# LM5035 Evaluation Board

National Semiconductor Application Note 1435 Steve Schulte January 2006



### Introduction

The LM5035 evaluation board is designed to provide the design engineer with a fully functional power converter based on the Half Bridge topology to evaluate the LM5035 controller. The evaluation board is provided in an industry standard quarter-brick footprint.

The performance of the evaluation board is as follows:

• Input operating range: 36V to 75V

Output voltage: 3.3V Output current: 0 to 30A

Measured efficiency: 89% at 30A, 92% at 15A

Frequency of operation: 400kHz Board size: 2.28 x 1.45 x 0.5 inches

Load Regulation: 0.2% Line Regulation: 0.1%

Line UVLO (33.9V/31.9V on/off)

Line OVP (79.4V/78.3V off/on)

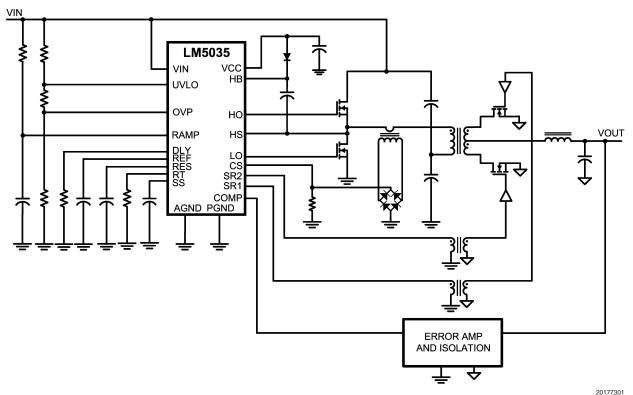
Hiccup current limit

The printed circuit board consists of 6 layers; 2 ounce copper outer layers and 3 ounce copper inner layers on FR4 material with a total thickness of 0.062 inches. The unit is designed for continuous operation at rated load at <40°C and a minimum airflow of 200 CFM.

# Theory of Operation

Power converters based on the Half Bridge topology offer high efficiency and good power handling capability in applications up to 500 Watts. The operation of the transformer causes the flux to swing in both directions, thereby better utilizing the magnetic core.

The Half Bridge converter is derived from the Buck topology family, employing separate high voltage (HO) and low voltage (LO) modulating power switches with independent pulse width timing. The main difference between the topologies are, the Half Bridge topology employs a transformer to provide input / output ground isolation and a step down or step up function.


Each cycle, the main primary switch turns on and applies one-half the input voltage across the primary winding, which has 8 turns. The transformer secondary has 2 turns, leading to a 4:1 step-down of the input voltage. For an output voltage of 3.3V the composite duty cycle (D) of the primary switches varies from approximately 75% (low line) to 35% (high line).

The secondary employs synchronous rectification controlled by the LM5035. During soft-start, the sync FET body diodes act as the secondary rectifiers until the main transformer energizes the gate drivers. The DLY resistor programs the non-overlap timing for the sync FETs to maximize efficiency while eliminating shoot through current.

Feedback from the output is processed by an amplifier and reference, generating an error voltage, which is coupled back to the primary side control through an optocoupler. The COMP input to the LM5035 greatly increases the achievable loop bandwidth. The capacitance effect (and associated pole) of the optocoupler is reduced by holding the voltage across the optocoupler constant. The LM5035 voltage mode controller pulse width modulates the error signal with a ramp signal derived from the line voltage (feedforwarding) to reduce the response time to input voltage changes. A standard "type III" network is used for the compensator.

The evaluation board can be synchronized to an external clock with a recommended frequency range of 420KHz to 500KHz.

## Theory of Operation (Continued)



Simplified Half Bridge Converter

2

# Powering and Loading Considerations

When applying power to the LM5035 evaluation board certain precautions need to be followed. A misconnection can damage the assembly.

# **Proper Connections**

When operated at low input voltages the evaluation board can draw up to 3.5A of current at full load. The maximum rated output current is 30A. Be sure to choose the correct connector and wire size when attaching the source supply and the load. Monitor the current into and out of the evaluation board. Monitor the voltage directly at the output terminals of the evaluation board. The voltage drop across the load connecting wires will cause inaccurate measurements. This is especially true for accurate efficiency measurements.

### Source Power

The evaluation board can be viewed as a constant power load. At low input line voltage (36V) the input current can reach 3.5A, while at high input line voltage (75V) the input current will be approximately 1.5A. Therefore, to fully test the LM5035 evaluation board a DC power supply capable of at least 85V and 5A is required.

The power supply must have adjustments for both voltage and current. The power supply and cabling must present low impedance to the evaluation board. Insufficient cabling or a high impedance power supply will cause voltage droop during turn-on due to the evaluation board inrush current. If large enough, this droop will cause a chattering condition

upon power up. This chattering condition is an interaction with the evaluation board undervoltage lockout, the cabling impedance and the inrush current.

# Loading

An appropriate electronic load, with specified operation down to 1.0V minimum, is desirable. The resistance of a maximum load is  $0.11\Omega$ . The high output current requires thick cables! If resistor banks are used there are certain precautions to be taken. The wattage and current ratings must be adequate for a 30A, 100W supply. Monitor both current and voltage at all times. Ensure there is sufficient cooling provided for the load.

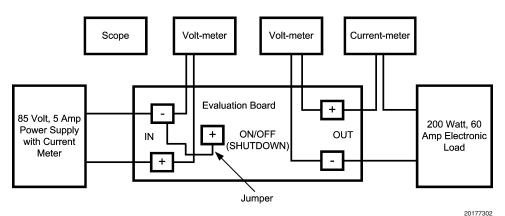
### Air Flow

Full power loading should never be attempted without providing the specified 200 CFM of air flow over the evaluation board. A stand-alone fan should be provided.

# **Powering Up**

Using the ON/OFF pin (J2) provided will allow powering up the source supply with the current level set low. It is suggested that the load be kept low during the first power up. Set the current limit of the source supply to provide about 1.5 times the wattage of the load. As you remove the connection from the ON/OFF pin to ground (J1), immediately check for 3.3 volts at the output.

A most common occurrence, that will prove unnerving, is when the current limit set on the source supply is insufficient for the load. The result is similar to having the high source


# Powering Up (Continued)

impedance referred to earlier. The interaction of the source supply folding back and the evaluation board going into undervoltage shutdown will start an oscillation, or chatter, that may have undesirable consequences.

A quick efficiency check is the best way to confirm that everything is operating properly. If something is amiss you can be reasonably sure that it will affect the efficiency adversely. Few parameters can be incorrect in a switching power supply without creating losses and potentially damaging heat.

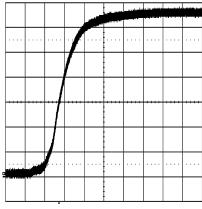
### **Over Current Protection**

The evaluation board is configured with hiccup over-current protection. In the event of an output overload (approximately 35A) the unit will discharge the softstart capacitor, which disables the power stage. After a delay the softstart is released. The shutdown, delay and slow recharge time of the softstart capacitor protects the unit, especially during short circuit event where the stress is highest.



**Typical Evaluation Setup** 

3 www.national.com

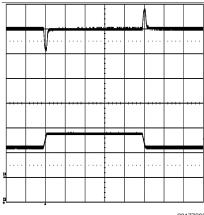

### **Performance Characteristics**

### **TURN-ON WAVEFORMS**

When applying power to the LM5035 evaluation board a certain sequence of events occurs. Soft-start capacitor values and other components allow for a minimal output voltage for a short time until the feedback loop can stabilize without overshoot. Figure 1 shows the output voltage during a typical start-up with a 48V input and a load of 5A. There is no overshoot during startup.

### **OUTPUT RIPPLE WAVEFORMS**

Figure 2 shows the transient response for a load change from 15A to 22.5A. The upper trace shows minimal output voltage droop and overshoot during the sudden change in output current shown by the lower trace.



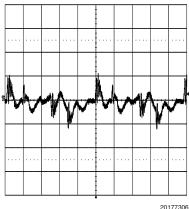

20177304

Conditions: Input Voltage = 48VDC Output Current = 5A

Trace 1: Output Voltage Volts/div = 500mV Horizontal Resolution = 0.5ms/div

### FIGURE 1.




20177305

Conditions: Input Voltage = 48VDC Output Current = 15A to 22.5A

Upper Trace: Output Voltage Volts/div = 50mV Lower Trace: Output Current = 15A to 22.5A to 15A

Horizontal Resolution = 0.5ms/div

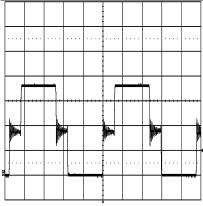
### FIGURE 2.



Conditions: Input Voltage = 48VDC

Output Current = 30A Bandwidth Limit = 20MHz

Trace 1: Output Ripple Voltage Volts/div = 20mV


Horizontal Resolution = 1µs/div

### FIGURE 3.

Figure 3 shows typical output ripple seen across the output terminals (with standard 10µF and 1µF ceramic capacitors) for an input voltage of 48V and a load of 30A. This waveform is typical of most loads and input voltages.

Figures 4 and 5 show the drain voltage of Q1 with a 5A load. Figure 4 represents an input voltage of 36V and Figure 5 represents an input voltage of 72V.

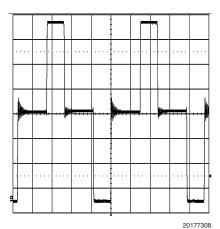
Figure 6 shows the gate voltages of the synchronous rectifiers. The deadtime provided by the  $20k\Omega$  DLY resistor is difficult to see at this timescale.



20177307

Conditions: Input Voltage = 36VDC

Output Current = 5A


Trace 1: Q1 drain voltage Volts/div = 10V

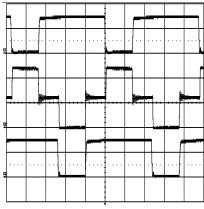
Horizontal Resolution = 1µs/div

### FIGURE 4.

# **Performance Characteristics**

(Continued)




Conditions: Input Voltage = 72VDC

Output Current = 5A

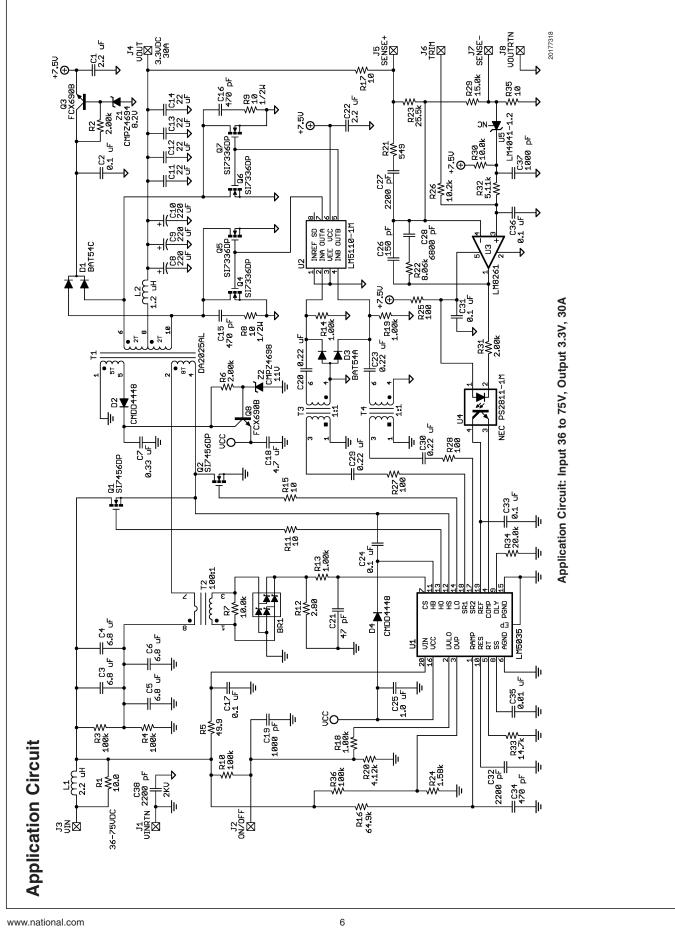
Trace 1: Q2 drain voltage Volts/div = 10V

Horizontal Resolution =  $1\mu s/div$ 

FIGURE 5.



20177309

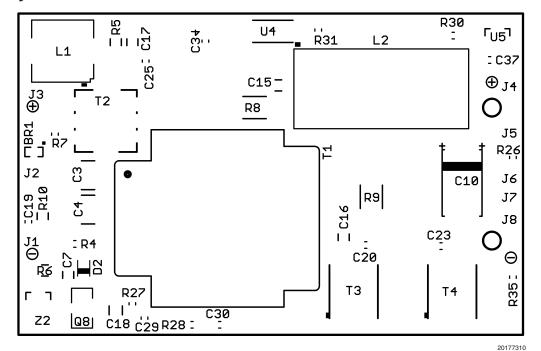

Conditions: Input Voltage = 48VDC

Output Current = 5A

Upper Trace: SR1, Q4 gate Volts/div = 5V Middle Trace: HS, Q2 drain Volts/div = 20V Lower Trace: SR2, Q6 gate Volts/div = 5V Horizontal Resolution =  $1\mu$ s/div

FIGURE 6.

5 www.national.com




| DESIGNATOR   | QTY | PART NUMBER      | DESCRIPTION                    | VALUE        |
|--------------|-----|------------------|--------------------------------|--------------|
| BR1          | 1   | BAT54BRW         | RECTIFIER, BRIDGE, DIODES INC  | 30V          |
| C1,22        | 2   | C2012X7R1C225K   | CAPACITOR, 0805 X7R CER, TDK   | 2.2µ, 16V    |
| C2,31,33,36  | 4   | C1608X7R1H104K   | CAPACITOR, 0603 X7R CER, TDK   | 0.1µ, 50V    |
| C3 - 6       | 4   | C4532X7R1H685M   | CAPACITOR, 1812 X7R CER, TDK   | 6.8µ, 50V    |
| C7           | 1   | C2012X7R1H334K   | CAPACITOR, 0805 X7R CER, TDK   | 0.33µ, 50V   |
| C8 - 10      | 3   | 6TPE220MI        | CAPACITOR, POSCAP, SANYO       | 220µ, 6.3V   |
| C11 - 14     | 4   | C3216X5R0J226M   | CAPACITOR, 1206 X5R CER, TDK   | 22µ, 6.3V    |
| C15, 16      | 2   | C0805C471M5RAC   | CAPACITOR, 0805 COG CER, KEMET | 470p, 50V    |
| C17, 24      | 2   | C2012X7R2A104K   | CAPACITOR, 0805 X7R CER, TDK   | 0.1µ, 100V   |
| C18          | 1   | C3216X7R1C475K   | CAPACITOR, 1206 X7R CER, TDK   | 4.7μ, 16V    |
| C19,37       | 2   | C1608X7R1H102K   | CAPACITOR, 0603 X7R CER, TDK   | 1000p, 50V   |
| C20,23,29,30 | 4   | C1608X7R1E224K   | CAPACITOR, 0603 X7R CER, TDK   | 0.22µ, 25V   |
| C21          | 1   | C1608C0G1H470J   | CAPACITOR, 0603 X7R CER, TDK   | 47p, 50V     |
| C25          | 1   | C1608X7R1C105K   | CAPACITOR, 0603 X7R CER, TDK   | 1.0µ, 16V    |
| C26          | 1   | C1608C0G1H151J   | CAPACITOR, 0603 COG CER, TDK   | 150p, 50V    |
| C27,32       | 2   | C1608C0G1H222J   | CAPACITOR, 0603 COG CER, TDK   | 2200p, 50V   |
| C28          | 1   | C1608C0G 1H682J  | CAPACITOR, 0603 COG CER, TDK   | 6800p, 50V   |
| C35          | 1   | C1608C0G 1E103J  | CAPACITOR, 0603 COG CER, TDK   | 0.01µ, 25V   |
| C34          | 1   | C1608C0G1H471J   | CAPACITOR, 0603 COG CER, TDK   | 470p, 50V    |
| C38          | 1   | C4532X7R3D222K   | CAPACITOR, 1812 X7R CER, TDK   | 2200p, 2000V |
| D1           | 1   | BAT54C           | DIODE, SOT-23 SCHOTTKY, VISHAY | 200mA, 30V   |
| D2,4         | 2   | CMDD4448         | DIODE, SOD-323, CENTRAL SEMI   | 250mA, 75V   |
| D3           | 1   | BAT54A           | DIODE, SOT-23 SCHOTTKY, VISHAY | 200mA, 30V   |
| L1           | 1   | RLF7030T-2R2M5R4 | INDUCTOR, TDK                  | 2.2µH, 5.4A  |
| L2           | 1   | SER2010-122MX    | INDUCTOR, COILCRAFT            | 1.2µH, 37A   |
| Q1,2         | 2   | SI7456DP         | N-FET, SILICONIX               | 100V, 25mΩ   |
| Q3,8         | 2   | FCX690B          | NPN, ZETEX                     | 45V, 2A      |
| Q4 - 7       | 4   | SI7336ADP        | N-FET, SILICONIX               | 30V, 3mΩ     |
| R1,11,15     | 3   | CRCW080510R0F    | RESISTOR, 0805, VISHAY         | 10           |
| R7,30        | 2   | CRCW06031002F    | RESISTOR, 0603, VISHAY         | 10kΩ         |
| R2           | 1   | CRCW08052001F    | RESISTOR, 0805, VISHAY         | 2.00kΩ       |
| R3,4         | 2   | CRCW06031003F    | RESISTOR, 0603, VISHAY         | 100kΩ        |
| R5           | 1   | CRCW080549R9F    | RESISTOR, 0805, VISHAY         | 49.9Ω        |
| R6           | 1   | CRCW08051002F    | RESISTOR, 0805, VISHAY         | 10kΩ         |
| R8,9         | 2   | CRCW201010R0F    | RESISTOR, 2010, VISHAY         | 10Ω          |
| R10,36       | 2   | CRCW08051003F    | RESISTOR, 0805, VISHAY         | 100kΩ        |
| R16          | 1   | CRCW08056492F    | RESISTOR, 0805, VISHAY         | 64.9kΩ       |
| R12          | 1   | CRCW06032R80F    | RESISTOR, 0603, VISHAY         | 2.8Ω         |
| R13,14,18,19 | 4   | CRCW06031001F    | RESISTOR, 0603, VISHAY         | 1kΩ          |
| R17,35       | 2   | CRCW060310R0F    | RESISTOR, 0603, VISHAY         | 10Ω          |
| R20          | 1   | CRCW06034121F    | RESISTOR, 0603, VISHAY         | 4.12kΩ       |
| R21          | 1   | CRCW06035490F    | RESISTOR, 0603, VISHAY         | 549Ω         |
| R22          | 1   | CRCW06038061F    | RESISTOR, 0603, VISHAY         | 8.06kΩ       |
| R23          | 1   | CRCW06032552F    | RESISTOR, 0603, VISHAY         | 25.5kΩ       |
| R24          | 1   | CRCW06031581F    | RESISTOR, 0603, VISHAY         | 1.58kΩ       |
| R25,27,28    | 3   | CRCW06031000F    | RESISTOR, 0603, VISHAY         | 100Ω         |
| R26          | 1   | CRCW06031022F    | RESISTOR, 0603, VISHAY         | 10.2kΩ       |
| R29          | 1   | CRCW06031502F    | RESISTOR, 0603, VISHAY         | 15kΩ         |
| R31          | 1   | CRCW060313021    | RESISTOR, 0603, VISHAY         | 2.00kΩ       |
| R32          | 1   | CRCW06035111F    | RESISTOR, 0603, VISHAY         | 5.11kΩ       |

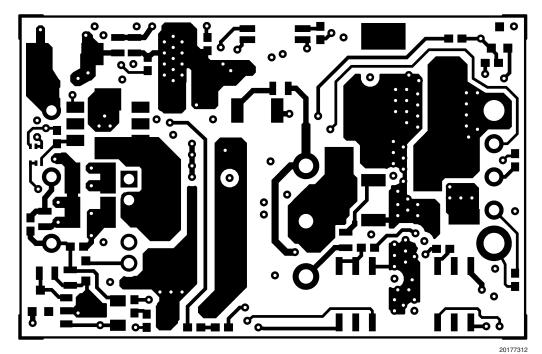
| DESIGNATOR   | QTY | PART NUMBER             | DESCRIPTION                     | VALUE      |
|--------------|-----|-------------------------|---------------------------------|------------|
| R33          | 1   | CRCW06031472F           | RESISTOR, 0603, VISHAY          | 14.7kΩ     |
| R34          | 1   | CRCW06032002F           | RESISTOR, 0603, VISHAY          | 20kΩ       |
| T1           | 1   | DA2025-AL               | POWER XFR, COILCRAFT            | 8:5:2:2    |
| T2           | 1   | P8208                   | CURRENT XFR, PULSE ENG          | 100:1, 10A |
| T3,4         | 2   | SM76924                 | GATE XFR, DATATRONIC            | 1:1        |
| U1           | 1   | LM5035MH                | CONTROLLER, NATIONAL SEMI       |            |
| U2           | 1   | LM5110-1M               | DRIVER, DUAL, NATIONAL SEMI     |            |
| U3           | 1   | LM8261M5                | OPAMP, SOT23-5, NATIONAL SEMI   |            |
| U4           | 1   | PS2811-1M               | OPTO-COUPLER, NEC               |            |
| U5           | 1   | LM4041AIM3-1.2          | REFERENCE, SOT23, NATIONAL SEMI | 1.225V     |
| Z1           | 1   | CMPZ4694                | ZENER, SOT23, CENTRAL SEMI      | 8.2V, 5%   |
| Z2           | 1   | CMPZ4698                | ZENER, SOT23, CENTRAL SEMI      | 11V, 5%    |
| J1,2,3,5,6,7 | 6   | 3104-2-00-01-00-00-08-0 | 0.040" PIN, MILL-MAX            |            |
| J4,8         | 2   | 3231-2-00-01-00-00-08-0 | 0.080" PIN, MILL-MAX            |            |

www.national.com 8

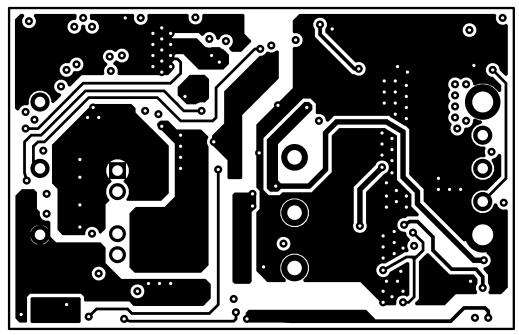
# **PCB Layouts**



Top Side

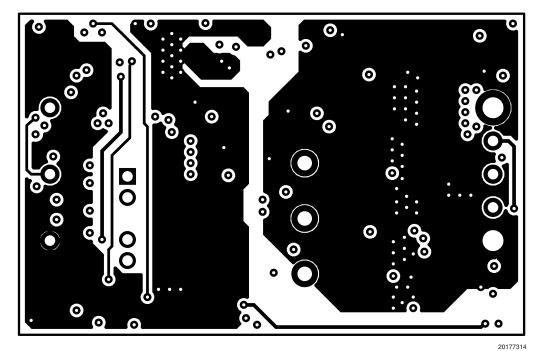

- C36 R<u>1</u>6 - R18 - R20 U1 551012572-001 R29-C33 - Z R32 REV B C26: LU3\_C31 4**R**33 R36 & C21 CC21 CR13 C27 1823 R21 S/N  $\oplus$ - | | **I** □4 C32 C24 R25  $\oplus$ **C32** 95 R17 Q1 С8 Θ ı ı⊠ LM5035 EVALUATION BOARD C2005 L Q2 Θ U2 R15 -R19 주. , 「D3기 9

**Bottom Side** 

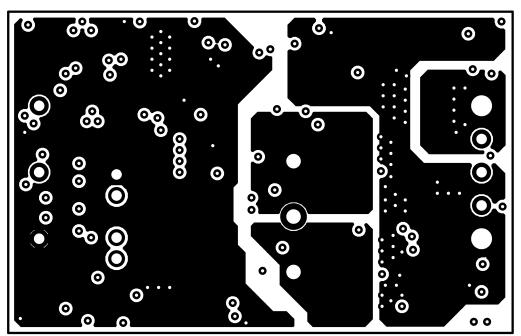

www.national.com

20177311

# PCB Layouts (Continued)



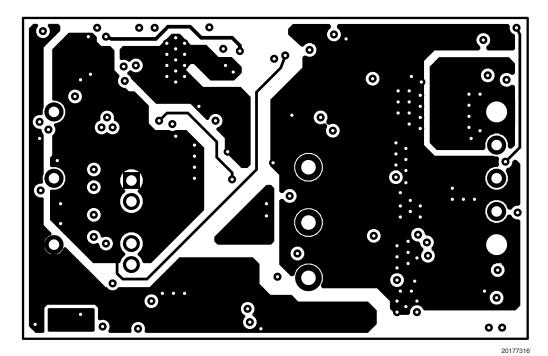

Layer 1



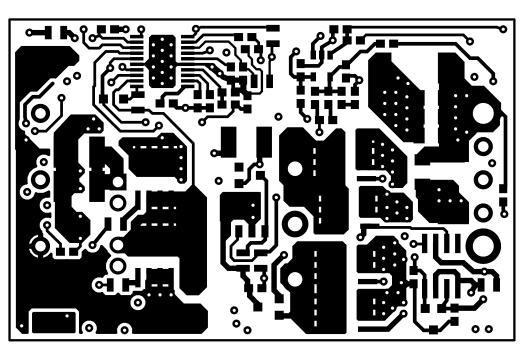

Layer 2

# PCB Layouts (Continued)




Layer 3




Layer 4

20177315

# PCB Layouts (Continued)



Layer 5



Layer 6

20177317

# LM5035 Evaluation Board

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

**Notes** 

For the most current product information visit us at www.national.com.

### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

### **BANNED SUBSTANCE COMPLIANCE**

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.



**National Semiconductor Americas Customer** Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

**National Semiconductor Europe Customer Support Center** Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

**National Semiconductor** Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560