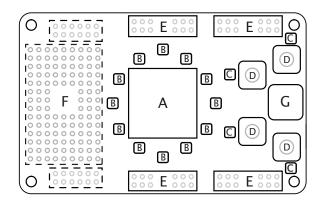
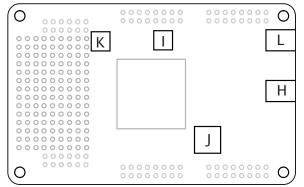
XC-1A Hardware Manual

Version 1.2




Publication Date: 2010/04/27 Copyright © 2010 XMOS Ltd. All Rights Reserved.

1 Introduction

The XC-1A is a card-sized development board based on the XMOS XS1-G4 event-driven processor device. It comprises a single XS1-G4, 16 user-configurable LEDs, four push-buttons, a speaker, JTAG and serial interfaces, four expansion areas suitable for IDC headers and a through-hole prototyping area for connecting external components.

The diagram below shows the layout of the main components on the card:

- A XS1-G4 Device
- B Twelve Red/Green User LEDs
- C Four Green User LEDs
- **D** Four Push-Button Switches
- E Four I/O Expansion Areas
- F Prototyping Area
- **G** Speaker

- H Mini USB-B Connector
- I 20MHz Crystal Oscillator
- J USB 2.0 to JTAG
- K SPI FLASH
- L External 5V Connector
- The XC-1A Development Kit also includes a USB cable for powering and booting the device from a PC. The card is fitted with four plastic feet, which are useful for building bigger prototyping systems.

The following sections in this document provide a detailed description of these components.

2 XS1-G4 Device [A]

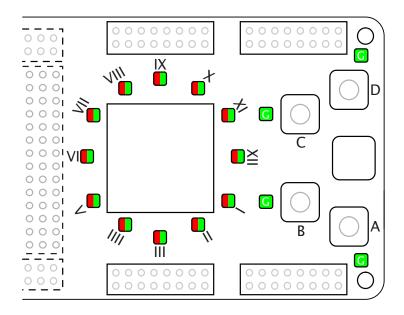
The XC-1A provides a single XS1-G4 device in a 512BGA package. The XS1-G4 device contains four multithreaded XCore[™] processing components with tightly integrated support for communication, I/O and timing. The pins on XCore processors are brought out of the package and connected to the card's components as follows:

Processor 0

- Three red/green and four green LEDs
- Four push-button switches
- Speaker
- SPI FLASH memory
- Prototyping area
- One 16-way I/O expansion header (16 I/O bits)

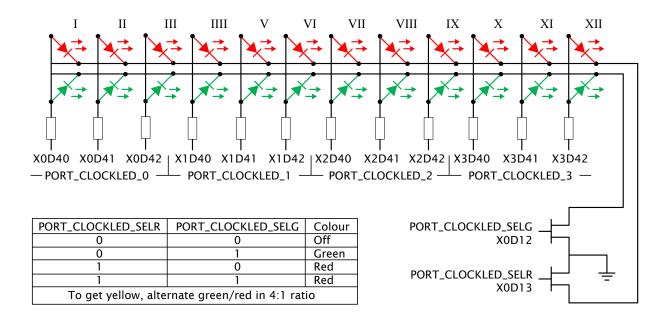
Processor 1, 2

- Three red/green LEDs
- One 16-way I/O expansion header (16 I/O bits)


Processor 3

- Three red/green LEDs
- Two 16-way I/O expansion headers (16 I/O bits)

The processors have ports that are directly connected to the I/O pins. Examples of how to write software that interfaces over these ports with the XC-1A components is provided in a separate tutorial [1].

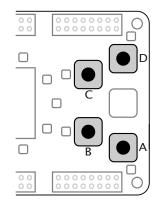

3 User-configurable LEDs [B and C]

The XC-1A has 16 user-configurable LEDs. Four LEDs are positioned next to the four push-buttons (collectively referred to as button-LEDs) and contain green diodes. The other 12 LEDs are positioned around the XS1-G4 in a circle (collectively referred to as clock-LEDs) and contain red/green diodes. A Roman numeral is printed next to each LED. The layout of the LEDs is shown on the following page.

To reduce the number of pins required for the 12 clock-LEDs, the LED anodes are connected to four 8-bit ports (8D) on processor 0, 1, 2 and 3 and the cathodes are connected to two 1-bit ports (1E for green, 1F for red) on processor 0.

The schematic for the clock-LEDs is shown below

Pin	Po	ort	Processor
	1b	8b	
XCore0			
X0D40		P8D4	PORT_CLOCKLED_0 [I]
X0D41		P8D5	PORT_CLOCKLED_0 [II]
X0D42	1	P8D6	PORT_CLOCKLED_0 [III]
X0D12	P1E0		PORT_CLOCKLED_SELG
X0D13	P1F0		PORT_CLOCKLED_SELR
XCore1			
X1D40		P8D4	PORT_CLOCKLED_1 [IV]
X1D41		P8D5	PORT_CLOCKLED_1 [V]
X1D42		P8D6	PORT_CLOCKLED_1 [VI]
XCore2			
X2D40		P8D4	PORT_CLOCKLED_2 [VII]
X2D41		P8D5	PORT_CLOCKLED_2 [VIII]
X2D42		P8D6	PORT_CLOCKLED_2 [IX]
XCore3			
X3D40		P8D4	PORT_CLOCKLED_3 [X]
X3D41		P8D5	PORT_CLOCKLED_3 [XI]
X3D42		P8D6	PORT_CLOCKLED_3 [XII]

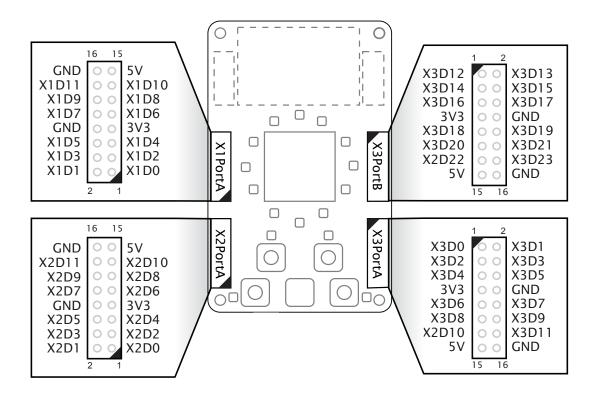

The clock-LED pins are mapped to ports on the XS1-G4 as shown in the table below:

The button LED pins are mapped to ports on the XS1-G4 as described in the table below:

Pin	Port	Processor
	4b	0
X0D14	P4C0	PORT_BUTTONLED [A]
X0D15	P4C1	PORT_BUTTONLED [B]
X0D20	P4C2	PORT_BUTTONLED [C]
X0D21	P4C3	PORT_BUTTONLED [D]

4 Push-Button Switches [D]

The XC-1A provides four push-button switches whose states can be sampled at any time by software. The layout of the push-buttons is shown below.


The push buttons are connected to four pins, which are mapped to ports as described in the table below.

Pin	Port		Processor
	4b	8b	0
X0D16	P4D0	P8B2	PORT_BUTTON [A]
X0D17	P4D1	P8B3	PORT_BUTTON [B]
X0D18	P4D2	P8B4	PORT_BUTTON [C]
X0D19	P4D3	P8B5	PORT_BUTTON [D]

The default state of a pin is high, pushing the button drives its pin low. Each pin can be interfaced to a 4-bit port or an 8-bit port on the XS1-G4. The choice is defined by the port interface used in the software [2].

5 I/O Expansion Areas [E]

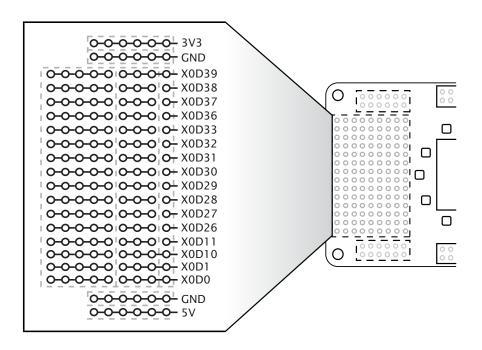
The I/O pins of XCore1, XCore2 and XCore3 are brought out to expansion areas on both sides of the card. These areas have 0.1" pitch plated through holes and are suitable for use with IDC headers. To provide maximum flexibility, no headers are fitted, allowing the most suitable type to be selected. The routing of the I/O and power pins in the expansion headers is shown below.

The expansion headers provide a bank of 12 I/O pins. The pins are mapped to the ports as shown in the table on the next page.

Eight pins from each bank can be configured as either two 4-bit ports or a single 8-bit port. Alternatively, two of the expansion headers can be used together as a single 16-bit port.

Pin		F	ort		Processor
	1b	4b	8b	16b	1
XCore1					
X1D0	P1A0				
X1D0 X1D1	P1B0				
X1D1 X1D2	1150	P4A0	P8A0	P16A0	-
X1D2 X1D3	-	P4A1	P8A1	P16A1	-
X1D3	-	P4B0	P8A2	P16A2	-
X1D5	-	P4B1	P8A3	P16A3	-
X1D6	1	P4B2	P8A4	P16A4	X1PortA
X1D7	1	P4B3	P8A5	P16A5	-
X1D8	1	P4A2	P8A6	P16A6	-
X1D9	-	P4A3	P8A7	P16A7	-
X1D10	P1C0		_	_	-
X1D11	P1D0				
XCore2					1
X2D0	P1A0				
X2D0	P1B0				
X2D1 X2D2		P4A0	P8A0	P16A0	
X2D2 X2D3	-	P4A1	P8A1	P16A1	-
X2D4	-	P4B0	P8A2	P16A2	-
X2D5	-	P4B1	P8A3	P16A3	-
X2D5	-	P4B2	P8A4	P16A4	X2PortA
X2D7	-	P4B3	P8A5	P16A5	-
X2D8	-	P4A2	P8A6	P16A6	-
X2D0	1	P4A3	P8A7	P16A7	-
X2D10	P1C0	1 17(5	10/11	110/0	-
X2D11	P1D0				
XCore3				1	
X3D0	P1A0				
X3D1	P1B0				
X3D2		P4A0	P8A0	P16A0	
X3D3	1	P4A1	P8A1	P16A1	
X3D4	1	P4B0	P8A2	P16A2	-
X3D5	1	P4B1	P8A3	P16A3	
X3D6	1	P4B2	P8A4	P16A4	X3PortA
X3D7	1	P4B3	P8A5	P16A5	1
X3D8	1	P4A2	P8A6	P16A6	1
X3D9	1	P4A3	P8A7	P16A7	1
X3D10	P1C0]
X3D11	P1D0				
X3D12	P1E0				
X3D13	P1F0				
X3D14		P4C0	P8B0	P16A8	
X3D15		P4C1	P8B1	P16A9	
X3D16		P4D0	P8B2	P16A10	
X3D17		P4D1	P8B3	P16A11	X3PortB
X3D18		P4D2	P8B4	P16A12	
X3D19		P4D3	P8B5	P16A13	
X3D20		P4C2	P8B6	P16A14	
X3D21		P4C3	P8B7	P16A15	
X3D22	P1G0				
X3D23	P1H0				

5.1 XMOS Link Configuration

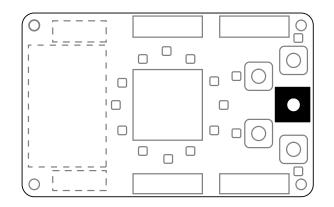

Some of the I/O pins on the expansion header can be configured as XMOS Links. The mapping of XMOS Links to the headers is shown in the table below.

Pin	Processor 1		Proce	ssor 2	Proce	ssor 3
	Header A		Header A		Header A	
	2 bit	5 bit	2 bit	5 bit	2 bit	5 bit
XnD1		XLA4 I		XLA4 O		XLA4 I
XnD2		XLA3 I		XLA3 O		XLA3 I
XnD3		XLA2 I	-	XLA2 O		XLA2 I
XnD4	XLA1 I	XLA1 I	XLA1 I	XLA1 O	XLA1 I	XLA1 I
XnD5	XLA0 I	XLA0 I	XLA0 I	XLA0 O	XLA0 I	XLA0 I
XnD6	XLA0 O	XLA0 O	XLA0 O	XLA0 I	XLA0 O	XLA0 O
XnD7	XLA1 O	XLA1 O	XLA1 O	XLA1 I	XLA1 O	XLA1 O
XnD8		XLA2 O		XLA2 I		XLA2 O
XnD9		XLA3 O	-	XLA3 I		XLA3 O
XnD10		XLA4 O		XLA4 I		XLA4 O
					Head	der B
XnD13						XLB4 I
XnD14						XLB3 I
XnD15						XLB2 I
XnD16	-				XLB1 I	XLB1 I
XnD17					XLB0 I	XLBO I
XnD18					XLB0 O	XLB0 O
XnD19					XLB1 O	XLB1 O
XnD20						XLB2 O
XnD21						XLB3 O
XnD22						XLB4 O

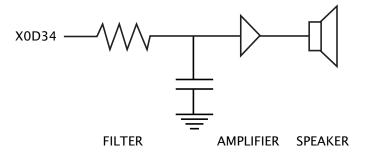
6 Prototyping Area [F]

The XC-1A provides a 0.1" pitch plated through hole area for adding components to the card.

The routing of I/O and power pins in the prototyping area is shown below.



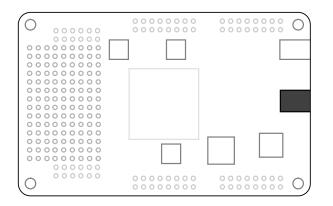
The prototyping area provides a bank of 16 I/O pins, which are mapped to the ports on processor 0 as described in the table below.


Pin		Port	Processor	
	1b	4b	8b	0
X0D26		P4E0	P8C0	
X0D27		P4E1	P8C1	-
X0D28		P4F0	P8C2	
X0D29		P4F1	P8C3	-
X0D30		P4F2	P8C4	
X0D31		P4F3	P8C5	Prototyping
X0D32		P4E2	P8C6	Area
X0D33		P4E3	P8C7	
X0D36	P1M0			
X0D37	P1N0			
X0D38	P100			
X0D39	P1P0			

7 Speaker [G]

The XC-1A has a speaker. The layout of the speaker is shown below.

Audio signals are generated by filtering pulse width modulated (PWM) digital signals to form an analogue waveform, which is amplified and sent to the speaker, as shown below:


The speaker pin is mapped to a port on processor 0, as shown in the table below.

Pin	Port	Processor
	1b	0
X0D34	P1K0	PORT_SPEAKER

8 USB Connector [H and J]

The XC-1A can be powered directly from a host PC using a USB connector. The 5V voltage is converted by the on-board regulator to the 1V and 3V3 supplies used by the components.

The USB connector can also be used to load and debug code on all of the XS1-G4's processors. The USB connector provides JTAG control, system reset, processor debug, and two UART links. The layout of the USB connector is shown below.

On power on, the XS1-G4 boots from the on-board flash memory. The XS1-G4 can then be put into JTAG mode by the PC, which then boots another program.

No UART hardware is provided. Instead, two UART pins are mapped to ports, as shown in the table below.

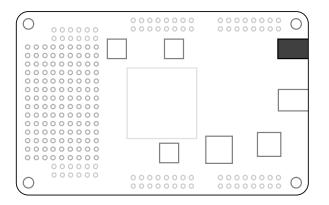
Pin	Port	Processor
	1b	0
X0D23	P1H0	PORT_UART_TX
X0D24	P110	PORT_UART_RX

If a UART is required, it can be implemented in software by sampling and driving these ports at the required rate. The connector performs a UART-to-USB conversion on these pins, presenting a virtual COM port to the PC that can be interfaced via a terminal emulator.

9 20MHz Crystal Oscillator [I]

The XS1-G4 is clocked at 20MHz by a crystal oscillator on the card. Each processor is clocked at 400MHz, the I/O ports at 100MHz, by an on-chip phase-locked loop (PLL).

10 SPI FLASH Memory [J]

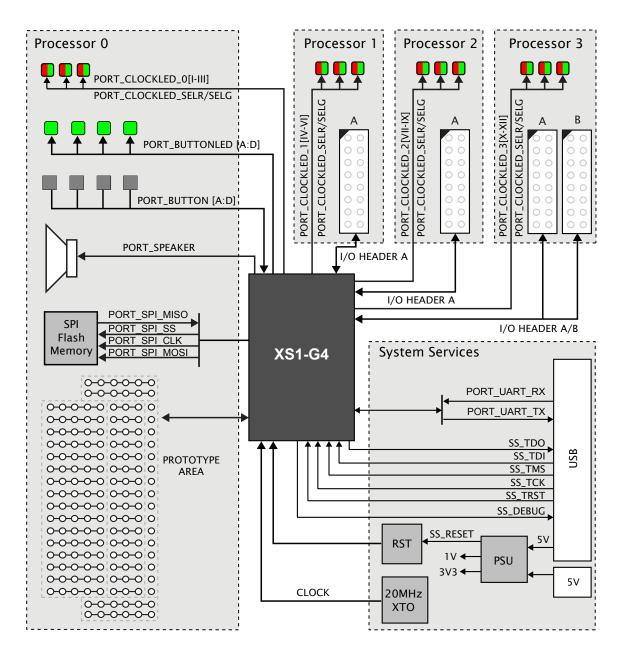

The XC-1A provides 4Mbit of Serial Peripheral Interface (SPI) FLASH memory, which is interfaced by the four 1-bit connections described in the table on page 16.

Pin	Port	Processor
	1b	0
X0D0	P1A0	PORT_SPI_MISO
X0D1	P1B0	PORT_SPI_SS
X0D10	P1C0	PORT_SPI_CLK
X0D11	P1D0	PORT_SPI_MOSI

The Tools include the XFLASH utility for programming compiled programs into the flash memory. XC-1A designs may also access the flash memory at run-time by interfacing with the above ports.

11 Power Connector [L]

The XC-1A includes an external 5V power supply connector. The voltage is converted by the on-board regulator to the 1V and 3V3 supplies used by the components. The layout of the connector is shown below.



12 Dimensions

The XC-1A dimensions are 86 x 54mm. The mounting holes are 3mm in diameter.

13 XC-1A Block Diagram

The diagram below shows how the XC-1A components are connected to the XS1-G4.

13.1 I/O Port-to-Pin Mapping

The table on the next page provides a full description of the port-to-pin mappings described throughout this document.

Pin		P	ort			Pro	cessor	
	1b	4b	8b	16b	0	1	2	3
XnD0	P1A0				PORT_SPI_MISO			
X <i>n</i> D1	P1B0				PORT_SPI_SS			
XnD2		P4A0	P8A0	P16A0				
XnD3		P4A1	P8A1	P16A1				
XnD4		P4B0	P8A2	P16A2				
XnD5		P4B1	P8A3	P16A3		X1PortA	X2PortA	X3PortA
XnD6		P4B2	P8A4	P16A4		Header	Header	Header
X <i>n</i> D7		P4B3	P8A5	P16A5				
X <i>n</i> D8		P4A2	P8A6	P16A6				
X <i>n</i> D9		P4A3	P8A7	P16A7				
X <i>n</i> D10	P1C0				SPI_CLK			
X <i>n</i> D11	P1D0				SPI_MOSI			
X <i>n</i> D12	P1E0				CLOCKLED_SELG			
X <i>n</i> D13	P1F0				CLOCKLED_SELR			
X <i>n</i> D14		P4C0	P8B0	P16A8	BUTTONLED [A]			
X <i>n</i> D15		P4C1	P8B1	P16A9	BUTTONLED [B]			
X <i>n</i> D16		P4D0	P8B2	P16A10	BUTTON [A]			
X <i>n</i> D17		P4D1	P8B3	P16A11	BUTTON [B]			X3PortB
X <i>n</i> D18		P4D2	P8B4	P16A12	BUTTON [C]			Header
X <i>n</i> D19		P4D3	P8B5	P16A13	BUTTON [D]			
X <i>n</i> D20		P4C2	P8B6	P16A14	BUTTONLED [C]			
X <i>n</i> D21		P4C3	P8B7	P16A15	BUTTONLED [D]			
X <i>n</i> D22	P1G0				TESTPOINT			
X <i>n</i> D23	P1H0				UART_TX			
X <i>n</i> D24	P110				UART_RX			
X <i>n</i> D25	P1J0				TESTPOINT			
X <i>n</i> D26	-	P4E0	P8C0	1 1	PROTO_AREA_4			
X <i>n</i> D27	-	P4E1	P8C1	P16B1	PROTO_AREA_5			
X <i>n</i> D28	-	P4F0	P8C2	P16B2	PROTO_AREA_6			
X <i>n</i> D29	-	P4F1	P8C3	P16B3	PROTO_AREA_7			
X <i>n</i> D30	-	P4F2	P8C4	P16B4	PROTO_AREA_8			
X <i>n</i> D31	-	P4F3	P8C5		PROTO_AREA_9			
X <i>n</i> D32	-	P4E2	P8C6		PROTO_AREA_10			
X <i>n</i> D33		P4E3	P8C7	P16B7	PROTO_AREA_11			
X <i>n</i> D34	P1K0				SPEAKER			
X <i>n</i> D35	P1L0			D1600	TESTPOINT			
X <i>n</i> D36				P16B8	PROTO_AREA_12			
X <i>n</i> D37 X <i>n</i> D38	P1N0		P8D1 P8D2	P16B9	PROTO_AREA_13			
XnD38 XnD39	P1O0 P1P0		P8D2 P8D3	P16B10 P16B11	PROTO_AREA_14 PROTO_AREA_15			
	FIFU		P8D3		CLOCKLED_0 [I]	CLOCKLED_1 [IV]	CLOCKLED_2 [VII]	CLOCKLED_3 [X]
X <i>n</i> D40			P8D4 P8D5		CLOCKLED_0 [I]	CLOCKLED_1 [IV]	CLOCKLED_2 [VII]	CLOCKLED_3 [X]
X <i>n</i> D41 X <i>n</i> D42			P8D5 P8D6		CLOCKLED_0 [II]	CLOCKLED_1 [V]	CLOCKLED_2 [VIII]	CLOCKLED_3 [XI]
XnD42 XnD43			P8D6 P8D7	P16B14 P16B15		CLUCKLED_I [VI]		CLUCKLED_3 [XII]
AriD43			rou/	LIORIO				

14 XC-1A XN File

The XCore ports linked to the hardware features on the XC-1A are mapped to generic port identifiers as part of a platform specific XN file, which simplifies the process of porting a project between platforms.

The following table lists the defined identifiers for all processors:

Processor	Port Location	Generic Identifier
	XS1_PORT_1A	PORT_SPI_MISO
	XS1_PORT_1B	PORT_SPI_SS
	XS1_PORT_1C	PORT_SPI_CLK
	XS1_PORT_1D	PORT_SPI_MOSI
0	XS1_PORT_1E	PORT_CLOCKLED_SELG
	XS1_PORT_1F	PORT_CLOCKLED_SELR
	XS1_PORT_1H	PORT_UART_TX
	XS1_PORT_11	PORT_UART_RX
	XS1_PORT_1K	PORT_SPEAKER
	XS1_PORT_4C	PORT_BUTTONLED
	XS1_PORT_4D	PORT_BUTTON
	XS1_PORT_8D	PORT_CLOCKLED_0
1	XS1_PORT_8D	PORT_CLOCKLED_1
2	XS1_PORT_8D	PORT_CLOCKLED_2
3	XS1_PORT_8D	PORT_CLOCKLED_3

15 Related Documents

The following documents provide more information on designing with the XC-1A:

- *XCard-1A Tutorial* [1]: provides an introduction to programming software on the XC-1A using the XC language.
- *The XMOS XS1 Architecture* [3]: provides an overview of the XS1 instruction set architecture.

The most up-to-date information on the XC-1A, including board schematics and product datasheets, is available from:

• http://www.xmos.com/xcla

16 Document History

Date	Release	Comment
2010-01-08	1.1	Section 13: Arrows to SPI wrong direction
		Added document history.
2010-04-27	1.2	Section 13.1: CLOCKLEDs linked to P8D4/5/6

Bibliography

- [1] XC-1A Development Kit Tutorial. Website, 2009. http://www.xmos.com/ published/xc1atut.
- [2] Douglas Watt. *Programming XC on XMOS Devices*. XMOS Limited, Sep 2009. http://www.xmos.com/published/xc_en.
- [3] David May. The XMOS XS1 Architecture. XMOS Limited, 2009. http://www.xmos. com/published/xs1_en.

Disclaimer

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information") and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright ©2009-10 XMOS Ltd. All Rights Reserved. XMOS and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used without written permission. Company and product names mentioned in this document are the trademarks or registered trademarks of their respective owners. Where those designations appear in this document, and XMOS was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.