${ }_{\text {minta }} \boldsymbol{P}_{s}$ Murata Power Solutions

FEATURES
RoHS compliant
Twin independent outputs
Input/output isolation 1kVDC

- Output/output isolation 1kVDC
- Power sharing on outputs
- Efficiency to 80\%

Power density $0.85 \mathrm{~W} / \mathrm{cm}^{3}$
UL 94V-0 package material

- Footprint from $1.17 \mathrm{~cm}^{2}$
- 5V \& 12V input

■ One 5V output (V1)
3.3V, 5V, 9V, 12V and 15V output (V2)

- No heatsink required

Internal SMD construction

- Fully encapsulated with toroidal magnetics

No external components required

- MTTF up to 1.6 million hours

Custom solutions available
PCB mounting

DESCRIPTION

The NMD series of DC/DC converters are ideally suited to applications where a potential difference exists between loads, e.g. motor control circuits. The twin outputs offer cost and space savings by consolidating two DC/DC converters into one package. All of the rated power may be drawn from a single output provided the total load does not exceed 1 watt.

SELECTION G								
Order Code	Nominal Input Voltage	Output Voltage 1	Output Voltage 2	Output Current 1	Output Current 2	Efficiency	MTTF ${ }^{1}$	Package Style
	V	V	V	mA	mA	\%	kHrs	
NMD050503DC	5	5	3.3	100	152	70	1615	DIP
NMD050505DC	5	5	5	100	100	70	1615	
NMD050509DC	5	5	9	100	56	80	669	
NMD050512DC	5	5	12	100	42	80	339	
NMD050515DC	5	5	15	100	34	80	187	
NMD050503SC	5	5	3.3	100	152	70	1615	SIP
NMD050505SC	5	5	5	100	100	70	1615	
NMD050509SC	5	5	9	100	56	80	669	
NMD050512SC	5	5	12	100	42	80	339	
NMD050515SC	5	5	15	100	34	80	187	
NMD120505DC	12	5	5	100	100	70	489	DIP
NMD120509DC	12	5	9	100	56	80	343	
NMD120512DC	12	5	12	100	42	80	229	
NMD120515DC	12	5	15	100	34	80	148	
NMD120505SC	12	5	5	100	100	70	489	SIP
NMD120509SC	12	5	9	100	56	80	343	
NMD120512SC	12	5	12	100	42	80	229	
NMD120515SC	12	5	15	100	34	80	148	
When operated with additional external load capacitance the rise time of the input voltage will determine the maximum external capacitance value for guaranteed start up. The slower the rise time of the input voltage the greater the maximum value of the additional external capacitance for reliable start up.								

| INPUT CHARACTERISTICS | Min. | Typ. | Max. | Units | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Parameter | Conditions | 4.5 | 5.0 | 5.5 | V |
| Voltage range | Continuous operation, 5V input types | 10.8 | 12 | 13.2 | |

OUTPUT CHARACTERISTICS						
Parameter	Conditions		Min.	Typ.	Max.	Units
Rated power ${ }^{2}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				1.0	W
Voltage set point accuracy	See tolerance envelope					
Line regulation	NMD050503xC	High Vin to Low Vin		1.0	1.25	\%/\%
	All other variants			1.0	1.20	
Load regulation	10\% load to rated load, 3.3V output types				15	\%
	10\% load to rated load, 5V output types				15	
	10\% load to rated load, 9V output types				10	
	10\% load to rated load, 12V output types				10	
	10\% load to rated load, 15 V output types				10	
Ripple and noise	BW=DC to 20 MHz , all output types				75	mV p-p

ABSOLUTE MAXIMUM RATINGS

Short-circuit protection ${ }^{3}$	1 second
Lead temperature 1.5 mm from case for 10 seconds	$300^{\circ} \mathrm{C}$
Input voltage $\mathrm{V}_{1 /}$, NMD05 types	7 V
Input voltage VIN, NMD12 types	15 V

1. Calculated using MIL-HDBK-217F with nominal input voltage at full load.
2. See derating curve.
3. Supply voltage must be disconnected at the end of the short circuit duration.

$$
\text { All specifications typical at } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, nominal input voltage and rated output current unless otherwise specified. }
$$

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' \& 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.
Murata Power Solutions NMD series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1 kVDC for 1 second.
A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"
For a part holding no specific agency approvals, such as the NMD series, both input and output should normally be maintained within SELV limits i.e. less than 42.4 V peak, or $60 V D C$. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NMD series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.
This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

RoHS COMPLIANCE INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of $300^{\circ} \mathrm{C}$ for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with $\mathrm{Sn} / \mathrm{Pb}$ soldering systems.
For further information, please visit www.murata-ps.com/rohs

muRata P_{5} Murata Power Solutions

marita P_{5} Murata Power Solutions

PACKAGE SPECIFICATIONS (continued)

RECOMMENDED FOOTPRINT DETAILS

7 Pin SIP Package

TUBE OUTLINE DIMENSIONS

Unless otherwise stated all dimensions in inches $(\mathrm{mm}) \pm 0.5 \mathrm{~mm}$.
Tube length (14 Pin DIP) : 20.47 ($520 \mathrm{~mm} \pm 2 \mathrm{~mm}$).
Tube length (7 Pin SIP) : $20.47(520 \mathrm{~mm} \pm 2 \mathrm{~mm})$.

7 Pin SIP Tube

minita P_{5} Murata Power Solutions

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.
Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356
www.murata-ps.com email: sales@murata-ps.com ISO 9001 \& ISO 14001 REGISTERED
Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without
notice.
© 2009 Murata Power Solutions, Inc.

USA: Mansfield (MA), Tel: (508) 339 3000, email: sales@murata-ps.com
Canada: Toronto, Tel: (866) 740 1232, email: toronto@murata-ps.com
UK: \quad Milton Keynes, Tel: +44 (0)1908 615232, email: mk@murata-ps.com
France: Montigny Le Bretonneux, Tel: +33 (0)1 346001 01, email: france@murata-ps.com
Germany: München, Tel: +49 (0)89-544334-0, email: ped.munich@murata-ps.com
Japan: Tokyo, Tel: 3-3779-1031, email: sales_tokyo@murata-ps.com Osaka, Tel: 6-6354-2025, email: sales_osaka@murata-ps.com
China: Shanghai, Tel: +86 215027 3678, email: shanghai@murata-ps.com Guangzhou, Tel: +86 208221 8066, email: guangzhou@murata-ps.com
Singapore: Parkway Centre, Tel: +65 6348 9096, email: singapore@murata-ps.com

