design Examples

DSP Builder provides a variety of tutorials and design examples, which you can learn
from or use as a starting point for your own design.

Altera supplies the following tutorials:

■ Amplitude Modulation

■ HIL Frequency Sweep

■ Switch Control

■ Avalon-MM Interface

■ Avalon-MM FIFO

■ HDL Import

■ Subsystem Builder

■ Custom Library

■ State Machine Table

Altera supplies the following design examples:

■ CIC Interpolation (3 Stages x75)

■ CIC Decimation (3 Stages x75)

■ Convolution Interleaver Deinterleaver

■ IIR Filter

■ 32 Tap Serial FIR Filter

■ MAC based 32 Tap FIR Filter

■ Color Space Converter

■ Farrow Based Resampler

■ CORDIC, 20 bits Rotation Mode

■ Imaging Edge Detection

■ Quartus II Assignment Setting Example

■ SignalTap II Filtering Lab

■ SignalTap II Filtering Lab with DAC to ADC Loopback

■ Cyclone II DE2 Board

■ Cyclone II EP2C35 DSP Board

■ Cyclone II EP2C70 DSP Board

■ Cyclone III EP3C25 Starter Board

■ Cyclone III EP3C120 DSP Board (LED/PB)

■ Cyclone III EP3C120 DSP Board (7-Seg)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–2 Chapter 13: Design Examples

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

■ Cyclone III EP3C120 DSP Board (HSMC A)

■ Cyclone III EP3C120 DSP Board (HSMC B)

■ Stratix EP1S25 DSP Board

■ Stratix EP1S80 DSP Board

■ Stratix II EP2S60 DSP Board

■ Stratix II EP2S180 DSP Board

■ Stratix II EP2S90GX PCI Express Board

■ Stratix III EP3SL150 DSP Board (LED/PB)

■ Stratix III EP3SL150 DSP Board (7-Seg)

■ Stratix III EP3SL150 DSP Board (HSMC A)

■ Stratix III EP3SL150 DSP Board (HSMC B)

The following additional design examples demonstrate how you can combine blocks
from the advanced and standard blocksets in a single design:

■ Combined Blockset Example

To view the design examples, type demo at the MATLAB command prompt. The
Demos tab opens in the Help window displaying a list of design examples.

Select DSP Builder Blockset in the Help window to expand the list (Figure 13–1) and
click on an entry to display an overview of each design.

Figure 13–1. DSP Builder Design Example Demos

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 13: Design Examples 13–3
Amplitude Modulation

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

You can display the model corresponding to each design example by clicking Run
this demo in the Help window. For example, if you click Run this demo for the HIL
example, the model design window opens displaying the HIL frequency sweep
model (Figure 13–2).

The <DSP Builder install path>\DesignExamples\Tutorials\ directory contains the
getting started tutorials and design examples.

f For more information, refer to the DSP Builder Standard Blockset User Guide section in
volume 2 of the DSP Builder Handbook.

1 You can also access simple example models for most of the blocks in the DSP Builder
blockset that correspond to the examples in the block descriptions. Many of these
example blocks include Simulink Scope blocks that display the output waveforms
when you simulate the models. Access these examples in the directory <DSP Builder
install path>\DesignExamples\Tutorials\UnitBlocks

Amplitude Modulation
The Getting Started Tutorial uses the amplitude modulation design example to
demonstrate the DSP Builder design flow. The design example is a modulator that has
a sine wave generator, a quadrature multiplier, and a delay element.

The example model is singen.mdl.

f For more information about this design, refer to the Getting Started Tutorial chapter in
the DSP Builder Standard Blockset User Guide section in volume 2 of the DSP Builder
Handbook.

HIL Frequency Sweep
This HIL design shows a low-pass filter on the output of a modulated sine wave
generation that the CORDIC algorithm creates.

The example model is FreqSweep_HIL.mdl.

f For more information about this design, refer to the HIL Example Designs in the Using
Hardware in the Loop (HIL) chapter in the DSP Builder Standard Blockset User Guide
section in volume 2 of the DSP Builder Handbook.

Figure 13–2. Hardware in the Loop Example Model

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–4 Chapter 13: Design Examples
Switch Control

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Switch Control
This design example shows how you can use blocks to control the switches on a DSP
Development board and how to perform the SignalTap II analysis in DSP Builder.

The example model is switch_control.mdl.

f For more information about this design, refer to the SignalTap II Design Example in the
Performing SignalTap II Logic Analysis chapter in the DSP Builder Standard Blockset User
Guide section in volume 2 of the DSP Builder Handbook.

Avalon-MM Interface
This example consists of a 4-tap FIR filter with variable coefficients. The coefficients
load with an Avalon-MM write slave while an off-chip source supplies the input data
through an analog-to-digital converter. The design example sends filtered output data
off-chip through a digital-to-analog converter. You can include the design as an SOPC
Builder peripheral to the Avalon-MM bus.

The example model is topavalon.mdl.

f For more information about this design, refer to the Avalon-MM Interface Blocks in the
Using the Interfaces Library chapter in the DSP Builder Standard Blockset User Guide
section in volume 2 of the DSP Builder Handbook.

1 The design example uses a Stratix II EP2S60 DSP development board but you can
configure the design for other boards (for example, the Cyclone II EP2C35
development board). Altera provide alternative design examples in the CII and SII
subdirectories under the <DSP Builder install
path>\DesignExamples\Tutorials\SOPCBuilder\SOPCBlock\Finished Examples
directory.

Avalon-MM FIFO
This design example consists of a Prewitt edge detector with one Avalon-MM Write
FIFO buffer and one Avalon-MM Read FIFO buffer. DSP Bu idler uses an additional
slave port as a control port. You can include the design as an SOPC Builder peripheral
to the Avalon-MM bus.

The example model is sopc_edge_detector.mdl.

f For more information about this design, refer to Avalon-MM FIFO Buffer in the Using
the Interfaces Library chapter in the DSP Builder Standard Blockset User Guide section in
volume 2 of the DSP Builder Handbook.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 13: Design Examples 13–5
HDL Import

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

HDL Import
This design example is a template design that you can use to create a simple, implicit,
black-box model with the HDL Import block.

The example model is empty_MyFilter.mdl.

f For more information about this design, refer to HDL Import in the Using Black-Box
Designs for HDL Subsystems chapter in the DSP Builder Standard Blockset User Guide
section in volume 2 of the DSP Builder Handbook.

Subsystem Builder
This design example allows you to create a simple, explicit, black-box model with the
Subsystem Builder block.

The example model is filter8tap.mdl.

f For more information about this design, refer to Subsystem Builder in the Using
Black-Box Designs for HDL Subsystems chapter in the DSP Builder Standard Blockset User
Guide section in volume 2 of the DSP Builder Handbook.

Custom Library
This design example shows how you can use a custom library block to implement a
parameterizable Simulink block.

The example model is top.mdl.

f For more information and procedures to create your own library block, refer to the
Using Custom Library Blocks chapter in the DSP Builder Standard Blockset User Guide
section in volume 2 of the DSP Builder Handbook.

State Machine Table
This example shows how you can use a State Machine Table block to implement
a FIFO controller in DSP Builder.

The example model is fifo_control_logic.mdl.

f For more information about this design, refer to the State Machine Example Designs in
the Using the State Machine Library chapter in the DSP Builder Standard Blockset User
Guide section in volume 2 of the DSP Builder Handbook.

Demonstration Designs
The <DSP Builder install path>\DesignExamples\Demos\ directory contains
additional design examples.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–6 Chapter 13: Design Examples
CIC Interpolation (3 Stages x75)

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

CIC Interpolation (3 Stages x75)
CIC (cascaded integrator and comb) structures are an economical way to implement
high sample rate conversion filters. This example implements a 3-stage interpolating
CIC filter with a rate change factor of 75, therefore, the output is 75 times faster than
the input. The design uses Stratix or Cyclone device PLLs. The input frequency is
2 MHz and the output is 150 MHz.

The example model is CiCInterpolator75.mdl.

CIC Decimation (3 Stages x75)
CIC (cascaded integrator and comb) structures are an economical way to implement
high sample rate conversion filters. This example implements a 3-stage decimating
CIC filter with a rate change factor of 75, therefore, the output is 75 times slower than
the input. Use this design in digital down-conversion applications. The design uses
Stratix or Cyclone device PLLs. The input frequency is 150 MHz and the output is 2
MHz.

The example model is CicDecimator75.mdl.

Convolution Interleaver Deinterleaver
Use convolution interleaver deinterleavers on the transmission side for forward error
correction. It provides an example of how the interleaver and deinterleaver work
together. The example uses a Memory Delay block for the interleaver FIFO buffers.

The example model is top12x17.mdl.

IIR Filter
This design example illustrates how to implement an order 2 IIR filter with a direct
form two structure. The coefficients compute with the MATLAB function butter,
which implements a Butterworth filter, with an order of two and a cutoff frequency of
0.4. This function creates floating-point coefficients, which are scaled in the design
with the Gain block.

The example model is topiir.mdl.

32 Tap Serial FIR Filter
This design example illustrates how to implement a low pass 32 tap FIR (finite
impulse response) filter with a 4-8 look-up table (LUT) for partial product
pre-computation. This design requires the Mathworks Signal Processing ToolBox to
calculate the coefficient with the FIR1 function:

FilterOrder = 32
InputBitWidth = 8
LowPassFreqBand = [0 0.1 0.2 1];
LowPassMagnBand = [1 0.9 0.0001 0.0001];
FlCoef = firls(FilterOrder,LowPassFreqBand,LowPassMagnBand);
CoefBitWidth = InputBitWidth +
ceil(log2((max(abs(FlCoef))/min(abs(FlCoef)))))
ScalingFactor = (2^(CoefBitWidth-1))-1;
FpCoef = fix(ScalingFactor * FlCoef);

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 13: Design Examples 13–7
MAC based 32 Tap FIR Filter

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

plot(FpCoef,'o');
title('Fixed-point scaled coefficient value');
ImpulseData = zeros(1,1000);
ImpulseData(1) = 100;
h = conv(ImpulseData,FpCoef);
fftplot(h);
title('FIR Frequency response');
FirSamplingPeriod=1;

The example model is AltrFir32.mdl.

MAC based 32 Tap FIR Filter
This design example illustrates how to implement a MAC-based, fixed-coefficient,
32-tap, low pass FIR (finite impulse response) filter with a single Multiply
Accumulate block and a single memory element for the tap delay line. This design
requires the MathWorks Signal Processing ToolBox to calculate the coefficient with the
fir1 function:

coef = fix(fir1(32,3/8)*2^16-1);
Impulse = zeros(1,1000);
Impulse(1) = 1;
h = conv(coef,Impulse);
plot(coef,'o');
title('Fixed-point scaled coefficient value');
fftplot(h);
title('Impulse Frequency response');

The example model is FIR_MAC32.mdl.

Color Space Converter
This design example illustrates how to implement a color space converter, which
converts R'G'B to Y'C'bCr.

The example model is TopCsc.mdl.

Farrow Based Resampler
This design example illustrates how to implement a Farrow based decimating sample
rate converter.

Many integrated systems, such as software defined radios (SDR), require you to
resample data so that a unit can comply with communication standards where the
sample rates are different. In some cases, where one clock rate is a simple integer
multiple of another clock rate, use interpolating and decimating FIR filters to
accomplish resampling. However, in most cases the interpolation and decimation
factors are so high that this approach is impractical.

Farrow resamplers provide an efficient way to resample a data stream at a different
sample rate. The underlying principle is that the phase difference between the current
input and wanted output is determined on a sample by sample basis. This phase
difference then combines the phases of a polyphase filter in such a way that a sample
for the output phase, which you want, generates.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–8 Chapter 13: Design Examples
CORDIC, 20 bits Rotation Mode

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

This design example illustrates a Farrow resampler. You can simulate its performance
in MATLAB, change it as required for your application, generate VHDL and
synthesize the model to Altera devices. The design example has an input clock rate
identical to the system clock. For applications where the input rate is much lower than
the system clock, time sharing should be implemented to achieve a cost effective
solution.

The example model is FarrowResamp.mdl.

f For more information about this design, click on the Doc symbol in the design model
window.

CORDIC, 20 bits Rotation Mode
This design example illustrates an iterative 20 bit rotation mode, which computes sine
and cosine angles and implements with the coordinate rotation digital computer
(CORDIC) algorithm.

The example model is DemoCordic.mdl.

Imaging Edge Detection
This design example illustrates an edge detection design.

The example model is Edge_detector.mdl.

f Refer to AN364: Edge Detection Reference Design for a full description of the edge
detector design.

Quartus II Assignment Setting Example
This design example illustrates Quartus II assignment setting from DSP Builder. You
can launch the Signal Compiler block to compile the design and program the
Stratix EP2S60 DSP development board.

The example model is Top_2s60Board.mdl.

SignalTap II Filtering Lab
Two numerically-controlled oscillators generate a 833.33kHz sinusoidal signal and a
83.33kHz sinusoidal signal. The design example adds the signals together. The
resulting signal loops back to a low-pass 34-tap filter with 14-bit fixed-point
coefficients. The low-pass filter removes the 833.33-kHz sinusoidal signal and allows
the 83.33-kHz sinusoidal signal through to the fir_result output.

The example model is FilteringLab.mdl.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 13: Design Examples 13–9
SignalTap II Filtering Lab with DAC to ADC Loopback

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

SignalTap II Filtering Lab with DAC to ADC Loopback
Two numerically-controlled oscillators generate a 833.33kHz sinusoidal signal and a
83.33kHz sinusoidal signal. The design example adds the signals together on chip
before they pass through a digital-to-analog converter on the Stratix EP1S25 DSP
board. The resulting analog signal loops back to an analog-to-digital converter on the
board and then passes to an on-chip, low-pass filter. The low-pass filter removes the
833.33kHz sinusoidal signal and allows the 83.33kHz sinusoidal signal through to the
fir_result output.

The example model is StFilteringLab.mdl.

Cyclone II DE2 Board
This design example illustrates how you can connect blocks representing the
components on a Cyclone II DE2 board.

The example model is TestDE2Board.mdl.

For a description of this board, refer to “Cyclone II DE2 Board” on page 11–2.

Cyclone II EP2C35 DSP Board
This design example illustrates how you can connect blocks representing the
components on a Cyclone II EP2C35 DSP development board.

The example model is Test2c35Board.mdl.

For a description of this board, refer to “Cyclone II EP2C35 DSP Board” on page 11–3.

Cyclone II EP2C70 DSP Board
This design example illustrates how you can connect blocks representing the
components on a Cyclone II EP2C70 DSP development board.

The example model is Test2C70Board.mdl.

For a description of this board, refer to “Cyclone II EP2C70 DSP Board” on page 11–4.

Cyclone III EP3C25 Starter Board
This design example illustrates how you can connect blocks representing the
components on a Cyclone III EP3C25 starter board.

The example model is Test3C25Board.mdl.

For a description of this board, refer to “Cyclone III EP3C25 Starter Board” on
page 11–6.

Cyclone III EP3C120 DSP Board (LED/PB)
This design example illustrates how you can connect blocks representing the LED and
push-button components on a Cyclone III EP3C120 DSP board.

The example model is Test3C120Board_Leds.mdl.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–10 Chapter 13: Design Examples
Cyclone III EP3C120 DSP Board (7-Seg)

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

For a description of this board, refer to “Cyclone III EP3C120 DSP Board” on
page 11–6.

Cyclone III EP3C120 DSP Board (7-Seg)
This design example illustrates how you can connect blocks representing the
7-segment display component on a Cyclone III EP3C120 DSP board.

The example model is Test3C120Board_QuadDisplay.mdl.

For a description of this board, refer to “Cyclone III EP3C120 DSP Board” on
page 11–6.

Cyclone III EP3C120 DSP Board (HSMC A)
This design example illustrates how you can connect blocks representing the
components on a high speed mezzanine card (HSMC) connected to HSMC port A of a
Cyclone III EP3C120 DSP board.

The example model is Test3C120Board_HSMA.mdl.

For a description of this board, refer to “Cyclone III EP3C120 DSP Board” on
page 11–6.

Cyclone III EP3C120 DSP Board (HSMC B)
This design example illustrates how you can connect blocks representing the
components on a high speed mezzanine card (HSMC) connected to HSMC port B of a
Cyclone III EP3C120 DSP board.

The example model is Test3C120Board_HSMB.mdl.

For a description of this board, refer to “Cyclone III EP3C120 DSP Board” on
page 11–6.

Stratix EP1S25 DSP Board
This design example illustrates how you can connect blocks from the Boards library
that represent components on a Stratix EP1S25 DSP development board.

The example model is Test1S25Board.mdl.

For a description of this board, refer to “Stratix EP1S25 DSP Board” on page 11–11.

Stratix EP1S80 DSP Board
This design example illustrates how you can connect blocks from the Boards library
that represent components on a Stratix EP1S80 DSP development board.

The example model is Test1S80Board.mdl.

For a description of this board, refer to “Stratix EP1S80 DSP Board” on page 11–13.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 13: Design Examples 13–11
Stratix II EP2S60 DSP Board

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Stratix II EP2S60 DSP Board
This design example illustrates how you can connect blocks from the Boards library
that represent components on a Stratix II EP2S60 DSP development board.

The example model is Test2S60Board.mdl.

For a description of this board, refer to “Stratix II EP2S60 DSP Board” on page 11–14.

Stratix II EP2S180 DSP Board
This design example illustrates how you can connect blocks from the Boards library
that represent components on a Stratix II EP2S180 DSP development board.

The example model is Test2S180Board.mdl.

For a description of this board, refer to “Stratix II EP2S180 DSP Board” on page 11–15.

Stratix II EP2S90GX PCI Express Board
This design example illustrates how you can connect blocks from the Boards library
that represent components on a Stratix II EP2S90GX PCI Express board.

The example model is Test2S90GXBoard.mdl.

For a description of this board, refer to “Stratix II EP2S90GX PCI Express Board” on
page 11–17.

Stratix III EP3SL150 DSP Board (LED/PB)
This design example illustrates how you can connect blocks representing the LED and
push-button components on a Stratix III EP3SL150 DSP board.

The example model is Test3S150Board_Leds.mdl.

For a description of this board, refer to “Stratix III EP3SL150 DSP Board” on
page 11–18.

Stratix III EP3SL150 DSP Board (7-Seg)
This design example illustrates how you can connect blocks representing the
7-segment display component on a Stratix III EP3SL150 DSP board.

The example model is Test3S150Board_QuadDisplay.mdl.

For a description of this board, refer to “Stratix III EP3SL150 DSP Board” on
page 11–18.

Stratix III EP3SL150 DSP Board (HSMC A)
This design example illustrates how you can connect blocks representing the
components on a high speed mezzanine card (HSMC) connected to HSMC port A of a
Stratix III EP3SL150 DSP board.

The example model is Test3S150Board_HSMA.mdl.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

13–12 Chapter 13: Design Examples
Stratix III EP3SL150 DSP Board (HSMC B)

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

For a description of this board, refer to “Stratix III EP3SL150 DSP Board” on
page 11–18.

Stratix III EP3SL150 DSP Board (HSMC B)
This design example illustrates how you can connect blocks representing the
components on a high speed mezzanine card (HSMC) connected to HSMC port B of a
Stratix III EP3SL150 DSP board.

The example model is Test3S150Board_HSMB.mdl.

For a description of this board, refer to “Stratix III EP3SL150 DSP Board” on
page 11–18.

Combined Blockset Example
This design example illustrates how to embed a DSP Builder Advanced Blockset
design inside a top-level standard blockset design. The resulting system comprises
blocks from both blocksets, simulates cycle-accurately and you can us the standard
blockset TestBench block to test it.

The example model is demo_adapted_ad9856.mdl.

f For more information about this design example, refer to the DSP Builder chapter in
the DSP Design Flow User Guide.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

14. Categorized Block List

This appendix lists the blocks in each of the libraries in the Altera DSP Builder
blockset.

AltLab
The AltLab library includes the following blocks:

■ BP (Bus Probe)

■ Clock

■ Clock_Derived

■ Display Pipeline Depth

■ HDL Entity

■ HDL Import

■ HDL Input

■ HDL Output

■ HIL (Hardware in the Loop)

■ Quartus II Global Project Assignment

■ Quartus II Pinout Assignments

■ Resource Usage

■ Signal Compiler

■ SignalTap II Logic Analyzer

■ SignalTap II Node

■ Subsystem Builder

■ TestBench

■ VCD Sink

Arithmetic
The Arithmetic library includes the following blocks:

■ Barrel Shifter

■ Bit Level Sum of Products

■ Comparator

■ Counter

■ Differentiator

■ Divider

■ DSP

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

14–2 Chapter 14: Categorized Block List

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

■ Gain

■ Increment Decrement

■ Integrator

■ Magnitude

■ Multiplier

■ Multiply Accumulate

■ Multiply Add

■ Parallel Adder Subtractor

■ Pipelined Adder

■ Product

■ SOP Tap

■ Square Root

■ Sum of Products

Complex Type
The Complex Type library includes the following blocks:

■ Butterfly

■ Complex AddSub

■ Complex Conjugate

■ Complex Constant

■ Complex Delay

■ Complex Multiplexer

■ Complex Product

■ Complex to Real-Imag

■ Real-Imag to Complex

Gate & Control
The Gate & Control library includes the following blocks:

■ Binary to Seven Segments

■ Bitwise Logical Bus Operator

■ Case Statement

■ Decoder

■ Demultiplexer

■ Flipflop

■ If Statement

■ LFSR Sequence

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 14: Categorized Block List 14–3

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

■ Logical Bit Operator

■ Logical Bus Operator

■ Logical Reduce Operator

■ Multiplexer

■ Pattern

■ Single Pulse

Interfaces
The Interfaces library includes the following blocks:

■ Avalon-MM Master

■ Avalon-MM Slave

■ Avalon-MM Read FIFO

■ Avalon-MM Write FIFO

■ Avalon-ST Packet Format Converter

■ Avalon-ST Sink

■ Avalon-ST Source

IO & Bus
The IO & Bus library includes the following blocks:

■ AltBus

■ Binary Point Casting

■ Bus Builder

■ Bus Concatenation

■ Bus Conversion

■ Bus Splitter

■ Constant

■ Extract Bit

■ Global Reset

■ GND

■ Input

■ Non-synthesizable Input

■ Non-synthesizable Output

■ Output

■ Round

■ Saturate

■ VCC

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

14–4 Chapter 14: Categorized Block List

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Rate Change
The Rate Change library includes the following blocks:

■ Clock

■ Clock_Derived

■ Dual-Clock FIFO

■ Multi-Rate DFF

■ PLL

■ Tsamp

Simulation Blocks Library
The Simulation Blocks library includes the following blocks:

■ External RAM

■ Multiple Port External RAM

State Machine Functions
The State Machine Functions library includes the following blocks:

■ State Machine Editor

■ State Machine Table

Storage
The Storage library includes the following blocks:

■ Delay

■ Down Sampling

■ Dual-Clock FIFO

■ Dual-Port RAM

■ FIFO Buffer

■ LUT (Look-Up Table)

■ Memory Delay

■ Parallel To Serial

■ ROM

■ Serial To Parallel

■ Shift Taps

■ Single-Port RAM

■ True Dual-Port RAM

■ Up Sampling

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Chapter 14: Categorized Block List 14–5

© June 2010 Altera Corporation DSP Builder Standard Blockset Libraries
Preliminary

Boards
The Boards library includes blocks that support the following development boards:

■ Cyclone II DE2 Board

■ Cyclone II EP2C35 DSP Board

■ Cyclone II EP2C70 DSP Board

■ Cyclone III EP3C25 Starter Board

■ Cyclone III EP3C120 DSP Board

■ Stratix EP1S25 DSP Board

■ Stratix EP1S80 DSP Board

■ Stratix II EP2S60 DSP Board

■ Stratix II EP2S180 DSP Board

■ Stratix II EP2S90GX PCI Express Board

■ Stratix III EP3SL150 DSP Board

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

14–6 Chapter 14: Categorized Block List

DSP Builder Standard Blockset Libraries © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

Index

Symbols
.hex file 12–2
.mdl file 1–3
.mdlxml file 12–1
.qar file 12–1
.qip file 12–2

A
Advanced blockset interoperability 1–3
alt_dspbuilder_createComponentLibrary

Create component library command 10–6
alt_dspbuilder_exportHDL command 12–3
alt_dspbuilder_refresh_hdlimport

Update HDL command 3–25
alt_dspbuilder_refresh_megacore

Update MegaCore command 4–2
alt_dspbuilder_refresh_user_library_blocks

Update user libraries command 9–6
alt_dspbuilder_setup_megacore

Setup MegaCore command 4–1
alt_dspbuilder_verifymodel

Comparision command 3–22
AltBus block 6–2
Altera Quartus II software 1–2

Integration with MATLAB 1–3
AltLab library 1–1
Arithmetic library 2–1
asynchronous clear signal

wiring 13–6
Automatic flow 3–19
Avalon-MM interface

Features 1–2
FIFO walkthrough 7–16
Interface blocks walkthrough 7–8
Master block 7–4
Read FIFO 7–7
Slave block 7–2
SOPC Builder integration 7–1
Write FIFO 7–6

Avalon-MM Master block 5–3
Avalon-MM Read FIFO block 5–9
Avalon-MM Slave block 5–6
Avalon-MM Write FIFO block 5–11
Avalon-ST interface

Features 1–2
Packet Format Converter 7–22
Packet formats 7–21
SOPC Builder integration 7–20

Avalon-ST Packet Format Converter block 5–12
Avalon-ST Sink block 5–18
Avalon-ST Source block 5–20

B
Barrel Shifter block 2–2
Binary Point Casting block 6–4
Binary to Seven Segments block 4–2
Bit Level Sum of Products block 2–3
Bit width design rule 3–4
Bitwise Logical Bus Operator block 4–3
Black box 3–22

Explicit 8–1
HDL import

Walkthrough 8–1
Implicit 8–1
Subsystem Builder

Walkthrough 8–6
Using HDL import 8–1
Using SubSystem Builder 8–1

Boards library 11–1
Bus Builder block 6–5
Bus Concatenation block 6–7
Bus Conversion block 6–8
Bus Probe (BP) block 1–2
Bus Splitter block 6–9
Butterfly block 3–2

C
Case Statement block 4–5
Clock

Setting a derived clock 2–2
Setting the base clock 2–2

Clock block 1–2
Clock_Derived block 1–3
Clocking 3–8

Assignment 3–11
Categories 3–11
Clock enable signal 3–8
Configuration parameters 2–3
Global reset 3–17
HDL simulation models 3–16
Multiple clock domains 3–9
Sampling period 3–8
Simulink simulation model 3–16
Single clock domain 3–8
Timing relationships 3–18
Using a PLL block 3–14

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Index–2

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

Using advanced PLL features 3–15
Using Clock and Clock_Derived blocks 3–10

Comments
Adding to a block 3–22

Comparator block 2–5
Complex AddSub block 3–4
Complex Conjugate block 3–6
Complex Constant block 3–8
Complex Delay block 3–9
Complex Multiplexer block 3–10
Complex Product block 3–11
Complex to Real-Imag block 3–13
Complex Type library 3–1
Constant block 6–10
Controlling synthesis and compilation 3–19
Counter block 2–6
Custom library

Adding to the library browser 9–5
Creating a library model file 9–1
Walkthrough 9–1

Cyclone II DE2 DSP board 11–2
Cyclone II EP2C35 DSP board 11–3
Cyclone II EP2C70 DSP board 11–4
Cyclone III EP3C120 DSP board 11–6
Cyclone III EP3C25 DSP board 11–6

D
Data width propagation 3–4
Decoder block 4–7
Delay block 9–2
Demultiplexer block 4–8
Design flow 2–1

Control using Signal Compiler 3–19
Overview 2–1
Using a State Machine Editor block 11–7
Using a State Machine Table Block 11–2
Using Hardware in the loop 5–1
Using MegaCore functions 4–2

Design rules 3–1
Bit width 3–4
Frequency 3–8
Signal Compiler 3–19

Device family support
Standard blockset 1–1

Differentiator block 2–8
Digital signal processing (DSP) 1–3
Display Pipeline Depth block 1–4
Divider block 2–9
Down Sampling block 9–3
DSP block 2–10
DSP development board

Board description file 10–4
Component description file 10–2
Creating a board library 10–6

Creating a new board description 10–1
predefined components 10–1
Supported boards 10–1
Troubleshooting 13–5

Dual-Clock FIFO block 9–4
Dual-Port RAM block 9–7

E
Error message

Data type mismatch 13–6
Design includes pre-v7.1 blocks 13–6
Loop while propagating bit widths 13–4
Output connected to Altera block 13–5
Unexpected end of file 13–10
When generating blocks 13–7

Example designs
32 tap FIR filter 13–6
Amplitude modulation 13–3
Avalon-MM Blocks 13–4
Avalon-MM FIFO 13–4
CIC decimation 13–6
CIC interpolation 13–6
Color space converter 13–7
Combined blocksets 13–12
Convolution interleaver deinterleaver 13–6
CORDIC, 20 bits rotation mode 13–8
Custom Library 13–5
Custom library block 9–1
Cyclone II DE2 board 13–9
Cyclone II EP2C35 board 13–9
Cyclone II EP2C70 board 13–9
Cyclone III EP3C120 board (7-seg display)

13–10
Cyclone III EP3C120 board (HSMC A) 13–10
Cyclone III EP3C120 board (HSMC B) 13–10
Cyclone III EP3C120 board (LED/PB) 13–9
Cyclone III EP3C25 starter board 13–9
Farrow based resampler 13–7
Getting started tutorial 2–4
Hardware in the loop 5–3
HDL Import 13–5
HDL import 8–1
HIL frequency sweep 13–3
IIR filter 13–6
Imaging edge detection 13–8
MAC based 32 tap FIR filter 13–7
Quartus II assignment setting 13–8
SignalTap II 6–2
SignalTap II filtering lab 13–8
SignalTap II filtering lab with loopback 13–9
SOPC Builder peripheral 7–8
State machine example 11–1
State Machine Table 13–5
Stratix EP1S25 board 13–10

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Index–3

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

Stratix EP1S80 board 13–10
Stratix II EP2S180 board 13–11
Stratix II EP2S60 board 13–11
Stratix II EP2S90GX PCI Express board 13–11
Stratix III EP3SL150 board (7-seg display) 13–11
Stratix III EP3SL150 board (HSMC A) 13–11
Stratix III EP3SL150 board (HSMC B) 13–12
Stratix III EP3SL150 board (LED/PB) 13–11
Subsystem Builder 13–5
Switch Control 13–4

External RAM block 8–1
Extract Bit block 6–12

F
FIFO block 9–10
Flipflop block 4–10
Frequency

Design Rules 3–8

G
Gain block 2–15
Gate & Control library 4–1
Generating a Testbench 2–17
Global Reset (or SCLR) block 6–13
GND block 6–13

H
Hardware in the loop (HIL) 1–2

Burst & frame modes 5–6
Design flow 5–1
Overview 5–1
Requirements 5–2
Troubleshooting 5–10
Walkthrough 5–3

HDL
Simulation model 3–16

HDL Entity block 1–4
HDL export 12–2
HDL import

Black box 8–1
Features 1–2
Updating 3–24
Walkthrough 8–1

HDL Import block 1–5
HDL Input block 1–7
HDL Output block 1–8
Hierarchical design 3–20
HIL (Hardware in the Loop) block 1–9
How to Contact Altera Info–1

I
If Statement block 4–11
Increment Decrement block 2–17

Input block 6–14
Integrator block 2–19
Interfaces library 5–1
IO & Bus library 6–1

L
LFSR Sequence block 4–14
Library

AltLab 1–1
Arithmetic 2–1
Boards 11–1
Complex Type 3–1
Gate & Control 4–1
Interfaces 5–1
IO & Bus 6–1
MegaCore Functions 12–1
Rate Change 7–1
Simulation 8–1
State Machine Functions 10–1
Storage 9–1

Logical Bit Operator block 4–16
Logical Bus Operator block 4–17
Logical Reduce Operator block 4–19
LUT (Look-Up Table) block 9–11

M
Magnitude block 2–20
Manual flow 3–19
MATLAB 1–2

Integration with 1–3
Opening the Simulink library browser 2–4
Using a base or masked subsystem variable 3–2
Using a MATLAB array to initilize a block 3–22

MegaCore function 1–3
Design flow 4–2
Design issues 4–13
Device family 4–14
Generating a variation 4–3
Installing 4–1
Instantiating 4–2
OpenCore Plus evaluation 4–1
Optimizing 4–3
Parameterizing 4–3
Signal Compiler 4–14
Simulating 4–3
Simulating in the tutorial design 4–8
Updating variations 4–2
Version numbers 4–1
Walkthrough 4–3

MegaCore Functions library 12–1
Memory block types 1–1
Memory Delay block 9–13
Model

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Index–4

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

Creating 2–4
Performing RTL simulation 2–17
Simulating in Simulink 2–15

ModelSim
Comparison with Simulink 3–22
Simulation fllow 3–19
Using a Tcl file to add commands 3–27

Multiple Port External RAM block 8–3
Multiplexer block 4–20
Multiplier block 2–21
Multiply Accumulate block 2–23
Multiply Add block 2–25
Multi-Rate DFF block 7–1

N
Naming conventions 3–1
Nios II

Support 1–2
Using the Nios II IDE 7–15

Non-synthesizable Input block 6–15
Non-synthesizable Output block 6–16
Notation

Binary point location 3–3
Fixed-point 3–2

O
Output block 6–17

P
Packet Format Converter

Avalon-ST 7–22
Parallel Adder Subtractor 2–27
Parallel To Serial block 9–14
Pattern block 4–22
Pipeline depth

display 3–24
Pipelined Adder block 2–29
PLL block 7–3
PLL clocks

device support 3–14
Port data type

display format 3–24
Product block 2–31

Q
Quartus II assignments

Adding to block entity names 3–27
Quartus II constraints

Adding to a model 3–23
Quartus II project

Adding a DSP Builder design 2–20
Integration of multiple models 12–5

Quartus II Project Global Assignment block 1–11

Quartus II Project Pinout Assignments block 1–11

R
Rate Change library 7–1
Real-Imag to Complex block 3–14
Release information 1–1
Reset

Asynchronous 3–17
global 3–17

Resource usage
Analyzing 3–25

Resource Usage block 1–12
ROM block 9–16
Round block 6–18

S
Saturate block 6–20
Serial To Parallel block 9–18
Shift Taps block 9–20
Signal Compiler 3–19

Adding to a model 2–16
Enabling SignalTap II options 6–6
License 13–1
Synthesis and compilation flows 3–19

Signal Compiler block 1–13
Signal data type

display format 3–24
SignalTap II

Design flow 6–1
Walkthrough 6–2

SignalTap II logic analyzer 6–1
Features 1–2
Performing logic analysis 6–1
Signal Compiler options 6–6
Trigger conditions 6–7

SignalTap II Logic Analyzer block 1–14
SignalTap II Node block 1–15
Simulation

Setting the Simulink solver 2–3
Using ModelSim 2–17
Using Simulink 2–15

Simulation flow 3–19
Simulation library 8–1
Simulation model

HDL 3–16
Simulink

Comparison with ModelSim 3–22
Integration with 1–3
Solver 3–16

Single Pulse block 4–23
Single-Port RAM block 9–21
Solver

Setting simulation parameters 2–3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Index–5

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

SOP Tap block 2–33
SOPC Builder

Interfaces library 7–1
Support 1–2

SOPC builder
Instantiating your design 7–12

Square Root block 2–35
State machine

Implementing 11–1
State Machine Editor

Walkthrough 11–7
State Machine Editor block 10–1
State Machine Functions library 10–1
State Machine table

Walkthrough 11–2
State Machine Table block 10–3
Storage library 9–1
Stratix EP1S25 DSP board 11–11
Stratix EP1S80 DSP board 11–13
Stratix II EP2S180 DSP board 11–15
Stratix II EP2S60 DSP board 11–14
Stratix II EP2S90GX PCI Express board 11–17
Stratix III EP3SL150 DSP board 11–18
Subsystem Builder

Walkthrough 8–6
Subsystem Builder block 1–15
Sum of Products block 2–36
Sum of Products Tap block 2–33

T
TestBench

Adding to a model 2–17
TestBench block 1–17
True Dual-Port RAM block 9–24
Tsamp block 7–4
Tutorial

Getting started 2–4
Typographic Conventions Info–1

U
Up Sampling block 9–28

V
VCC block 6–21
VCD Sink block 1–18

W
Walkthrough

Avalon-MM FIFO 7–16
Avalon-MM interface blocks 7–8
Black box

HDL import 8–1
Subsystem Builder 8–6

Custom library 9–1
Hardware in the loop 5–3
MegaCore function 4–3
SignalTap II 6–2
State Machine Editor 11–7
State Machine Table 11–2

Warning message
I/O blocks conflict with clock or aclr ports 13–6

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Index–6

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

© June 2010 Altera Corporation DSP Builder Handbook Volume 2: DSP Builder Standard Blockset
Preliminary

Additional Information

How to Contact Altera
For the most up-to-date information about Altera® products, see the following table.

Typographic Conventions
The following table shows the typographic conventions that this document uses.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, dialog box options, software utility names, and other GUI labels. For
example, \qdesigns directory, d: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. For example,
resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

Info–2 Additional Information
Typographic Conventions

DSP Builder Handbook Volume 2: DSP Builder Standard Blockset © June 2010 Altera Corporation
Preliminary

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press Enter.

f The feet direct you to more information about a particular topic.

Visual Cue Meaning

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

