High Performance, High Fidelity Rail-to-Rail Input/Output Audio Operational Amplifier

General Description

The LME49721 is a low distortion, low noise Rail-to-Rail Input/ Output operational amplifier optimized and fully specified for high performance, high fidelity applications. Combining advanced leading-edge process technology with state-of-the-art circuit design, the LME49721 Rail-to-Rail Input/Output operational amplifier delivers superior signal amplification for outstanding performance. The LME49721 combines a very high slew rate with low THD+N to easily satisfy demanding applications. To ensure that the most challenging loads are driven without compromise, the LME49721 has a high slew rate of $\pm 8.5 \mathrm{~V} / \mu \mathrm{s}$ and an output current capability of $\pm 9.7 \mathrm{~mA}$. Further, dynamic range is maximized by an output stage that drives $10 \mathrm{k} \Omega$ loads to within 10 mV of either power supply voltage.
The LME49721 has a wide supply range of 2.2 V to 5.5 V . Over this supply range the LME49721's input circuitry maintains excellent common-mode and power supply rejection, as well as maintaining its low input bias current. The LME49721 is unity gain stable.

Key Specifications

```
- Power Supply Voltage Range
                    2.2 V to 5.5 V
- Quiescent Current
                                2.15 mA (typ)
- THD \(+N\)
    \(\left(\mathrm{A}_{\mathrm{V}}=2, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\mathrm{p-p}}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}\right)\)
    \(R_{L}=2 k \Omega\)
                    0.00008\% (typ)
        \(R_{L}=600 \Omega\)
                    0.0001\% (typ)
    - Input Noise Density
                                \(4 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) (typ), @ 1 kHz
```

- Slew Rate
$\pm 8.5 \mathrm{~V} / \mathrm{hs}$ (typ)
- Gain Bandwidth Product

20MHz (typ)

- Open Loop Gain ($\mathrm{R}_{\mathrm{L}}=600 \Omega$)
- Input Bias Current

118dB (typ)

- Input Offset Voltage

40fA (typ)

- PSRR
0.3 mV (typ)

103dB (typ)

Features

- Rail-to-rail Input and Output
- Easily drives $10 \mathrm{k} \Omega$ loads to within 10 mV of each power supply voltage
- Optimized for superior audio signal fidelity
- Output short circuit protection

Applications

- Ultra high quality portable audio amplification
- High fidelity preamplifiers
- High fidelity multimedia
- State of the art phono pre amps
- High performance professional audio
- High fidelity equalization and crossover networks
- High performance line drivers
- High performance line receivers
- High fidelity active filters
- DAC I-V converter
- ADC front-end signal conditioning

Typical Connection, Pinout, and Package Marking

20204909
FIGURE 1. Buffer Amplifier

Order Number LME49721MA Se NS Package Number M08A

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
$\begin{gathered} 8-\text { Pin Narrow } \\ \text { SOIC } \end{gathered}$	LME49721MA/NOPB	L49721	95 units/Rail	M08A
	LME49721MAE/NOPB		250 units Tape and Reel	
	LME49721MAX/NOPB		2.5 K units Tape and Reel	

Absolute Maximum Ratings
 (Note 1, Note
 2)
 If Military/Aerospace specified devices are required,
 please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage $\left(V_{S}=V^{+}-\mathrm{V}\right)$	6 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Input Voltage	$(\mathrm{V}-)-0.7 \mathrm{~V}$ to $(\mathrm{V}+)+0.7 \mathrm{~V}$
Output Short Circuit (Note 3)	Continuous

Power Dissipation	Internally Limited
ESD Rating (Note 4)	2000 V
ESD Rating (Note 5)	200 V
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Resistance	
θ_{JA} (SO)	$165^{\circ} \mathrm{C} / \mathrm{W}$
Temperature Range	
$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
Supply Voltage Range	$2.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 5.5 \mathrm{~V}$

Electrical Characteristics for the LME49721 The following specifications apply for the circuit shown
in Figure 1. $V_{S}=5 V, R_{L}=10 \mathrm{k} \Omega, R_{\text {SOURCE }}=10 \Omega, f_{\text {IN }}=1 \mathrm{kHz}$, and $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	LME49721		Units (Limits)
			Typical	Limit	
			(Note 6)	(Note 7)	
THD+N	Total Harmonic Distortion + Noise	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$\begin{aligned} & 0.0002 \\ & 0.0002 \end{aligned}$	0.001	\% (max)
IMD	Intermodulation Distortion	$A_{V}=+1, V_{\text {OUT }}=2 V_{p-p},$ Two-tone, 60 Hz \& $7 \mathrm{kHz} 4: 1$	0.0004		\%
GBWP	Gain Bandwidth Product		20	15	MHz (min)
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1$	8.5		$\mathrm{V} / \mathrm{\mu s}$ (min)
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }},-3 \mathrm{~dB}$ referenced to output magnitude $\text { at } \mathrm{f}=1 \mathrm{kHz}$	2.2		MHz
$\mathrm{t}_{\text {s }}$	Settling time	$\mathrm{A}_{\mathrm{V}}=1,4 \mathrm{~V}$ step 0.1% error range	800		ns
e_{n}	Equivalent Input Noise Voltage	$\mathrm{f}_{\mathrm{BW}}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ A-weighted	. 707	1.13	$\begin{aligned} & \mu \mathrm{V}_{\mathrm{P}-\mathrm{P}} \\ & (\mathrm{max}) \end{aligned}$
	Equivalent Input Noise Density	$\mathrm{f}=1 \mathrm{kHz}$ A-weighted	4	6	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ (max)
I_{n}	Current Noise Density	$\mathrm{f}=10 \mathrm{kHz}$	4.0		$\mathrm{fA} / \sqrt{ } \overline{\mathrm{Hz}}$
$\mathrm{V}_{\text {OS }}$	Offset Voltage		0.3	1.5	mV (max)
$\Delta \mathrm{V}_{\text {os }} / \Delta T e m p$	Average Input Offset Voltage Drift vs Temperature	$40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	1.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
PSRR	Average Input Offset Voltage Shift vs Power Supply Voltage		103	85	dB (min)
$\mathrm{ISO}_{\mathrm{CH}-\mathrm{CH}}$	Channel-to-Channel Isolation	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}$	117		dB
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2$	40		fA
$\Delta \mathrm{l}_{\text {OS }} / \Delta \mathrm{Temp}$	Input Bias Current Drift vs Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	48		fA/ ${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {Os }}$	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2$	60		f f
$\mathrm{V}_{\text {IN-CM }}$	Common-Mode Input Voltage Range			$\begin{aligned} & \hline(\mathrm{V}+)-0.1 \\ & (\mathrm{~V}-)+0.1 \end{aligned}$	V (min)
CMRR	Common-Mode Rejection	$\mathrm{V}_{\mathrm{SS}}-100 \mathrm{mV}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{DD}}+100 \mathrm{mV}$	93	70	dB (min)
	1/f Corner Frequency		2000		Hz
$\mathrm{A}_{\text {VOL }}$	Open Loop Voltage Gain	$\mathrm{V}_{\text {SS }}-200 \mathrm{mV}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{DD}}+200 \mathrm{mV}$			
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$	118	100	$\mathrm{dB}(\mathrm{min})$
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	122		$\mathrm{dB}(\mathrm{min})$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	130	115	dB (min)

Symbol	Parameter	Conditions	LME49721		Units (Limits)
			Typical	Limit	
			(Note 6)	(Note 7)	
$\mathrm{V}_{\text {OUTMIN }}$	Output Voltage Swing	$R_{L}=600 \Omega$	$\mathrm{V}_{\mathrm{DD}}-30 \mathrm{mV}$	$\mathrm{V}_{\mathrm{DD}}-80 \mathrm{mV}$	V (min)
			$\mathrm{V}_{\text {SS }}+30 \mathrm{mV}$	$\mathrm{V}_{\text {SS }}+80 \mathrm{mV}$	V (min)
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}=5.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD}}-10 \mathrm{mV}$	$\mathrm{V}_{\mathrm{DD}}-20 \mathrm{mV}$	V (min)
			$\mathrm{V}_{\text {SS }}+10 \mathrm{mV}$	$\mathrm{V}_{\text {SS }}+20 \mathrm{mV}$	V (min)
$\mathrm{I}_{\text {OUT }}$	Output Current	$\mathrm{R}_{\mathrm{L}}=250 \Omega, \mathrm{~V}_{\mathrm{S}}=5.0 \mathrm{~V}$	9.7	9.3	mA (min)
I Out-sc	Short Circuit Current		100		mA
$\mathrm{R}_{\text {OUT }}$	Output Impedance	$\begin{array}{\|l\|} \hline \mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz} \\ \text { Closed-Loop } \\ \text { Open-Loop } \\ \hline \end{array}$	$\begin{gathered} 0.01 \\ 46 \\ \hline \end{gathered}$		Ω
$\mathrm{I}_{\text {S }}$	Quiescent Current per Amplifier	$\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$	2.15	3.25	mA (max)

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified
Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\text {JMAX }}, \theta_{\mathrm{JA}}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation is $P_{D M A X}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in Absolute Maximum Ratings, whichever is lower.
Note 4: Human body model, applicable std. JESD22-A114C.
Note 5: Machine model, applicable std. JESD22-A115-A.
Note 6: Typical values represent most likely parametric norms at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.
Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.

Typical Performance Characteristics Graphs were taken in dual supply configuration.

THD+N vs Frequency
$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$
$R_{L}=10 \mathrm{k} \Omega, A_{V}=2, B W=22 \mathrm{kHz}$

20204948

THD+N vs Frequency
$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ $R_{L}=600 \Omega, A_{V}=2, B W=22 k H z$

THD+N vs Frequency
$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ $R_{L}=2 k \Omega, A_{V}=2$

THD+N vs Frequency
$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
$R_{L}=10 \mathrm{k} \Omega, A_{V}=2$

20204977
THD+N vs Frequency
$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$
$R_{L}=600 \Omega, A_{V}=2$

LME49721

20204919

Output Voltage Swing Neg vs Power Supply $R_{L}=10 k \Omega$

202049m0
Output Voltage Swing Neg vs Power Supply $R_{L}=\mathbf{2 k} \Omega$

202049s9

Output Voltage Swing Neg vs Power Supply $R_{L}=600 \Omega$

Output Voltage Swing Pos vs Power Supply

 $\mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega$

202049t2
Output Voltage Swing Pos vs Power Supply $R_{L}=600 \Omega$

$202049+4$
Supply Current per amplifier vs Power Supply $R_{L}=10 k \Omega$, Dual Supply

Output Voltage Swing Pos vs Power Supply $R_{L}=10 \mathrm{k} \Omega$

202049t3
Supply Current per amplifier vs Power Supply $R_{L}=\mathbf{2 k} \Omega$, Dual Supply

20204953
Supply Current per amplifier vs Power Supply $R_{L}=600 \Omega$, Dual Supply

Application Information

DISTORTION MEASUREMENTS

The vanishingly low residual distortion produced by LME49721 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution. however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.
The LME49721's low residual is an input referred internal error. As shown in Figure 1, adding the 10Ω resistor connected between athe amplifier's inverting and non-inverting inputs
changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101 . Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure 1.
This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so, produces distortion components that are within equipments capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

202049x2
FIGURE 1. THD +N and IMD Distortion Test Circuit with $\mathrm{A}_{\mathrm{V}}=2$

OPERATING RATINGS AND BASIC DESIGN GUIDELINES

The LME49721 has a supply voltage range from +2.2 V to +5.5 V single supply or ± 1.1 to $\pm 2.75 \mathrm{~V}$ dual supply.
Bypassed capacitors for the supplies should be placed as close to the amplifier as possible. This will help minimize any inductance between the power supply and the supply pins. In addition to a $10 \mu \mathrm{~F}$ capacitor, a $0.1 \mu \mathrm{~F}$ capacitor is also recommended in CMOS amplifiers.
The amplifier's inputs lead lengths should also be as short as possible. If the op amp does not have a bypass capacitor, it may oscillate.

BASIC AMPLIFIER CONFIGURATIONS

The LME49721 may be operated with either a single supply or dual supplies. Figure 2 shows the typical connection for a single supply inverting amplifier. The output voltage for a single supply amplifier will be centered around the commonmode voltage Vcm . Note, the voltage applied to the Vcm insures the output stays above ground. Typically, the Vcm
should be equal to $\mathrm{V}_{\mathrm{DD}} / 2$. This is done by putting a resistor divider ckt at this node, see Figure 2.

202049n3
FIGURE 2. Single Supply Inverting Op Amp

Figure 3 shows the typical connection for a dual supply inverting amplifier. The output voltage is centered on zero.

202049n2
FIGURE 3. Dual Supply Inverting Op Amp
Figure 4 shows the typical connection for the Buffer Amplifier or also called a Voltage Follower. A Buffer Amplifier can be used to solve impedance matching problems, to reduce pow-
er consumption in the source, or to drive heavy loads. The input impedance of the op amp is very high. Therefore, the input of the op amp does not load down the source. The output impedance on the other hand is very low. It allows the load to either supply or absorb energy to a circuit while a secondary voltage source dissipates energy from a circuit. The Buffer is a unity stable amplifier, $1 \mathrm{~V} / \mathrm{V}$. Although the feedback loop is tied from the output of the amplifier to the inverting input, the gain is still positive. Note, if a positive feedback is used, the amplifier will most likely drive to either rail at the output.

202049n1
FIGURE 4. Buffer

20204900

$$
\text { if } \begin{aligned}
\mathrm{R} 1 & =\mathrm{R} 2=\mathrm{R} \\
\mathrm{C}_{1} & =\frac{\sqrt{2}}{\omega_{0} R} \\
\mathrm{C}_{2} & =\frac{\mathrm{C} 1}{2}
\end{aligned}
$$

Illustration is $\mathrm{f}_{0}=1 \mathrm{kHz}$

20204901

$$
f_{0}=\frac{1}{2 \pi C 1 R 1}, Q=\frac{1}{2}\left(1+\frac{R 2}{R 0}+\frac{R 2}{R G}\right), A_{B P}=Q A_{L P}=Q A_{L H}=\frac{R 2}{R G}
$$

Illustration is $f_{0}=1 \mathrm{kHz}, Q=10, A_{B P}=1$

$$
\begin{aligned}
f_{\mathrm{L}} & =\frac{1}{2 \pi \mathrm{R} 2 \mathrm{C} 1}, f_{\mathrm{LB}}=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 1} \\
\mathrm{f}_{\mathrm{H}} & =\frac{1}{2 \pi \mathrm{R} 5 \mathrm{C} 2}, f_{\mathrm{HB}}=\frac{1}{2 \pi(\mathrm{R} 1+\mathrm{R} 5+2 \mathrm{R} 3) \mathrm{C} 2}
\end{aligned}
$$

Illustration is:
$\mathrm{f}_{\mathrm{L}}=32 \mathrm{~Hz}, \mathrm{f}_{\mathrm{LB}}=320 \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{H}}=11 \mathrm{kHz}, \mathrm{f}_{\mathrm{HB}}=1.1 \mathrm{kHz}$

$A_{v}=35 \mathrm{~dB}$
$\mathrm{E}_{\mathrm{n}}=0.33 \mu \mathrm{~V}$
$\mathrm{S} / \mathrm{N}=90 \mathrm{~dB}$
$\mathrm{f}=1 \mathrm{kHz}$
A Weighted
A Weighted, $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{mV}$
@f $=1 \mathrm{kHz}$

Illustration is:

$\mathrm{V} 0=101(\mathrm{~V} 2-\mathrm{V} 1)$

fo (Hz)	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
32	$0.12 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	$75 \mathrm{k} \Omega$	500Ω
64	$0.056 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	510Ω
125	$0.033 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	510Ω
250	$0.015 \mu \mathrm{~F}$	$0.82 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
500	8200 pF	$0.39 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	470Ω
1 k	3900 pF	$0.22 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
2 k	2000 pF	$0.1 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
4 k	1100 pF	$0.056 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	470Ω
8 k	510 pF	$0.022 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	510Ω
16 k	330 pF	$0.012 \mu \mathrm{~F}$	$51 \mathrm{k} \Omega$	510Ω

Note 8: At volume of change $= \pm 12 \mathrm{~dB}$
Q = 1.7
Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

Rev	Date	Description
1.0	09/26/07	Initial release.
1.1	10/01/07	Input more info under the Buffer Amplifier.
1.2	04/21/10	Added the Ordering Information table.

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications \& Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise $® ~ D e s i g n ~$ University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2010 National Semiconductor Corporation
For the most current product information visit us at www.national.com

National Semiconductor	National Semiconductor Europe	National Semiconductor Asia	National Semiconductor Japan
Americas Technical	Technical Support Center	Pacific Technical Support Center	Technical Support Center
Support Center	Email: europe.support@nsc.com	Email: ap.support@nsc.com	
Email: support@nsc.com			
Tel: $1-800-272-9959$			

[^0]
[^0]: www.national.com

