Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

IE-789842-NS-EM1

Emulation Board

Target Devices μPD789842 Subseries

Document No. U14545EJ2V0UM00 (2nd edition) Date Published December 2002 N CP(K)

© NEC Electronics Corporation 2000 Printed in Japan [MEMO]

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America, Inc. (U.S.) • Filiale Italiana Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Sucursal en España Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

• Succursale Française Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

 Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

• Tyskland Filial Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

 United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd. Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore

Tel: 6253-8311 Fax: 6250-3583

Major Revisions in This Edition

Page	Description	
Throughout	 Addition of IE-78K0S-NS-A as supported in-circuit emulator Addition of NP-44GB-TQ and NP-H44GB-TQ as supported emulation probes Addition of TGB-044SAP as supported conversion adapter 	
pp. 12, 13	 Figure 1-1 System Configuration Modification of supply medium of debugger ID78K0S-NS to CD-ROM Modification of the shape of interface cable Modification of Notes 1 to 3 Addition of Table 1-1 Correspondence Between Emulation Probe and Conversion Socket/Conversion Adapter 	
p. 15	Partial modification of Table 1-2 Basic Specifications	
p. 20	 3.2 Switch and Jumper Settings on Main Unit Addition of (2) Settings on the IE-78K0S-NS-A 	
p. 28 of previous edition	Deletion of 3.3 Low-Voltage Emulation Setting	
p. 21	Addition of 3.3 Setting Power Supply Voltage of Target Interface	
pp. 22 to 24	 3.4.1 Overview of clock settings Change from "internal clock" in previous edition to "clock oscillator" Figure 3-3 External Circuits Used as System Clock Oscillator Addition of Vss pin in figure of (a) Clock oscillator Figure 3-4 When Using Clock That Is Already Mounted on Emulation Board, Figure 3-5 When Using User-Mounted Clock Change from "resonator" in previous revision to "clock oscillator or external clock" on target system Change from "clock generator" in previous edition to "external clock" in Figure 3-6 When Supplying Pulse from Target System 	
pp. 24 to 27	3.4.2 System clock settingsChange from "main system clock" in the previous edition to "system clock"	
pp. 34, 35	Addition of APPENDIX B NOTES ON DESIGNING TARGET SYSTEM	

The mark \star shows major revised points.

INTRODUCTION

Product Overview The IE-789842-NS-EM1 is designed to be used with the IE-78K0S-NS or IE-78K0S-NS-A to debug the following target devices that belong to the 78K/0S Series of 8-bit single-chip microcontrollers.

• *μ*PD789842 Subseries: *μ*PD789841, 789842, 78F9842

Target ReadersThis manual is intended for engineers who will use the IE-789842-NS-EM1 with the IE-
78K0S-NS or IE-78K0S-NS-A to perform system debugging.Engineers who use this manual are expected to be thoroughly familiar with the target
device's functions and use methods and to be knowledgeable about debugging.

Organization When using the IE-789842-NS-EM1, refer to not only this manual (supplied with the IE-789842-NS-EM1) but also the manual that is supplied with the IE-78K0S-NS or IE-78K0S-NS-A.

IE-78K0-NS User's Manual

- Basic specifications
- System configuration
- External interface functions

IE-78K0S-NS-A User's Manual

- Basic specifications
- System configuration
- External interface functions

Purpose

This manual's purpose is to explain various debugging functions that can be performed when using the IE-789842-NS-EM1.

IE-789842-NS-EM1 User's Manual

- General
- Part names
- Installation
- Differences between target devices and target interface circuits
- Precautions

Terminology

The meanings of certain terms used in this manual are listed below.

Term	Meaning	
Emulation device	This is a general term that refers to the device in the emulator that is used to emulate the target device. It includes the emulation CPU.	
Emulation CPU	This is the CPU block in the emulator that is used to execute user-generated programs.	
Target device	This is the device to be emulated.	
Target system	This includes the target program and the hardware provided by the user. When defined narrowly, it includes only the hardware.	
IE system	This refers to the combination of the in-circuit emulator (IE-78K0S-NS or IE-78K0S-NS-A) and emulation board (IE-789842-NS-EM1).	

ons	Data significance:	Higher digits on the left and lower digits on the right
	Note:	Footnote for item marked with Note in the text
	Caution:	Information requiring particular attention
	Remark:	Supplementary information

Related Documents The related documents (user's manuals) indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Document Name	Document Number
IE-78K0S-NS In-Circuit Emulator	U13549E
IE-78K0S-NS-A In-Circuit Emulator	U15207E
IE-789842-NS-EM1 Emulation Board	This manual
ID78K Series Integrated Debugger Ver. 2.30 or Later Operation Windows™ Based	U15185E
μPD789842 Subseries	U13776E

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents when designing.

CONTENTS

CHAPTE	ER 1 GENERAL	11
1.1	System Configuration	12
1.2	Hardware Configuration	14
1.3	Basic Specifications	15
СНАРТЕ	ER 2 PART NAMES	16
2.1	Parts of Main Unit	17
СНАРТЕ	ER 3 INSTALLATION	18
3.1	Connection	19
3.2	Switch and Jumper Settings on Main Unit	
* 3.3	Setting Power Supply Voltage of Target Interface	21
3.4	Clock Settings	22
	3.4.1 Overview of clock settings	22
	3.4.2 System clock settings	24
3.5	External Trigger	
CHAPTE	ER 4 DIFFERENCES BETWEEN TARGET DEVICE AND TARGET INTERFACE CIRCI	UIT29
CHAPTE	ER 5 CAUTIONS	32
APPENI	DIX A EMULATION PROBE PIN ASSIGNMENT TABLE	33
* APPENI	DIX B NOTES ON DESIGNING TARGET SYSTEM	34

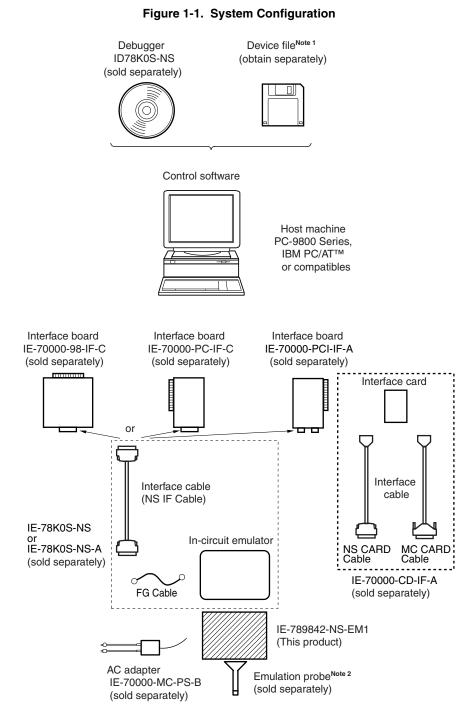
LIST OF FIGURES

Figure	e No. Title	Page
1-1	System Configuration	12
1-2	Basic Hardware Configuration	14
2-1	IE-789842-NS-EM1 Part Names	17
3-1	Connection of Emulation Probe	19
3-2	Connecting TM1 and Target System Power Supply Voltage	21
3-3	External Circuits Used as System Clock Oscillator	
3-4	When Using Clock That Is Already Mounted on Emulation Board	23
3-5	When Using User-Mounted Clock	23
3-6	When Supplying Pulse from Target System	24
3-7	Connections on Parts Board	
3-8	Crystal Oscillator	
3-9	Pin Alignment of Crystal Oscillator and Socket	
3-10	External Trigger Input Position	
4-1	Equivalent Circuit of Emulation Circuit	
B-1	Distance Between IE System and Conversion Adapter	
B-2	Connection Conditions of Target System (NP-44GB-TQ)	
B-3	Connection Conditions of Target System (NP-H44GB-TQ)	

LIST OF TABLES

Table	No. Title	Page
1-1	Correspondence Between Emulation Probe and Conversion Socket/Conversion Adapter	13
1-2	Basic Specifications	15
3-1	Switch and Jumper Settings on IE-78K0S-NS	20
3-2	Switch and Jumper Settings on IE-78K0S-NS-A	
3-3	Setting Power Supply of Target Interface	
3-4	System Clock Settings	
A-1	NP-44GB, NP-44GB-TQ, NP-H44GB-TQ Pin Assignments	
B-1	Distance Between IE System and Conversion Adapter	

CHAPTER 1 GENERAL


The IE-789842-NS-EM1 is a development tool for efficient debugging of hardware or software when using one of the following target devices that belong to the 78K/0S Series of 8-bit single-chip microcontrollers. This chapter describes the IE-789842-NS-EM1's system configuration and basic specifications.

- Target devices
 - µPD789842 Subseries

1.1 System Configuration

Figure 1-1 illustrates the IE-789842-NS-EM1's system configuration.

*

Conversion socket/conversion adapter^{Note 3} (sold separately)

- Notes 1. The device file is as follows, in accordance with the subseries.
 μS×××DF789842: μPD789842 Subseries
 The device file can be downloaded from the web site of NEC Electronics (http://www.necel.com/micro/)
 The amulation probability A4CR NR 44CR TO, and NR H44CR TO, are not approximately and the subseries of the subseries
 - The emulation probes NP-44GB, NP-44GB-TQ, and NP-H44GB-TQ are products of Naito Densei Machida Mfg. Co., Ltd.
 - For further information, contact Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191)
 - The conversion adapter TGB-044SAP is a product of TOKYO ELETECH CORPORATION. For further information, contact Daimaru Kogyo Co., Ltd. Tokyo Electronics Department (TEL: +81-3-3820-7112) Osaka Electronics Department (TEL: +81-6-6244-6672)

Table 1-1. Correspondence Between Emulation Probe and Conversion Socket/Conversion Adapter

Package	Emulation Probe	Conversion Socket/Conversion Adapter
44-pin plastic QFP	NP-44GB (probe length: 200 mm)	EV-9200G-44
(GB type)	NP-44GB-TQ (probe length: 200 mm)	TGB-044SAP
	NP-H44GB-TQ (probe length: 400 mm)	

1.2 Hardware Configuration

Figure 1-2 shows the IE-789842-NS-EM1's position in the basic hardware configuration.

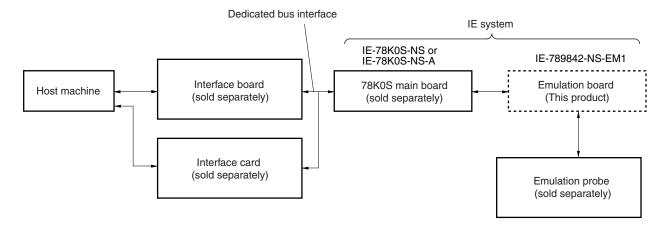


Figure 1-2. Basic Hardware Configuration

1.3 Basic Specifications

The basic specifications of the IE-789842-NS-EM1 are listed in Table 1-2.

\star

Table 1-2. Basic Specifications

Parameter	Description	
Target device	uPD789842 Subseries	
System clock	38 MHz	
System clock supply	External: Input via an emulation probe from the target systemInternal: Mounted on the emulation board (8.38 MHz), or mounted on the parts board by the user	
Target interface voltage	V _{DD} = 4.0 to 5.5 V (same as that of target device) Operates on internal power supply (5 V) when target system is not connected	

CHAPTER 2 PART NAMES

This chapter introduces the parts of the IE-789842-NS-EM1 main unit.

The packing box contains the emulation board (IE-789842-NS-EM1), packing list, user's manual, and guarantee card.

If there are any missing or damaged items, please contact an NEC Electronics sales representative.

Fill out and return the guarantee card that comes with the main unit.

2.1 Parts of Main Unit

Figure 2-1 shows the part names of the IE-789842-NS-EM1.

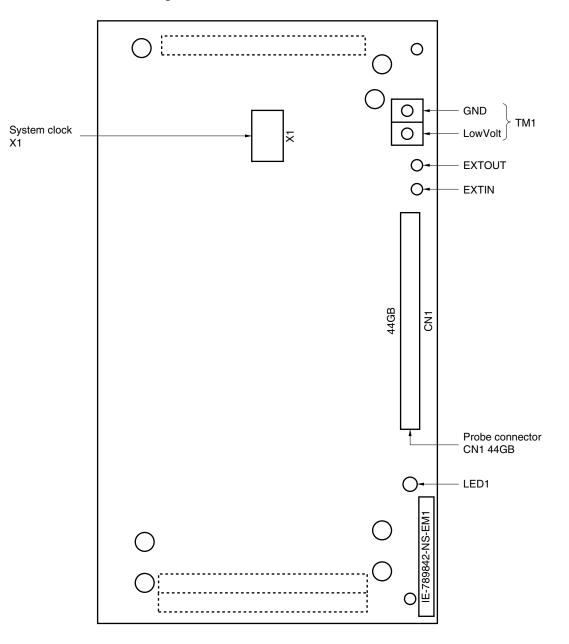


Figure 2-1. IE-789842-NS-EM1 Part Names

CHAPTER 3 INSTALLATION

This chapter describes methods for connecting the IE-789842-NS-EM1 to the IE-78K0S-NS or IE-78K0S-NS-A, emulation probe, etc. Mode setting methods are also described.

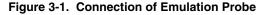
Caution Connecting or removing components to or from the target system, or making switch or other setting changes must be carried out after the power supply to both the IE system and the target system has been switched OFF.

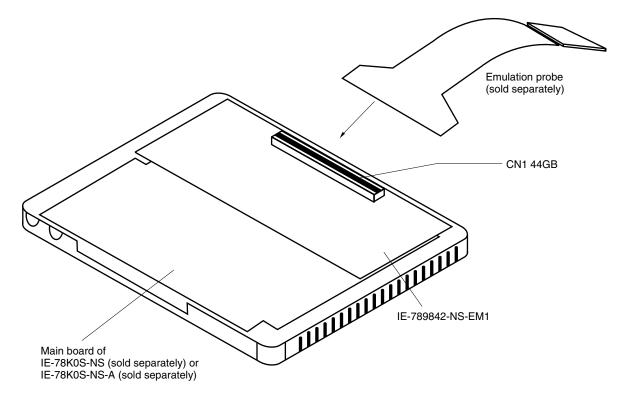
3.1 Connection

(1) Connection with IE-78K0S-NS or IE-78K0S-NS-A main unit

See the **IE-78K0S-NS User's Manual (U13549E)** for a description of how to connect the IE-789842-NS-EM1 to the IE-78K0S-NS^{Note}.

Note When using the IE-78K0S-NS-A, see the IE-78K0S-NS-A User's Manual (U15207E).


(2) Connection with emulation probe


See the **IE-78K0S-NS User's Manual (U13549E)** for a description of how to connect an emulation probe to the IE-789842-NS-EM1^{Note}.

On this board, connect the emulation probe to CN1.

Note When using the IE-78K0S-NS-A, see the IE-78K0S-NS-A User's Manual (U15207E).

Caution Incorrect connection may damage the IE system. Be sure to read the emulation probe's user's manual for a detailed description of the connection method.

3.2 Switch and Jumper Settings on Main Unit

(1) Settings on the IE-78K0S-NS

When using the IE-789842-NS-EM1, set the switches and jumpers on the IE-78K0S-NS as shown in Table 3-1. For details of these switch and jumper settings, refer to the **IE-78K0S-NS User's Manual (U13549E)**.

Table 3-1. Switch and Jumper Settings on IE-78K0S-NS

	SW1	SW3	SW4	JP1	JP4
Setting	OFF	All switches ON (Fixed)	All switches ON (Fixed)	2 and 3 shorted	1 and 2 shorted

Caution Incorrect connection may damage the IE-789842-NS-EM1.

★ (2) Settings on the IE-78K0S-NS-A

When using the IE-789842-NS-EM1, set the switches and jumpers on the IE-78K0S-NS-A as shown in Table 3-2. For details of these switch and jumper settings, refer to the **IE-78K0S-NS-A User's Manual (U15207E)**.

Table 3-2. Switch and Jumper Settings on IE-78K0S-NS-A

	SW1	JP1	JP3
Setting	OFF	1 and 2 shorted (fixed)	Shorted (fixed)

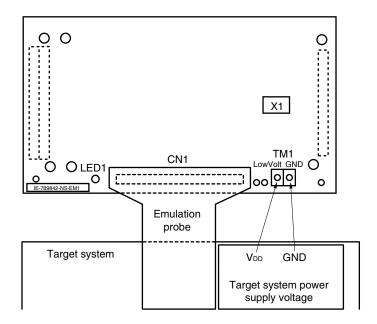
Caution Incorrect connection may damage the IE-789842-NS-EM1.

***** 3.3 Setting Power Supply Voltage of Target Interface

In the IE system, emulation is possible with a voltage of the same level as the power supply voltage of the target system.

When the target system is not connected, the IE system automatically operates with the emulator's internal power supply (5 V).

When debugging with a voltage that is the same level as that of the target system, supply the same voltage as that of the target system to the TM1 terminal pin of the IE-789842-NS-EM1 (the same applies when the voltage is 5 V). Set the target voltage to between 4.0 and 5.0 V.


For how to select the operating power supply, refer to the **ID78K Series Ver.2.30 or Later Operation Windows-Based User's Manual (U15185E)**.

 Maximum current consumption of TM1 4.0 to 5.0 V: Approximately 125 mA

Power Supply of Target Interfa	Integrated Debugger (ID78K0S-NS)	
	Operating Power Supply Selection	
When connecting target system	4.0 to 5.0 V	Target
When not connecting target system	5 V	Internal

Figure 3-2.	Connecting	TM1 and	Target System	Power Supply	Voltage
-------------	------------	---------	----------------------	--------------	---------

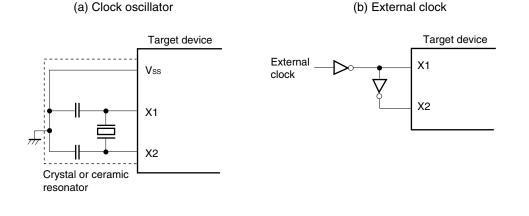
Caution Before connecting TM1 on the board and the target system power supply voltage, turn off the power to the IE-78K0S-NS or IE-78K0S-NS-A.

Remark The V_{DD} pin on the target system is exclusively used to control LED1, which monitors whether the power supply of the target system is connected in the IE-789842-NS-EM1.

3.4 Clock Settings

3.4.1 Overview of clock settings

The system clock to be used during debugging can be selected from (1) to (3) below.


- (1) Clock that is already mounted on emulation board
- (2) Clock that is mounted by user
- (3) Pulse input from target system

★ If the target system includes a clock oscillator, select either (1) Clock that is already mounted on emulation board or (2) Clock that is mounted by user. For the clock oscillator, a resonator is connected to the target device and the target device's internal oscillator is used. An example of the external circuit is shown in part (a) of Figure 3-3. During emulation, the oscillator that is mounted on the target system is not used. Instead, the clock that is mounted on the emulation board installed in the IE-78K0S-NS or IE-78K0S-NS-A is used.

If the target system includes an external clock, select either (1) Clock that is already mounted on emulation board, (2) Clock that is mounted by user, or (3) Pulse input from target system.

For the external clock, a clock signal is supplied from outside of the target device and the target device's internal oscillator is not used. An example of the external circuit is shown in part (b) of Figure 3-3.

Caution The IE system will be hung-up if the main system clock is not supplied normally. Moreover, be sure to input a rectangular wave as the pulse from the target system. There is no need to supply a clock to the X2 pin. Also, even if a crystal resonator is connected directly to X1, the target device will not operate.

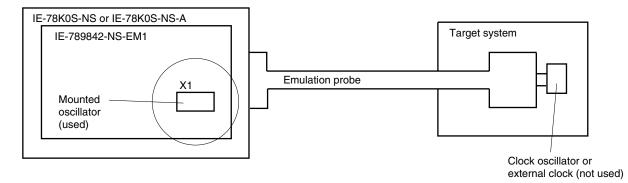


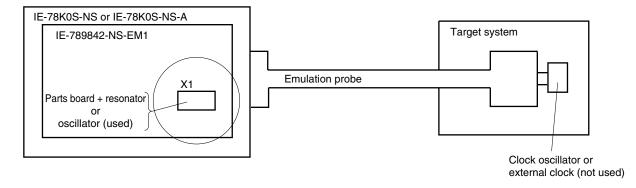
Figure 3-3. External Circuits Used as System Clock Oscillator

(1) Clock that is already mounted on emulation board

The crystal oscillator mounted on the IE-789842-NS-EM1 can be used. A crystal oscillator (X1) is already mounted on the emulation board. Its frequency is 8.38 MHz.

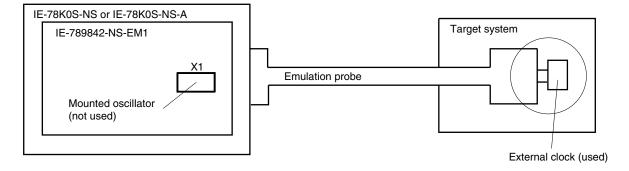
Figure 3-4. When Using Clock That Is Already Mounted on Emulation Board

Remark The clock that is supplied by the oscillator of the IE-789842-NS-EM1 (encircled in the figure) is used.


(2) Clock that is mounted by user

The user can mount any clock supported by the set specifications on the IE-789842-NS-EM1. This feature is effective when debugging at a different frequency than the clock already mounted.

Remove the crystal oscillator (X1) that is already mounted on the emulation board, and mount the parts board on which the resonator to be used is mounted or mount the oscillator to be used.


Remark The clock that is supplied by the resonator of the IE-789842-NS-EM1 (encircled in the figure) or the oscillator is used.

(3) Pulse input from target system

*

An external clock on the target system can be used via an emulation probe.

Figure 3-6. When Supplying Pulse from Target System

Remark The pulse that is supplied by the external clock on the target system (encircled in the figure) or the oscillator is used.

★3.4.2 System clock settings

Table 3-4 shows the settings of the IE-789842-NS-EM1 when the system clocks in (1) to (3) are used.

Table 3-4.	System	Clock Settings
------------	--------	-----------------------

Frequency of System Clo	ck	IE-789842-NS-EM1	CPU Clock Source
		X1 Socket	Selection (ID78K0S-NS)
(1) When using clock that is already mounted on emulation board	8.38 MHz	Oscillator	Internal
(2) When using clock mounted by user	Other than 8.38 MHz	Oscillator configured by user	
(3) When inputting pulse from target system		Oscillator (not used)	External

- Caution When inputting a pulse from the target system, open the configuration dialog box when starting the integrated debugger (ID78K0S-NS) and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the user's clock).
- **Remark** The factory settings of the IE-789842-NS-EM1 are those listed above under "when using clock that is already mounted on emulation board".

(1) When using clock that is already mounted on emulation board

When the IE-789842-NS-EM1 is shipped, an 8.38 MHz crystal oscillator is already mounted in the IE-789842-NS-EM1's X1 socket. When using the factory-set mode settings, there is no need to make any other hardware settings.

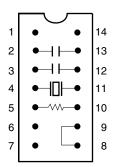
When starting the integrated debugger (ID78K0S-NS), open the configuration dialog box and select "Internal" in the area (Clock) for selecting the CPU's clock source (this selects the emulator's internal clock).

(2) When using clock mounted by user

Perform the settings described under either (a) or (b), depending on the type of clock to be used. When starting the integrated debugger (ID78K0S-NS), open the configuration dialog box and select "Internal" in the area (Clock) for selecting the CPU's clock source (this selects the emulator's internal clock).

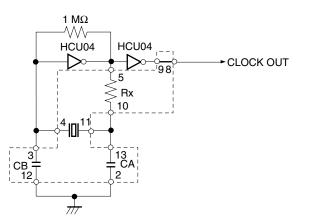
(a) When using a ceramic resonator or crystal resonator

- Items to be prepared
 - · Parts board
 - · Ceramic resonator or crystal resonator
 - Resistor Rx


- Capacitor CA
- Capacitor CB
- Solder kit

<Steps>

<1> Solder the target ceramic resonator or crystal resonator, resistor Rx, capacitor CA, and capacitor CB (all with suitable oscillation frequencies) onto the parts board (as shown below).


Figure 3-7. Connections on Parts Board

Parts board (X1)

Pin No.	Connection	
2-13	Capacitor CA	
3-12	Capacitor CB	
4-11	Ceramic resonator or crystal resonator	
5-10	Resistor Rx	
8-9	Shorted	

Circuit diagram

- <2> Prepare the IE-789842-NS-EM1.
- <3> Remove the crystal oscillator that is mounted in the IE-789842-NS-EM1's X1 socket.
- <4> Connect the parts board (from <1> above) to the X1 socket from which the crystal oscillator was removed. Check the pin 1 mark to make sure the board is mounted in the correct direction.
- <5> Make sure that the parts board is wired as shown in Figure 3-7 above.
- <6> Install the IE-789842-NS-EM1 in the IE-78K0S-NS or IE-78K0S-NS-A.

The above steps configure the following circuit and enable supply of the clock from the mounted resonator to the emulation device.

(b) When using a crystal oscillator

- Items to be prepared
 - Crystal oscillator (see pinouts shown in Figure 3-8)

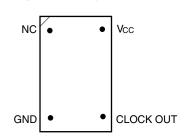
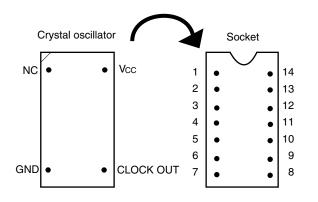



Figure 3-8. Crystal Oscillator

<Steps>

- <1> Prepare the IE-789842-NS-EM1.
- <2> Remove the crystal oscillator that is mounted in the IE-789842-NS-EM1's X1 socket.
- <3> Connect a crystal oscillator to the X1 socket from which the crystal oscillator was removed (in <2> above). Insert the pins of the crystal oscillator into the socket aligning the pins as shown in the figure below.

Crystal Oscillator Pin Name	Socket Pin No.
NC	1
GND	7
CLOCK OUT	8
Vcc	14

Figure 3-9. Pin Alignment of Crystal Oscillator and Socket

<4> Install the IE-789842-NS-EM1 in the IE-78K0S-NS or IE-78K0S-NS-A.

(3) When inputting pulse from target system

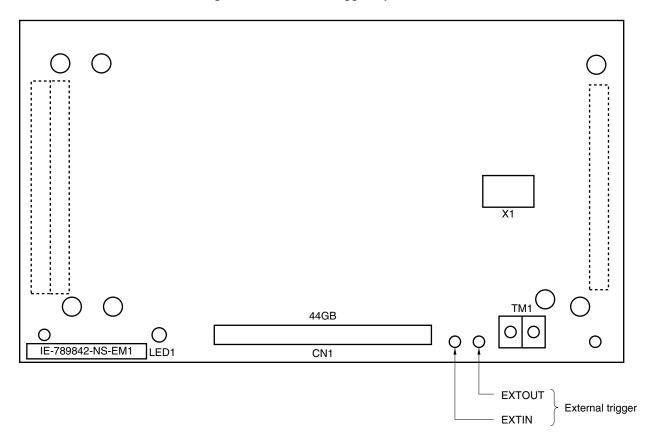
Short pins 6 and 8 of the X1 socket.

When starting the integrated debugger (ID78K0S-NS), open the configuration dialog box and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the user's clock).

3.5 External Trigger

To set an external trigger, connect the IE-789842-NS-EM1's check pins EXTOUT and EXTIN as shown below. See the **IE-78K0S-NS User's Manual (U13549E)** or **IE-78K0S-NS-A User's Manual (U15207E)** for pin characteristics.

For the use methods, see the ID78K Series Ver.2.30 or Later Operation Windows Based User's Manual (U15185E).


(1) EXTOUT

The EXTOUT pin on the IE-789842-NS-EM1 outputs a low level for 1.3 μ s when a break event occurs.

Caution Connect a pull-up resistor on the target system because this is an open drain output.

(2) EXTIN

An event signal can be input from the EXTIN pin on the IE-789842-NS-EM1. Input a high-level pulse signal for 2 CPU operation clocks or more.

Figure 3-10. External Trigger Input Position

CHAPTER 4 DIFFERENCES BETWEEN TARGET DEVICE AND TARGET INTERFACE CIRCUIT

This chapter describes differences between the target device's signal lines and the signal lines of the target interface circuit of the IE system.

The target interface circuit of the IE system realizes emulation via an emulation circuit configured by an emulation CPU, TTL, CMOS-IC, and other components. The electrical characteristics are different from those of the target device because a protector and other circuits are provided.

- (1) Signals input to or output from the emulation CPU
- (2) Signals input from the target system via a gate
- (3) Analog signals
- (4) Other signals

The IE-789842-NS-EM1's circuit is used as follows for signals listed in (1) to (4) above.

(1) Signals input to or output from the emulation CPU

The following signals perform the same operations as in the μ PD789841, 789842, and 78F9842. However, a 1 M Ω pull-down resistor and 100 Ω resistor are inserted in series.

- Signals related to port 0
- Signals related to port 1
- Signals related to port 2
- Signals related to 10-bit inverter control timer (TO70 to TO75)

(2) Signals input from the target system via a gate

Since the following signals are input via a gate, their timing shows a delay compared to the μ PD789841, 789842, and 78F9842. Their AC characteristics and DC characteristics are therefore different from the μ PD789841, 789842, and 78F9842 making it necessary to observe a stricter timing design than in the μ PD789841, 789842, and 78F9842.

- RESET signal
- Signals related to clock input

From all the signals input from the target system, the $\overrightarrow{\text{RESET}}$ signal and signals related to clock input are input to the emulation CPU via a logic IC. The DC characteristics are therefore different from the μ PD789841, 789842, and 78F9842.

(3) Analog signals

Because the following signals input/output analog signals, special processing is not performed in the IE-789842-NS-EM1.

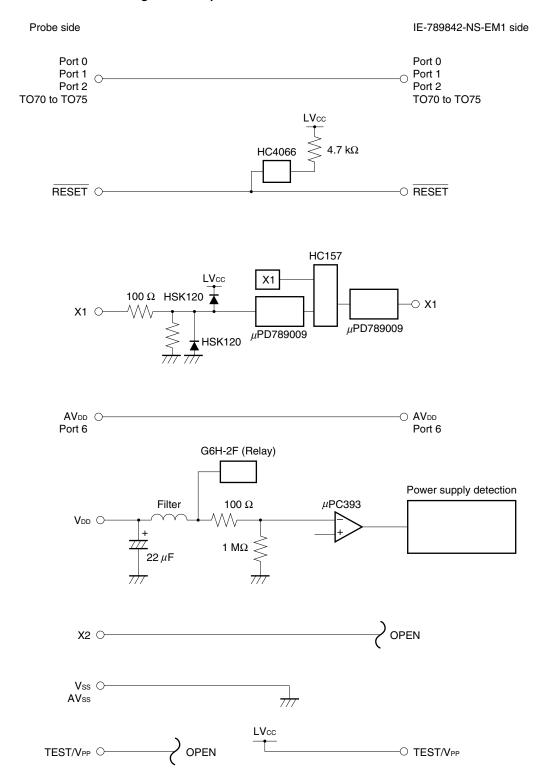
- AVDD pin
- Port 6

(4) Other signals

• VDD pin

When the emulation CPU is operating at 5 V, its power is supplied from the IE-789842-NS-EM1, but when operating at low voltage, its power is supplied from the low-voltage pin (TP1). The V_{DD} pin of the target system is only used to control the LED (TV_{CC}) in the IE-789842-NS-EM1 that monitors the input of the target system's power supply.

• Vss and AVss pins


The Vss and AVss pins are connected to GND in the IE-789842-NS-EM1

• TEST/VPP pin

The TEST/VPP pin is not used in the IE-789842-NS-EM1.

• X2 pin

The X2 pin is not used in the IE-789842-NS-EM1.

Figure 4-1. Equivalent Circuit of Emulation Circuit

CHAPTER 5 CAUTIONS

This chapter describes points that require special attention when using the IE-789842-NS-EM1. The target device and the emulation function of the IE-789842-NS-EM1 differ with regard to the following.

- Emulation of an RC oscillator is not possible with the IE-789842-NS-EM1.
 Only those functions specified by the clock settings in 3.4 Clock Settings can be emulated.
- (2) Pin handling is not performed for the port pins on the emulation board. Consequently, an undefined value will be read out if an attempt is made to read the value of a port in input mode when an emulation probe is not connected.
- (3) Emulation of the low voltage circuit (LVI) is possible with the IE-789842-NS-EM1. Note, however, that the operation-guaranteed voltage is the same as that of the target device (4.0 to 5.5 V); that is, operation is not guaranteed if a voltage lower than this is applied.

APPENDIX A EMULATION PROBE PIN ASSIGNMENT TABLE

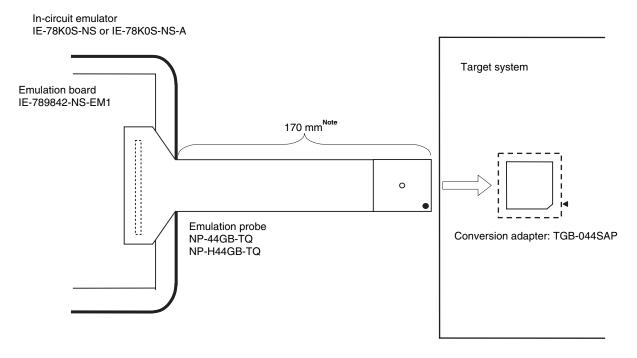
Emulation Probe	CN1 Pin No.	Emulation Probe	CN1 Pin No.
1	104	23	18
2	103	24	17
3	100	25	22
4	99	26	21
5	94	27	28
6	93	28	27
7	30	29	92
8	29	30	91
9	24	31	98
10	23	32	97
11	20	33	102
12	47	34	73
13	48	35	72
14	51	36	69
15	52	37	70
16	57	38	63
17	58	39	64
18	59	40	61
19	60	41	62
20	55	42	65
21	56	43	66
22	49	44	71

Table A-1. NP-44GB, NP-44GB-TQ, NP-H44GB-TQ Pin Assignments

Remarks 1. NP-44GB, NP-44GB-TQ, and NP-H44GB-TQ are products of Naito Densei Machida Mfg. Co., Ltd.

2. The numbers in the "Emulation probe" column indicate the corresponding pin number on the emulation probe tip.

APPENDIX B NOTES ON DESIGNING TARGET SYSTEM


The following shows the conditions when connecting the emulation probe and conversion adapter. Consider the shape of the components to be mounted on the target system and follow the configurations below when designing the system.

Among the products described in this appendix, NP-44GB-TQ and NP-H44GB-TQ are products of Naito Densei Machida Mfg. Co., Ltd. and TGB-044SAP is a product of TOKYO ELETECH CORPORATION.

Table B-1	Distance Between IE S	system and Conversion Adapter
-----------	-----------------------	-------------------------------

Emulation Probe	Conversion Adapter	Distance Between IE System and Conversion Adapter
NP-44GB-TQ	TGB-044SAP	170 mm
NP-H44GB-TQ		370 mm

Note The above distance shows when the NP-44GB-TQ is used. When the NP-H44GB-TQ is used, the distance is 370 mm.

*

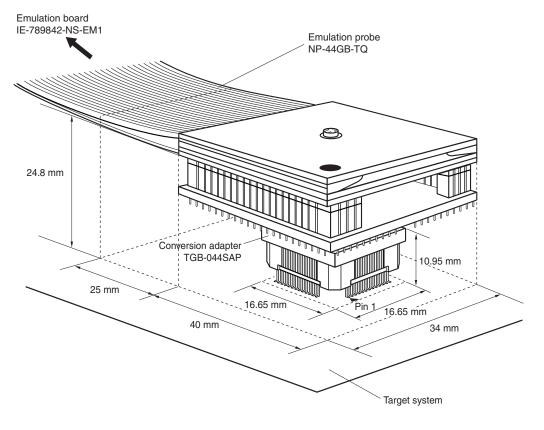
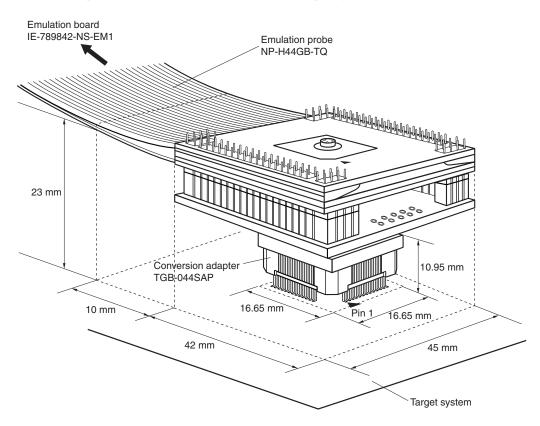



Figure B-2. Connection Conditions of Target System (NP-44GB-TQ)

Figure B-3. Connection Conditions of Target System (NP-H44GB-TQ)

