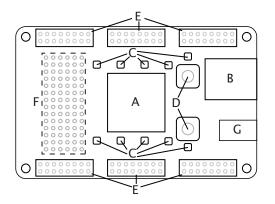
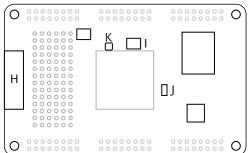
# XC-2 Hardware Manual

(VERSION 1.4)




2009/07/09


Authors: XMOS LTD.

Copyright © 2009, XMOS Ltd. All Rights Reserved

#### 1 Introduction

The XC-2 is a Event-Driven Processor development card intended for designing Ethernet-based products such as audio/video bridging applications and industrial control systems. It comprises a single XS1-G4 device, 10/100-BASE-T Ethernet PHY, 4Mbits SPI flash memory, 10 LEDs and two press-buttons. I/O expansion areas are provided for connecting additional components, and an XSYS connector can be used to interface the card with a PC. The diagram below shows the layout of these components on the card.





- A XS1-G4 Device
- B RJ45 Connector
- C User LEDs
- **D** Push-Button Switches
- E I/O Expansion Areas
- F Prototyping Area
- G Power Connector

- H XSYS Connector
- I SPI Flash Memory
- J 10/100 BASE-T Ethernet PHY
- K Power Regulator
- L 25MHz Crystal Oscillator
- M PLL Status LED

The XC-2 Development Kit also includes a 5V power supply and XTAG connector for booting the device from a PC. The card is fitted with four plastic feet, which can be removed to provide access to mounting holes for product integration.

The rest of this document provide a detailed description of these components.

# 2 XS1-G4 Device [A]

The XC-2 is based on a single XS1-G4 device in a 512BGA package. The XS1-G4 consists of four XCores, each comprising an event-driven multi-threaded processor with tightly integrated general purpose I/O pins and 64 KBytes of on-chip RAM. The pins are brought out of the package and connected to the card's components as follows:

#### Processor 0

- Two red and two green LEDs
- Two push-button switches
- An XSYS connector
- An SPI interface to flash memory
- 12 I/O pins to the prototyping area

#### **Processor 1**

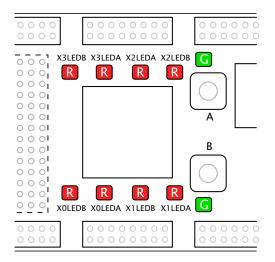
- Two red LEDs
- Two 16-way I/O expansion headers (24 I/O bits)

#### Processor 2

- One 10/100-BASE-T Ethernet PHY
- Two red LEDs
- Two 16-way I/O expansion headers (24 I/O bits)

#### Processor 3

- Two red LEDs
- Two 16-way I/O expansion headers (24 I/O bits)

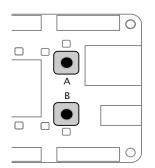

The processors have ports that are directly connected to the I/O pins. Examples of how to write software that interfaces over these ports with the XC-2 components is provided in a separate tutorial [1].

### 3 RJ45 Connector [B] and Ethernet PHY [J]

The RJ45 connector is wired to the 10/100-BASE-T Ethernet PHY. The MII and MAC level protocols are implemented in software.

# 4 User LEDs [C]

The XC-2 provides 10 user LEDs that can be driven by software. The layout of these LEDs is shown below.



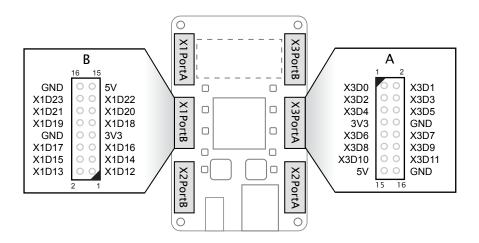

There are two green LEDs next to the two push-button switches and four red LEDs on both sides of the XS1-G4. Each LED is connected to a different pin, all of which are mapped to ports as described in the table below.

| Pin            | Port | Processor (n)     |              |              |              |  |  |
|----------------|------|-------------------|--------------|--------------|--------------|--|--|
|                | 1b   | 0                 | 1            | 2            | 3            |  |  |
| X <i>n</i> D12 | P1E0 | PORT_BUTTON_LED_0 |              |              |              |  |  |
| X <i>n</i> D13 | P1F0 | PORT_BUTTON_LED_1 |              |              |              |  |  |
| X <i>n</i> D24 | P1I0 | PORT_LED_0_0      | PORT_LED_1_0 | PORT_LED_2_0 | PORT_LED_3_0 |  |  |
| X <i>n</i> D25 | P1J0 | PORT_LED_0_1      | PORT_LED_1_1 | PORT_LED_2_1 | PORT_LED_3_1 |  |  |

### 5 Push-Button Switches [D]

The XC-2 provides two push-button switches whose states can be sampled at any time by software. The layout of these switches is shown below.




The switches are connected to two pins, which are mapped to ports as described in the table below.

| Pin   | Port      |      | Processor     |
|-------|-----------|------|---------------|
|       | 4b 8b     |      | 0             |
| X0D14 | P4C0      | P8B0 | PORT_BUTTON_A |
| X0D16 | P4D0 P8B2 |      | PORT_BUTTON_B |

Each pin can be configured either as a 4-bit port or an 8-bit port. The configuration is determined by the set of port initialisers used in the software [2].

#### 6 I/O Expansion Areas [E]

The I/O pins of three of the processors are brought out to expansion areas on both sides of the card. These areas have 0.1" pitch through-plated holes and are suitable for use with IDC headers. To provide maximum flexibility, no headers are fitted, allowing the most suitable type to be selected depending on the design. The routing of the I/O and power pins in the expansion headers is shown below.

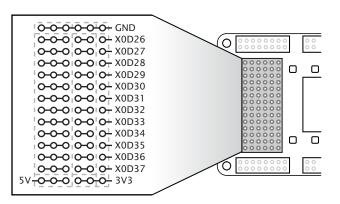


Each expansion header provides a bank of 12 I/O pins, which are mapped to the ports as described in the table on the next page.

| Pin            |      | F    | Port |        | Processor (n) |        |        |
|----------------|------|------|------|--------|---------------|--------|--------|
|                | 1b   | 4b   | 8b   | 16b    | 1             | 2      | 3      |
| XnD0           | P1A0 |      |      |        |               |        |        |
| XnD1           | P1B0 |      |      |        |               |        |        |
| XnD2           |      | P4A0 | P8A0 | P16A0  | -             |        |        |
| XnD3           |      | P4A1 | P8A1 | P16A1  | -             |        |        |
| X <i>n</i> D4  |      | P4B0 | P8A2 | P16A2  | -             |        |        |
| X <i>n</i> D5  |      | P4B1 | P8A3 | P16A3  | Header        | Header | Header |
| X <i>n</i> D6  |      | P4B2 | P8A4 | P16A4  | 1/A           | 2/A    | 3/A    |
| XnD7           |      | P4B3 | P8A5 | P16A5  |               |        |        |
| XnD8           | -    | P4A2 | P8A6 | P16A6  | -             |        |        |
| X <i>n</i> D9  |      | P4A3 | P8A7 | P16A7  |               |        |        |
| X <i>n</i> D10 | P1C0 |      |      |        |               |        |        |
| X <i>n</i> D11 | P1D0 |      |      |        |               |        |        |
| X <i>n</i> D12 | P1E0 |      |      |        |               |        |        |
| X <i>n</i> D13 | P1F0 |      |      |        |               |        |        |
| X <i>n</i> D14 |      | P4C0 | P8B0 | P16A8  |               |        |        |
| X <i>n</i> D15 |      | P4C1 | P8B1 | P16A9  |               |        |        |
| X <i>n</i> D16 |      | P4D0 | P8B2 | P16A10 |               |        |        |
| X <i>n</i> D17 |      | P4D1 | P8B3 | P16A11 | Header        | Header | Header |
| X <i>n</i> D18 |      | P4D2 | P8B4 | P16A12 | 1/B           | 2/B    | 3/B    |
| X <i>n</i> D19 |      | P4D3 | P8B5 | P16A13 |               |        |        |
| X <i>n</i> D20 | 1    | P4C2 | P8B6 | P16A14 |               |        |        |
| X <i>n</i> D21 | 1    | P4C3 | P8B7 | P16A15 |               |        |        |
| X <i>n</i> D22 | P1G0 |      |      |        |               |        |        |
| X <i>n</i> D23 | P1H0 |      |      |        |               |        |        |

Eight pins from each bank can be configured as either two 4-bit ports or a single 8-bit port. The A and B expansion headers can alternatively be used together as a single 16-bit port.

**6**/16


#### 6.1 XMOS Link Configuration

Some of the I/O pins on the expansion header can be configured as XMOS Links. The mapping of XMOS Links to the headers is shown in the table below.

| Header 1/A |            |        | I          | Header 2/   | A      | Header 3/A      |           |             |  |
|------------|------------|--------|------------|-------------|--------|-----------------|-----------|-------------|--|
| Pin        | XMOS       | Link 1 | Pin        | XMOS        | Link 2 | Pin             | XMOS      | XMOS Link 3 |  |
| PIII       | 2 bit      | 5 bit  |            | 2 bit       | 5 bit  |                 | 2 bit     | 5 bit       |  |
| X1D0       |            |        | X2D0       |             |        | X3D0            |           |             |  |
| X1D1       |            | XLA4 I | X2D1       |             | XLA4 O | X3D1            |           | XLA4 I      |  |
| X1D2       |            | XLA3 I | X2D2       |             | XLA3 O | X3D2            |           | XLA3 I      |  |
| X1D3       |            | XLA2 I | X2D3       |             | XLA2 O | X3D3            |           | XLA2 I      |  |
| X1D4       | XLA1in     | XLA1 I | X2D4       | XLA1 O      | XLA1 O | X3D4            | XLA1 I    | XLA1 I      |  |
| X1D5       | XLA0in     | XLA0 I | X2D5       | XLA0 O      | XLA0 O | X3D5            | XLA0 I    | XLA0 I      |  |
| X1D6       | XLA0out    | XLA0 O | X2D6       | XLA0 I      | XLA0 I | X3D6            | XLA0 O    | XLA0 O      |  |
| X1D7       | XLA1out    | XLA1 O | X2D7       | XLA1 I      | XLA1 I | X3D7            | XLA1 O    | XLA1 O      |  |
| X1D8       |            | XLA2 O | X2D8       |             | XLA2 I | X3D8            |           | XLA2 O      |  |
| X1D9       |            | XLA3 O | X2D9       |             | XLA3 I | X3D9            |           | XLA3 O      |  |
| X1D10      |            | XLA4 O | X2D10      |             | XLA4 I | X3D10           |           | XLA4 O      |  |
| X1D11      |            |        | X2D11      |             |        | X3D11           |           |             |  |
|            | Header 1/E | 3      | Header 2/B |             |        | I               | Header 3/ | В           |  |
| Pin        | XMOS       | Link 1 | Pin        | XMOS Link 2 |        | Pin XMOS Link 3 |           | Link 3      |  |
| ГШ         | 2 bit      | 5 bit  |            | 2 bit       | 5 bit  |                 | 2 bit     | 5 bit       |  |
| X1D12      |            |        | X2D12      |             |        | X3D12           |           |             |  |
| X1D13      |            | XLB4 I | X2D13      |             | XLB4 O | X3D13           |           | XLB4 I      |  |
| X1D14      |            | XLB3 I | X2D14      |             | XLB3 O | X3D14           |           | XLB3 I      |  |
| X1D15      |            | XLB2 I | X2D15      |             | XLB2 O | X3D15           |           | XLB2 I      |  |
| X1D16      | XLB1in     | XLB1 I | X2D16      | XLB1 O      | XLB1 O | X3D16           | XLB1 I    | XLB1 I      |  |
| X1D17      | XLB0in     | XLB0 I | X2D17      | XLB0 O      | XLB0 O | X3D17           | XLB0 I    | XLB0 I      |  |
| X1D18      | XLB0out    | XLB0 O | X2D18      | XLB0 I      | XLB0 I | X3D18           | XLB0 O    | XLB0 O      |  |
| X1D19      | XLB1out    | XLB1 O | X2D19      | XLB1 I      | XLB1 I | X3D19           | XLB1 O    | XLB1 O      |  |
| X1D20      |            | XLB2 O | X2D20      |             | XLB2 I | X3D20           |           | XLB2 O      |  |
| X1D21      | ]          | XLB3 O | X2D21      |             | XLB3 I | X3D21           |           | XLB3 O      |  |
| X1D22      | ]          | XLB4 O | X2D22      |             | XLB4 I | X3D22           |           | XLB4 O      |  |
| X1D23      |            |        | X2D23      |             |        | X3D23           |           |             |  |

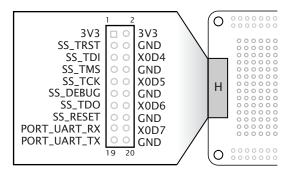
### 7 Prototyping Area [F]

The XC-2 provides a 0.1" pitch through-hole plated area for adding components to the card. The routing of I/O and power pins in the prototyping area is shown below.



The prototyping area provides a bank of 12 I/O pins, which are mapped to the ports as described in the table below.

| Pin   |      | Port |      | Processor   |
|-------|------|------|------|-------------|
|       | 1b   | 4b   | 8b   | 0           |
| X0D26 |      | P4E0 | P8C0 |             |
| X0D27 |      | P4E1 | P8C1 |             |
| X0D28 |      | P4F0 | P8C2 |             |
| X0D29 |      | P4F1 | P8C3 |             |
| X0D30 |      | P4F2 | P8C4 |             |
| X0D31 |      | P4F3 | P8C5 | Prototyping |
| X0D32 | _    | P4E2 | P8C6 | Area        |
| X0D33 |      | P4E3 | P8C7 |             |
| X0D34 | P1K0 |      |      |             |
| X0D35 | P1L0 |      |      |             |
| X0D36 | P1M0 |      | P8D0 |             |
| X9D37 | P1N0 |      | P8D0 |             |


The prototyping area provides access to four 1-bit ports (1K, 1L, 1M and 1N) and either two 4-bit ports (4E and 4F) or one 8-bit port (8C).

#### 8 Power Connector [D] and Regulator [K]

The XC-2 requires connection from an external 5V power supply. The voltage is converted by the on-board regulator to the 1V and 3V3 supplies used by the components.

#### 9 XSYS Connector [H]

The XC-2 includes an XSYS connector, which can be used to boot and debug code on all of the XS1-G4's processors. The XSYS connector provides pins for JTAG control, system reset, processor debug, two UART links and one XMOS Link. The routing of these I/O pins along with the power pins is shown below.



The XMOS XTAG connector converts between XSYS and USB 2.0, allowing the XC-2 to be connected to most PCs. On power on, the XS1-G4 boots from the on-board flash memory. The XS1-G4 can then be put into JTAG mode by the PC, which then boots another program.

No UART hardware is provided. Instead, two UART pins are mapped to ports, as shown in the table below.

| Pin   | Port | Processor    |
|-------|------|--------------|
|       | 1b   | 0            |
| X0D22 | P1G0 | PORT_UART_RX |
| X1D23 | P1H0 | PORT_UART_TX |

XC-2 HARDWARE MANUAL (1.4)

2009/07/09

If a UART is required, it can be implemented in software by sampling and driving these ports at the required rate. The XTAG performs a UART-to-USB conversion on these pins, presenting a virtual COM port to the PC that can be interfaced via a terminal emulator.

### 10 SPI Flash Memory [I]

The XC-2 provides 4Mbit of Serial Peripheral Interface (SPI) flash memory, which is interfaced by the four 1-bit connections described in the table below.

| Pin   | Port | Processor     |
|-------|------|---------------|
|       | 1b   | 0             |
| X0D0  | P1A0 | PORT_SPI_MISO |
| X0D1  | P1B0 | PORT_SPI_SS   |
| X0D10 | P1C0 | PORT_SPI_CLK  |
| X0D11 | P1D0 | PORT_SPI_MOSI |

The Development Tools include the XFLASH utility for programming compiled programs into the flash memory. XC-2 designs may also access the flash memory at run-time by interfacing with the above ports.

### 11 25MHz Crystal Oscillator [L]

The XS1-G4 is clocked at 25MHz by a crystal oscillator on the card. Each processor is clocked at 400MHz, the I/O ports at 100MHz, by an on-chip phase-locked loop (PLL).

# 12 PLL Status LED [M]

The PLL status LED remains off until the on-chip PLL has locked. Once the PLL clock is stable, the LED is illuminated red, indicating that the processor has power and the clock is running.

#### 13 Dimensions

The XC-2 dimensions are 86 x 54mm. The mounting holes are 3mm in diameter.

#### 14 XC-2 Block Diagram

The diagram below shows how the XC-2 components are connected to the XS1-G4.



XC-2 HARDWARE MANUAL (1.4)

2009/07/09

#### 14.1 I/O Port-to-Pin Mapping

The table below provides a full description of the port-to-pin mappings described throughout this document.

| Pin                              | Port  |              |              |                |                   | Pro          | cessor                       |              |
|----------------------------------|-------|--------------|--------------|----------------|-------------------|--------------|------------------------------|--------------|
|                                  | 1b    | 4b           | 8b           | 16b            | 0                 | 1            | 2                            | 3            |
| XnD0                             | P1A0  |              |              |                | PORT_SPI_MISO     |              |                              |              |
| XnD1                             | P1B0  |              |              |                | PORT_SPI_SS       |              |                              |              |
| XnD2                             |       | P4A0         | P8A0         | P16A0          |                   |              |                              |              |
| XnD3                             | 1     | P4A1         | P8A1         | P16A1          | -                 |              |                              |              |
| XnD4                             | 1     | P4B0         | P8A2         | P16A2          |                   | 1            |                              |              |
| XnD5                             | 1     | P4B1         | P8A3         | P16A3          | Host<br>XMOS      | Header       | Header                       | Header       |
| XnD6                             |       | P4B2         | P8A4         | P16A4          | LINK              | 1/A          | 2/A                          | 3/A          |
| XnD7                             |       | P4B3         | P8A5         | P16A5          |                   |              |                              |              |
| X <i>n</i> D8                    |       | P4A2         | P8A6         | P16A6          |                   |              |                              |              |
| XnD9                             |       | P4A3         | P8A7         | P16A7          |                   |              |                              |              |
| X <i>n</i> D10                   | P1C0  |              |              |                | PORT_SPI_CLK      |              |                              |              |
| X <i>n</i> D11                   | P1D0  |              |              |                | PORT_SPI_MOSI     |              |                              |              |
| X <i>n</i> D12                   | P1E0  |              |              |                | PORT_BUTTON_LED_0 |              |                              |              |
| X <i>n</i> D13                   | P1F0  |              |              |                | PORT_BUTTON_LED_1 |              |                              |              |
| X <i>n</i> D14                   |       | P4C0         | P8B0         | P16A8          | PORT_BUTTON_A     |              |                              |              |
| X <i>n</i> D15                   | 1     | P4C1         | P8B1         | P16A9          |                   |              |                              |              |
| X <i>n</i> D16                   | 1     | P4D0         | P8B2         | P16A10         | PORT_BUTTON_B     |              |                              |              |
| X <i>n</i> D17                   | 4     | P4D1         | P8B3         | P16A11         | -                 | Header       | Header                       | Header       |
| X <i>n</i> D18                   | -     | P4D2         | P8B4         | P16A12         | -                 | 1/B          | 2/B                          | 3/B          |
| X <i>n</i> D19                   | -     | P4D3         | P8B5         | P16A13         | -                 |              |                              |              |
| X <i>n</i> D20                   | 4     | P4C2         | P8B6         | P16A14         | _                 |              |                              |              |
| X <i>n</i> D21                   | D/OO  | P4C3         | P8B7         | P16A15         | DODT LIADT DY     |              |                              |              |
| X <i>n</i> D22                   | P1G0  |              |              |                | PORT_UART_RX      |              |                              |              |
| X <i>n</i> D23                   | P1H0  |              |              |                | PORT_UART_TX      | DODT LED 4 0 |                              |              |
| XnD24                            | P110  |              |              |                | PORT_LED_0_0      | PORT_LED_1_0 | PORT_LED_2_0                 | PORT_LED_3_0 |
| X <i>n</i> D25<br>X <i>n</i> D26 | P1J0  | P4E0         | P8C0         | P16B0          | PORT_LED_0_1      | PORT_LED_1_1 | PORT_LED_2_1<br>PORT_ETH_RXD | PORT_LED_3_1 |
| XnD26<br>XnD27                   | -     | P4E0<br>P4E1 | P8C0<br>P8C1 | P16B0<br>P16B1 | -                 |              | PORTETH_RXD                  | -            |
| XnD27<br>XnD28                   | -     | P4E1<br>P4F0 | P8C1         | P16B1          | -                 |              | PORT_ETH_TXD                 | -            |
| XnD28<br>XnD29                   | 4     | P4F0<br>P4F1 | P8C2         | P16B2<br>P16B3 | _                 |              | PORILEIHLIND                 | -            |
| XnD29<br>XnD30                   | -     | P4F1         | P8C4         | P16B3          | -                 |              |                              |              |
| XnD30<br>XnD31                   | -     | P4F2         | P8C5         | P16B5          | Prototyping       |              |                              |              |
| XnD31<br>XnD32                   | -     | P4E2         | P8C6         | P16B6          | Area              |              | PORT_ETH_RXD                 | {            |
| XnD32<br>XnD33                   | -     | P4E2         | P8C7         | P16B7          | -                 |              |                              | 1            |
| XnD33<br>XnD34                   | P1K0  | . 723        | 1 007        | 1 1007         | +                 |              | PORT_ETH_TXCLK               | {            |
| XnD34<br>XnD35                   | P1L0  |              |              |                |                   |              | PORT_ETH_TXEN                | 1            |
| XnD36                            | P1M0  |              | P8D0         | P16B8          | -                 |              | PORT_ETH_RXCLK               | 1            |
| XnD30<br>XnD37                   | P1N0  |              | P8D1         | P16B9          | -                 |              | PORT_ETH_RXDV                | 4            |
| XnD38                            | P100  |              | P8D2         | P16B10         |                   | l            | PORT_ETH_RXER                | 1            |
| XnD39                            | P1P0  |              | P8D3         | P16B11         | -                 |              | PORT_ETH_MDC                 | 1            |
| XnD42                            | 1.1.0 |              | P8D6         | P16B14         | -                 |              |                              | 1            |
| XnD42<br>XnD43                   | 1     |              | P8D7         | P16B15         | -                 |              | PORT_ETH_RST_N_MDIO          |              |

#### 15 XC-2 XN File

The XCore ports linked to the hardware features on the XC-2 are mapped to generic port identifiers as part of a platform specific XN file, which simplifies the process of porting a project between platforms.

The following table lists the defined identifiers for processors 0, 1, 2 and 3:

| Processor | Port Location | Generic Identifier  |
|-----------|---------------|---------------------|
|           | XS1_PORT_1A   | PORT_SPI_MISO       |
|           | XS1_PORT_1B   | PORT_SPI_SS         |
|           | XS1_PORT_1C   | PORT_SPI_CLK        |
|           | XS1_PORT_1D   | PORT_SPI_MOSI       |
|           | XS1_PORT_1E   | PORT_BUTTON_LED_0   |
| 0         | XS1_PORT_1F   | PORT_BUTTON_LED_1   |
| 0         | XS1_PORT_1G   | PORT_UART_RX        |
|           | XS1_PORT_1H   | PORT_UART_TX        |
|           | XS1_PORT_1I   | PORT_LED_0_0        |
|           | XS1_PORT_1J   | PORT_LED_0_1        |
|           | XS1_PORT_4C   | PORT_BUTTON_A       |
|           | XS1_PORT_4D   | PORT_BUTTON_B       |
| 1         | XS1_PORT_1I   | PORT_LED_1_0        |
| 1         | XS1_PORT_1J   | PORT_LED_1_1        |
|           | XS1_PORT_1I   | PORT_LED_2_0        |
|           | XS1_PORT_1J   | PORT_LED_2_1        |
|           | XS1_PORT_1K   | PORT_ETH_TXCLK      |
|           | XS1_PORT_1L   | PORT_ETH_TXEN       |
|           | XS1_PORT_1M   | PORT_ETH_RXCLK      |
| 2         | XS1_PORT_1N   | PORT_ETH_RXDV       |
|           | XS1_PORT_10   | PORT_ETH_RXER       |
|           | XS1_PORT_1P   | PORT_ETH_MDC        |
|           | XS1_PORT_4E   | PORT_ETH_RXD        |
|           | XS1_PORT_4F   | PORT_ETH_TXD        |
|           | XS1_PORT_8D   | PORT_ETH_RST_N_MDIO |
| 3         | XS1_PORT_1I   | PORT_LED_3_0        |
| 3         | XS1_PORT_1J   | PORT_LED_3_1        |

#### **16 Related Documents**

The following documents provide more information on designing with the XC-2:

- *XC-2 Ethernet Kit Tutorial* [1]: provides an introduction to programming software on the XC-2 using the XC language.
- *XCore XS1 Architecture Tutorial* [3]: provides an overview of the XS1 instruction set architecture.

The most up-to-date information on the XC-2, including board schematics and product datasheets, is available from:

• http://www.xmos.com/xc2/

#### References

- [1] Douglas Watt. XC-2 Ethernet Kit Tutorial. Website, 2009. http://www. xmos.com/published/xc2tut.
- [2] Douglas Watt. Programming XC on XCore XS1 Devices. Website, 2009. http://www.xmos.com/published/xcxs1.
- [3] David May and Henk Muller. XCore XS1 Architecture Tutorial. Website, 2009. http://www.xmos.com/published/xs1tut.

XMOS Ltd is the owner or licensee of this design, code, or Information (collectively, the "Information") and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

(c) 2009 XMOS Limited - All Rights Reserved