

SERDES Demonstration Kit User Manual

Rev 0.2

NSID: SERDESUR-43USB

National Semiconductor Corporation

Date: 5/8/2008 Page 1 of 36

Table of Contents

TABLE OF CONTENTS	2
INTRODUCTION:	3
CONTENTS OF THE EVALUATION KIT:	4
SERDES TYPICAL APPLICATION:	4
HOW TO SET UP THE EVALUATION KIT:	6
POWER CONNECTION:	6
SERDES SERIALIZER BOARD DESCRIPTION:	7
Configuration Settings for the Serializer Board	11
RX SERDES DE-SERIALIZER BOARD:	13
Configuration Settings for the De-serializer Board	
TYPICAL CONNECTION AND TEST EQUIPMENT	19
TROUBLESHOOTING	21
APPENDIX	23
SERIALIZER (TX) PCB SCHEMATIC:	23
DE-SERIALIZER (RX) PCB SCHEMATIC:	27
SERIALIZER (TX) PCB LAYOUT:	31
SERIALIZER (TX) PCB STACKUP:	34
DESERIALIZER (RX) PCB LAYOUT:	35
DESERIALIZER (RX) PCR STACKUP	38

Introduction:

National Semiconductor's SERDES evaluation kit contains one (1) DS90UR241 Serializer (Tx) board, one (1) DS90UR124 De-serializer (Rx) board, and one (1) generic two (2) meter USB 2.0 Hi-SPEED cable assembly. National is not recommending using the USB 2.0 Hi-SPEED cable assembly but is provided in this kit as a generic solution to show the robustness of the chipset.

Note: the demo boards are not for EMI testing. The demo boards were designed for easy accessibility to device pins with tap points for monitoring or applying signals, additional pads for termination, and multiple connector options.

The DS90UR241/124 chipset supports a variety of display applications. The single LVDS interface is well-suited for any display system interface. Typical applications include: navigation displays, automated teller machines (ATMs), POS, video cameras, global positioning systems (GPS), portable equipment/instruments, factory automation, etc.

The DS90UR241 and DS90UR124 can be used as a 24-bit general purpose LVDS Serializer and De-serializer chipset designed to transmit data at clocks speeds ranging from 5 to 43 MHz.

The DS90UR241 serializer board accepts LVCMOS input signals. The LVDS Serializer converts the LVCMOS parallel lines into a single serialized LVDS data pair with an embedded LVDS clock. The serial data stream toggles at 28 times the base clock rate. With an input clock at 43 MHz, the transmission rate for the LVDS line is 1.204Gbps.

The DS90UR124 de-serializer board accepts the LVDS serialized data stream with embedded clock and converts the data back into parallel LVCMOS signals and clock. Note that NO reference clock is needed to prevent harmonic lock as with other devices currently on the market.

Suggested equipment to evaluate the chipset, an LVCMOS signal source such as a video generator or word generator or pulse generator and oscilloscope with a bandwidth of at least 43 MHz will be needed.

The user needs to provide the proper LVCMOS/RGB inputs and LVCMOS/clock to the serializer and also provide a proper interface from the de-serializer output to an LCD panel or test equipment. The serializer and de-serializer boards can also be used to evaluate device parameters. A cable conversion board or harness scramble may be necessary depending on type of cable/connector interface used on the input to the DS90UR241 and to the output of the DS90UR124.

Example of suggested display setup:

- 1) video generator with LVCMOS output
- 2) 6-bit LCD panel with a LVCMOS input interface.

National Semiconductor Corporation

Date: 5/8/2008 Page 3 of 36

Contents of the Evaluation Kit:

- 1) One Serializer board with the DS90UR241
- 2) One De-serializer board with the DS90UR124
- 3) One 2-meter USB 2.0 Hi-SPEED cable assembly
- 4) Evaluation Kit Documentation (this manual)
- 5) DS90UR241/124 Datasheet

SERDES Typical Application:

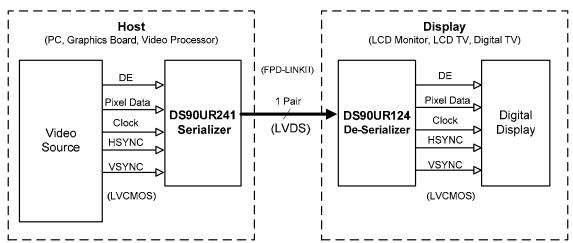


Figure 1a. Typical SERDES Application (18-bit RGB Color)

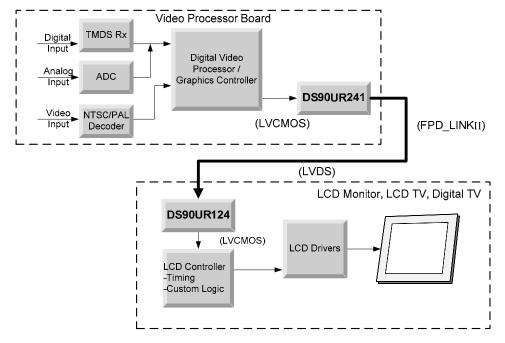


Figure 1b. Typical SERDES System Diagram

National Semiconductor Corporation

Date: 5/8/2008 Page 4 of 36 Figures 1a and 1b illustrate the use of the Chipset (Tx/Rx) in a Host to Flat Panel Interface.

The chipsets support up to 18-bit color depth TFT LCD Panels.

Refer to the proper datasheet information on Chipsets (Tx/Rx) provided on each board for more detailed information.

National Semiconductor Corporation

Date: 5/8/2008 Page 5 of 36

How to set up the Evaluation Kit:

The PCB routing for the serializer input pins (DIN) have been laid out to accept incoming LVCMOS signals from a 50-pin IDC connector. The TxOUT/RxIN (DOUT/RIN) interface uses a USB connector/cable assembly (provided). The PCB routing for the Rx output pins (ROUT) are accessed through a 50-pin IDC connector. Please follow these steps to set up the evaluation kit for bench testing and performance measurements:

- 1) A two (2) meter USB connector/cable assembly has been included in the kit.

 Connect 4-pin USB A

 side of cable harness to the serializer board and the other side 5-pin mini USB jack

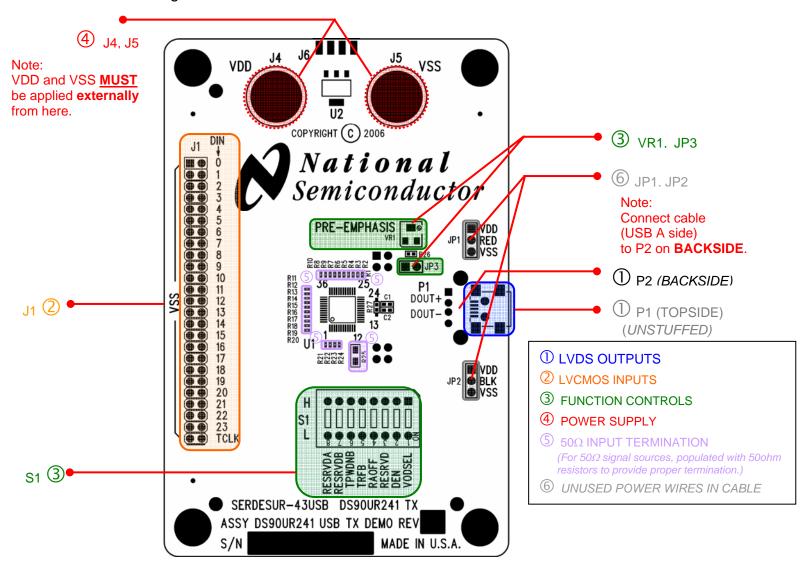
 in to the de-serializer board. This completes the LVDS interface connection.

 NOTE: The DS90C241 and DS90C124 are NOT USB compliant and should not be plugged into a USB device nor should a USB device be plugged into the demo boards.
- 2) Jumpers and switches have been configured at the factory; they should not require any changes for immediate operation of the chipset. See text on Configuration settings for more details. From the Video Decoder board, connect a flat cable (not supplied) to the Serializer board and connect another flat cable (not supplied) from the De-serializer board to the panel. Caution: The LVCMOS input levels should be within the specified range for optimal performance, not to exceed the absolute maximum rating of -0.3V to (VCC +0.3V). Note: For 50 ohm LVCMOS input signal sources, add 50 ohm parallel termination
 - Note: For 50 ohm LVCMOS input signal sources, add 50 ohm parallel termination resistors R1-R25 on the DS90UR241 Serializer board and provide appropriate 3.3V LVCMOS input signal levels into DIN[23:0] and TCLK.
- 3) Power for the Tx and Rx boards must be supplied externally through Power Jack (VDD). Grounds for both boards are connected through Power Jack (VSS) (see section below).

Power Connection:

The serializer and de-serializer boards must be powered by supplying power externally through J4 (VDD) and J5 (VSS) on serializer Board and J4 (VDD) and J5 (VSS) on deserializer board. Note +4V is the absolute MAXIMUM voltage (not operating voltage) that should ever be applied to the SERDES serializer (DS90UR241) or de-serializer (DS90UR124) VDD terminal. Damage to the device(s) can result if the voltage maximum is exceeded.

National Semiconductor Corporation


Date: 5/8/2008 Page 6 of 36

SERDES Serializer Board Description:

The 50-pin IDC connector J1 accepts 24 bits of LVCMOS RGB data (DIN0-DIN23) along with the clock input (TCLK).

The SERDES serializer board is powered externally from the J4 (VDD) and J5 (VSS) connectors shown below. For the serializer to be operational, the Power Down (S1-TPWDNB) and Data Enable (S1-DEN) switches on S1 must be set HIGH. Rising or falling edge reference clock is also selected on S1-TRFB: HIGH (rising) or LOW (falling). FPD_LINKII is an AC coupled LVDS (series 0.1µF capacitors on each side of the LVDS serializer outputs and de-serializer inputs). JP1 and JP2 are configured from the factory to be shorted to VSS; these are the unused power wires in the cable harness.

The USB connector P2 (on the backside of the board) provides the interface connection to the LVDS signals to the de-serializer board.

National Semiconductor Corporation

Date: 5/8/2008

Page 7 of 36

Configuration Settings for the Serializer Board

S1: Serializer Input Features Selection

Reference	Description	Input = L	Input = H	S1
RESRVDA	RESeRVeD A	MUST be	Not allowed	
		tied low for normal operation (Default)		
RESRVDB	RESeRVeD B	MUST be tied low for normal operation (Default)	Not allowed	ESRVDA POR
TPWDNB	PoWerDowN Bar	Powers Down	Normal operation (Default)	RE L
TRFB	Latch input data on Rising or Falling edge of TCLK	Falling Edge (Default)	Rising Edge	
RAOFF	RAndomizer OFF	Randomizer ON. (Default) Note: DS90 <u>UR</u> 124 RAOFF MUST also be set Low.	OFF. Note: DS90 <u>UR</u> 124 RAOFF MUST also be set High.	
RESRVD	RESeRVeD	MUST be tied low for normal operation (Default)	Not allowed	
DEN	Serializer Output Data ENabled	Disabled	Enabled (Default)	
VODSEL	LVDS output VOD SELect	≈350mV (Default)	≈700mV	

National Semiconductor Corporation

Date: 5/8/2008 Page 8 of 36 JP3,VR1: Pre-Emphasis Feature Selection

Reference	Description	OPEN (floating)	CLOSED (Path to GND)	
JP3	Pre-Emphasis – helps to increase the eye pattern opening in the LVDS stream	Disabled – no jumper (Default)	Enabled – With jumper	JP3
JP3 & VR1	Pre-Emphasis adjustment (via screw) JP1 <u>MUST</u> have a jumper to use VR1 potentiometer. $VR1 = 0\Omega \text{ to } 20K\Omega,$ $JP1 + VR1 + 6K\Omega (R26) = -6K\Omega \text{ (maximum pre-emphasis) to } -26K\Omega \text{ (minimum pre-emphasis*)}.$ $IPRE = [1.2/(RPRE)] \times 40,$ $RPRE \text{ (minimum)} \geq 6K\Omega$ *Note: maximum is based on resistor value. In this case ~26K\Omega value is based on the ~6k\Omega fixed resistor plus ~20K\Omega maximum potentiometer value. User can use hundreds of Kohms to reduce the pre-emphasis value.	increases RPRE value which decreases pre- emphasis	Counter-Clockwise VR1 decreases RPRE value which increases pre- emphasis	VR1

Pre-emphasis user note:

Pre-emphasis must be adjusted correctly based on application frequency, cable quality, cable length, and connector quality. Maximum pre-emphasis should only be used under extreme worse case conditions; for example at the upper frequency specification of the part and/or low grade cables at maximum cable lengths. Typically all that is needed is minimum pre-emphasis. Users should start with no pre-emphasis first and gradually apply pre-emphasis until there is clock lock and no data errors. The best way to monitor the pre-emphasis effect is to hook up a differential probe to the 100Ω termination resistor (R1) on the DS90UR124 Rx demo board (NOT to R27 on the DS90UR241 Tx demo board). The reason for monitoring R1 on the Rx side is because you want to see what the receiver will see the attenuation signal AFTER the cable/connector.

JP1, JP2: USB Cable Assembly - RED wire and BLK wire

Reference	Description	VDD	VSS	OPEN	
JP1	RED wire in USB cable thru P1 connector. Jumper RED to VSS recommended. CAUTION: Jumper settings should be set the same on the DS90UR124 board or a short can occur.	RED wire tied to VDD JP1 VDD RED VSS	RED wire tied to VSS (Default) JP1 RED VSS	RED wire floating (not recommended) JP1 VDD RED VSS	
JP2	BLACK wire in USB cable thru P1 connector. Jumper BLACK to VSS recommended. CAUTION: Jumper settings should be set the same on the DS90UR124 board or a short can occur.	BLACK wire tied to VDD JP2 VDD BLK VSS	BLACK wire tied to VSS (Default) JP2 BLK VSS	BLACK wire floating (not recommended) JP2 BLK VSS	

JP1 and JP2 connections on connector P1

Р

Serializer LVCMOS and LVDS Pinout by IDC Connector

The following two (2) tables illustrate how the serializer inputs are mapped to the IDC connector J1, the LVDS outputs on the USB connector P2 pinout. Note – labels are also printed on the demo boards for both the TTL input and LVDS outputs.

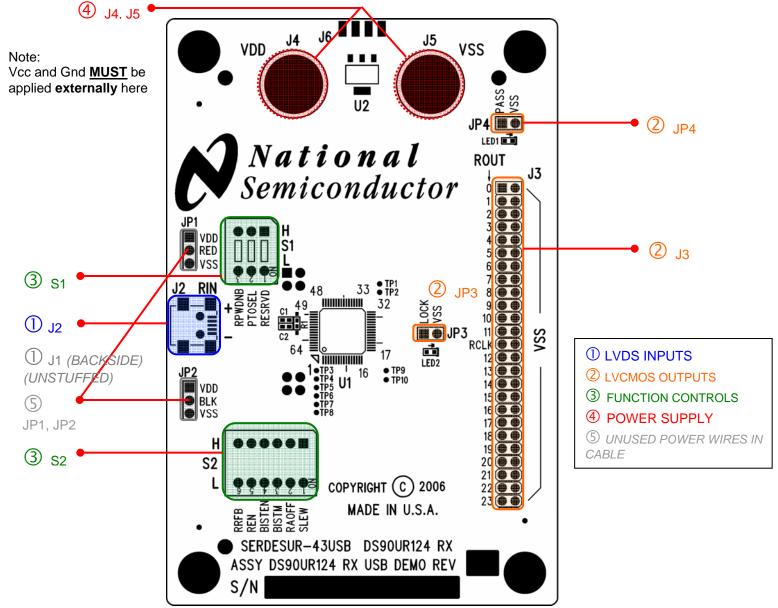
LVCMOS INPUT			
J1 pin no.	name		
2	DIN0		
4	DIN1		
6	DIN2		
8	DIN3		
10	DIN4		
12	DIN5		
14	DIN6		
16	DIN7		
18	DIN8		
20	DIN9		
22	DIN10		
24	DIN11		
26	DIN12		
28	DIN13		
30	DIN14		
32	DIN15		
34	DIN16		
36	DIN17		
38	DIN18		
40	DIN19		
42	DIN20		
44	DIN21		
46	DIN22		
48	DIN23		
50	TCLK		
all odd pins	gnd		

LVDS OUTPUT		
P2 pin no.	name	
1	RED	
2	DOUT+	
3	DOUT-	
4	BLK	

BOM (Bill of Materials) Serializer PCB:

DS90UR241 Tx USB Demo Board - Board Stackup Revised: Friday, September 15, 2006

DS90UR241 Tx USB Demo Board Revision: 1 Bill Of Materials September 15,2006 19:21:34


Item	Qty	Reference	Part	PCB Footprint
		04.00	0.4.5	045/1150 0400
1	2	C1,C2	0.1uF	CAP/HDC-0402
2	1	C3	2.2uF	3528-21_EIA
3	1	C4	22uF	CAP/N
4	1	C5	0.1uF	CAP/HDC-1206
5	5	C6,C9,C10,C13,C20	22uF	CAP/EIA-B 3528-21
6	5	C7,C11,C15,C16,C19	0.01uF	CAP/HDC-0603
7	5	C8,C12,C14,C17,C18	0.1uF	CAP/HDC-0603
8	2	JP2,JP1	3-Pin Header	Header/3P
9	1	JP3	2-Pin Header	Header/2P
10	1	J1	IDC2X25_Unshrouded	IDC-50
11	2	J5,J4	BANANA	CON/BANANA-S
12	1	P1	mini USB 5pin_open	mini_B_USB_surface_mount
13	1	P2	USB A	USB_TYPE_A_4P
14	24	R1,R2,R3,R4,R5,R6,R7,R8,	49.9ohm_open	RES/HDC-0201
		R9,R10,R11,R12,R13,R14,		
		R15,R16,R17,R18,R19,R20,		
		R21,R22,R23,R24		
15	1	R25	49.9ohm_open	RES/HDC-0805
16	1	R26	5.76K	RES/HDC-0402
17	1	R27	100 ohm,0402	RES/HDC-0402
18	1	R29	0_ohm	RES/HDC-0201
19	8	R38,R39,R40,R41,R42,R43,	10K	RES/HDC-0805
		R44,R45		
20	1	S1	SW DIP-8	DIP-16
21	1	U1	DS90UR241	48 ld TQFP
22	1	VR1	SVR20K	Surface Mount 4mm Square
23	2	X2,X1	TP_0402	TP/0402

Rx SERDES De-serializer Board:

The USB connector J2 provides the interface connection for LVDS signals to the serializer board.

The SERDES de-serializer board is powered externally from the J4 (VDD) and J5 (VSS) connectors shown below. For the de-serializer to be operational, the Power Down (RPWDNB) and Receiver Enable (REN) switches on S1 and S2 must be set HIGH. Rising or falling edge reference clock is also selected by S1: HIGH (rising) or LOW (falling).

The 50 pin IDC Connector J3 provides access to the 24 bit LVCMOS and clock outputs.

National Semiconductor Corporation

Date: 5/8/2008 Page 13 of 36

Configuration Settings for the De-serializer Board

S1, S2: De-serializer Input Features Selection

Reference	Description	Input = L	Input = H	S1
RPWDNB	PoWerDowN Bar	Power Down (Disabled)	Normal Operational (Default)	H S1 L
PTOSEL	Progressive Turn On SELect	Enabled (Default)	Disabled	RPWDNB PTOSEL CRESRVD
RESRVD	RESeRVeD	Don't care	Don't care	2. C 25.
Reference	Description	Input = L	Input = H	S2
RRFB	Latch input data on Rising or Falling edge of TCLK	Falling Edge (Default)	Rising Edge	H •••••
REN	Receiver Output Data ENabled	Disabled	Enabled (Default)	S2
BISTEN	BIST ENable Note: MUST set DS90UR241 ALL DIN[23:0] inputs Low or floating. Use in combination with BISTM pin.	Normal Operating Mode, BIST Disabled (Default)	BIST Mode Enabled	RRFB REN BISTEN BISTA RAOFF SLEW
BISTM	BIST Mode Don't care if BISTEN=L. BISTEN MUST be High (enabled) for this pin to be functional.	Per Channel pass/fail; RxOUT[23:0] =H: pass; RxOUT[23:0] =H: fail	RxOUT[7:0]: binary error counting mode (up to 255 errors); RxOUT[23:8]: normal operation	
RAOFF	RAndomizer OFF	Randomizer ON. (Default) Note: DS90 <u>UR</u> 241 RAOFF MUST also be set Low.	Randomizer OFF. Note: DS90 <u>UR</u> 241 RAOFF MUST also be set High.	
SLEW	SLEW rate control for ROUT[23:0] and RCLK	(Default)	~2X slew rate, ~2X drive strength	

National Semiconductor Corporation

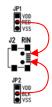
Date: 5/8/2008 Page 14 of 36

Output Monitor Pins for the De-serializer Board

JP3: Output Lock Monitor

Reference	Description	Output = L	Output = H	JP3
LOCK	Receiver PLL LOCK	Unlocked	PLL LOCKED	
	Note:		(LED2 will	
	DO NOT PUT A SHORTING		illuminate)	
	JUMPER IN JP3.	LOCK VSS	LOCK	LOCK VSS
		■● JP3	■● JP3	■● JP3
		=	-	=
		LED2	LED2	LED2

JP4: PASS Monitor


Reference	Description	Output = L	Output = H	JP4
PASS	Receiver BIST monitor	FAIL	PASS	
	PASS flag		(LED1 will	
	Note:		illuminate)	
	DO NOT PUT A SHORTING	PASS	PASS	PASS
	JUMPER IN JP1.		P.A.	
		JP4 ■●	JP4 💻●	JP4 ■●
		LED1	LEDT 📥	LED1

National Semiconductor Corporation

Date: 5/8/2008 Page 15 of 36 JP1, JP2: USB Cable Assembly wire red and black

Reference	Description	VDD	VSS	OPEN
JP1	Red wire in USB cable thru	Red wire tied	Red wire	Red wire
	JP1 connector.	to VDD	tied to VSS	floating
	Jumper red wire to VSS recommended.	JP1	(Default) JP1	(not recommended)
	CAUTION: Jumper settings should be set the same on the DS90UR124 board or a short can occur.	VDD RED VSS	VDD RED VSS	VDD RED VSS
JP2	Black wire in USB cable	Black wire	Black wire	Black wire
	thru JP2 connector.	tied to VDD	tied to VSS	floating
	Jumper black wire to VSS		(Default)	(not recommended)
	recommended.	JP2	JP2	JP2
	CAUTION: Jumper settings should be set the same on the DS90UR124 board or a short can occur.	VDD BLK VSS	VDD BLK VSS	■ VDD ● BLK • VSS

JP1 and JP2 connections on connector J2

De-serializer LVDS Pinout and LVCMOS by IDC Connector

The following two tables illustrate how the LVDS inputs are mapped to the mini USB connector J2 and the Rx outputs are mapped to the IDC connector J3. Note – labels are also printed on the demo boards for both the LVDS inputs and TTL outputs.

LVDS INPUT			
J2 pin no.	name		
1	RED		
2	RIN+		
3	RIN-		
4	NC		
5	BLK		

LVCMOS OUTPUT		
J3 pin no.	name	
1	ROUT0	
3	ROUT1	
5 7	ROUT2	
7	ROUT3	
9	ROUT4	
11	ROUT5	
13	ROUT6	
15	ROUT7	
17	ROUT8	
19	ROUT9	
21	ROUT10	
23	ROUT11	
25	RCLK	
27	ROUT12	
29	ROUT13	
31	ROUT14	
33	ROUT15	
35	ROUT16	
37	ROUT17	
39	ROUT18	
41	ROUT19	
43	ROUT20	
45	ROUT21	
47	ROUT22	
49	ROUT23	
all even pins	gnd	

BOM (Bill of Materials) De-serializer PCB:

DS90UR124 Rx USB Demo Board - Board Stackup Revised: Thursday, September 14, 2006

DS90UR124 Rx USB Demo Board Revision: 1 Bill Of Materials September 14,2006 18:28:58

Item	Qty	Reference	Part	PCB Footprint
1 2	2 27	C2,C1 C3,C7,C8,C9,C10,C11,C12, C13,C14,C15,C16,C17,C18,	0.1uF open0402	CAP/HDC-0402 CAP/HDC-0402
		C19,C20,C21,C22,C23,C24, C25,C26,C27,C28,C29,C30, C31,C42		
3	1	C4	2.2uF	3528-21_EIA
4	1	C5	22uF	CAP/N
5	1	C6	0.1uF	CAP/HDC-1206
6	8	C32,C33,C34,C41,C47,C50, C53,C54	22uF	CAP/EIA-B 3528-21
7	8	C35,C38,C40,C43,C46,C48, C52,C55	0.1uF	CAP/HDC-0603
8	8	C36,C37,C39,C44,C45,C49, C51,C56	0.01uF	CAP/HDC-0603
9	2	JP2,JP1	3-Pin Header	Header/3P
10	2	JP4,JP3	2-Pin Header_open	Header/2P
11	1	J1	mini USB 5pin_open	mini_USB_surface_mount
12	1	J2	mini USB 5pin	mini_USB_surface_mount
13	1	J3	IDC2X25_Unshrouded	IDC-50
14	2	J4,J5	BANANA	CON/BANANA-S
15	1	LED1	0402_orange_LED	0402
16	1	LED2	0603_green_LED	0603 (Super Thin)
17	1	R1	100 ohm,0402	RES/HDC-0402
18	9	R2,R3,R4,R34,R35,R36,R37, R38,R39	10K	RES/HDC-0805
19	1	S1	SW DIP-3	DIP-6
20	1	S2	SW DIP-6	DIP-12
21	1	U1	DS90UR124	64 pin TQFP

National Semiconductor Corporation

Date: 5/8/2008 Page 18 of 36

Typical Connection and Test Equipment

The following is a list of typical test equipment that may be used to generate signals for the TX inputs:

- 1) Digital Video Source for generation of specific display timing such as Digital Video Processor or Graphics Controller with digital RGB (LVCMOS) output.
- 2) Astro Systems VG-835 This video generator may be used for video signal sources for 6-bit Digital TTL/RGB.
- 3) Any other signal / video generator that generates the correct input levels as specified in the datasheet.
- 4) Optional Logic Analyzer or Oscilloscope

The following is a list of typically test equipment that may be used to monitor the output signals from the RX:

- 1) LCD Display Panel which supports digital RGB (LVCMOS) inputs.
- 2) National Semiconductor DS90UR241 Serializer (Tx)
- 3) Optional Logic Analyzer or Oscilloscope
- 4) Any SCOPE with a bandwidth of at least 43 MHz for TTL and/or 2 GHz for looking at the differential signal.

LVDS signals may be easily measured with high impedance / high bandwidth differential probes such as the TEK P6330 differential probes.

National Semiconductor Corporation

Date: 5/8/2008 Page 19 of 36 The picture below shows a typical test set up using a Graphics Controller and LCD Panel.

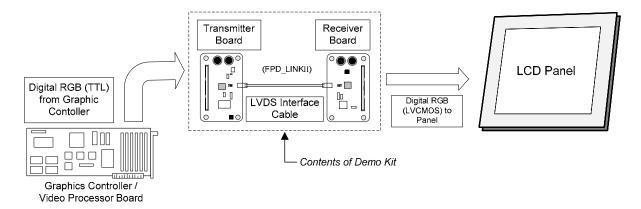


Figure 2. Typical SERDES Setup of LCD Panel Application

The picture below shows a typical test set up using a generator and scope.

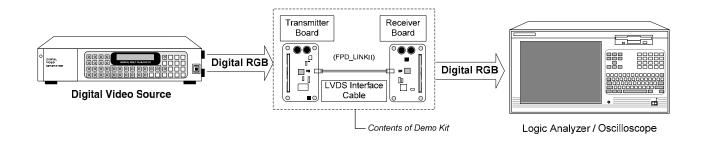


Figure 3. Typical SERDES Test Setup for Evaluation

National Semiconductor Corporation

Date: 5/8/2008 Page 20 of 36

Troubleshooting

If the demo boards are not performing properly, use the following as a guide for quick solutions to potential problems. If the problem persists, please contact the local Sales Representative for assistance.

QUICK CHECKS:

- 1. Check that Power and Ground are connected to both Tx AND Rx boards.
- 2. Check the supply voltage (typical 3.3V) and also current draw with both Tx and Rx boards. The Serializer board should draw about 55-65mA with clock and all data bits switching at 43MHz, (R_{PRE}=9KΩ). The De-serializer board should draw about 75-85mA with clock and all data bits switching at 43MHz, (minimum ROUT loading).
- 3. Verify input clock and input data signals meet requirements for VILmin, VILmax, VIHmin, VIHmax, tset, thold), also verify that data is strobed on the selected rising/falling (RFB pin) edge of the clock.
- 4. Check that the Jumpers and Switches are set correctly.
- 5. Check that the cable is properly connected.

TROUBLESHOOTING CHART

Problem	Solution
There is only the output clock. There is no output data.	Make sure the data is applied to the correct input pin.
	Make sure data is valid at the input.
No output data and clock.	Make sure Power is on. Input data and clock are active and connected correctly.
	Make sure that the cable is secured to both demo boards.
Power, ground, input data and	Check the Power Down pins of both Serializer and De-serializer boards to make sure that the devices
input clock are connected correctly, but no outputs.	are enabled (/PD=Vcc) for operation. Also check DEN on the Serializer board and REN on the Deserializer board is set HIGH.
The devices are pulling more than 1A of current.	Check for shorts in the cables connecting the TX and RX boards.
After powering up the demo boards, the power supply reads less than 3V when it is set to 3.3V.	Use a larger power supply that will provide enough current for the demo boards, a 500mA minimum power supply is recommended.

National Semiconductor Corporation

Date: 5/8/2008 Page 21 of 36

Note: Please note that the following references are supplied only as a courtesy to our valued customers. It is not intended to be an endorsement of any particular equipment or hardware supplier.

Connector References

Hirose Electric Europe B.V. Beech Avenue 46 1119 PV Schiphol-Rijk The Netherlands

Phone: +31 20 655 7467, Fax: +31 20 655 7469

www.HiroseEurope.com

Cable References

Nissei Electric Co., LTD 1509 Okubo-Cho, Hamamatsu-City Shizuoka-Pref, 432-8006 Japan

Phone: +81 53 485 4114, Fax: +81 53 485 6908

www.nissei-el.co.jp

Cable Recommendations

- For optimal performance, we recommend Shielded Twisted Pair (STP) 100Ω differential impedance cable for high-speed data applications.

Equipment References

Astro Systems 425 S. Victory Blvd. Suite A Burbank, CA 91502

Phone: (818) 848-7722, Fax: (818) 848-7799

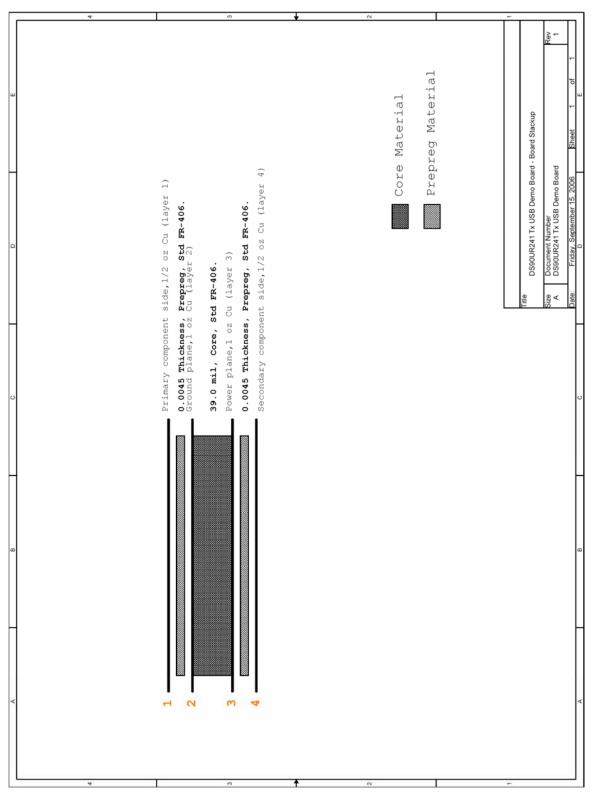
www.astro-systems.com

Digital Video Pattern Generator – Astro Systems VG-835 (or equivalent):

Extra Component References

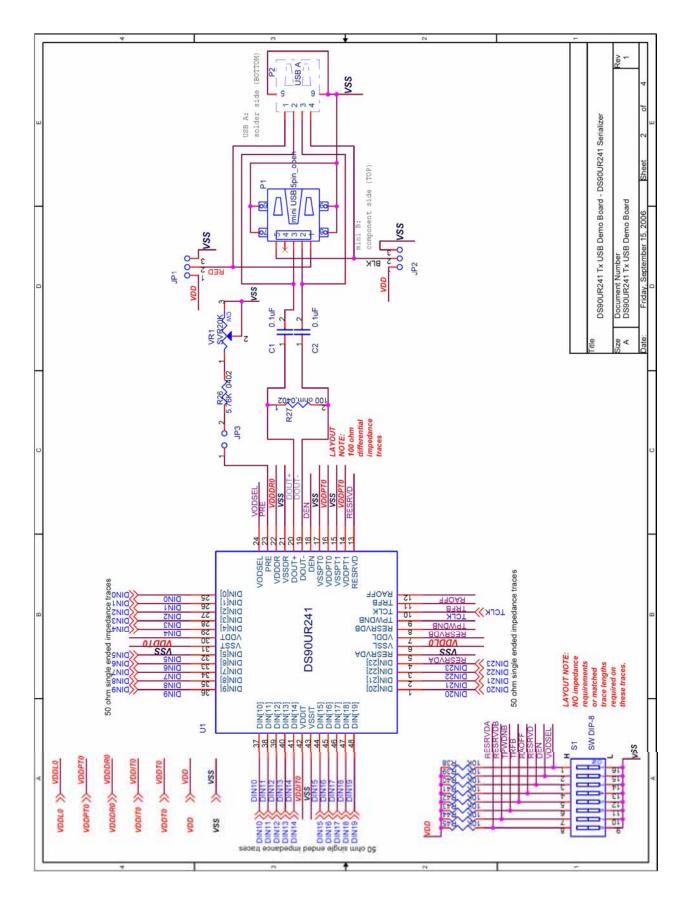
TDK Corporation of America 1740 Technology Drive, Suite 510 San Jose, CA 95110

Phone: (408) 437-9585, Fax: (408) 437-9591

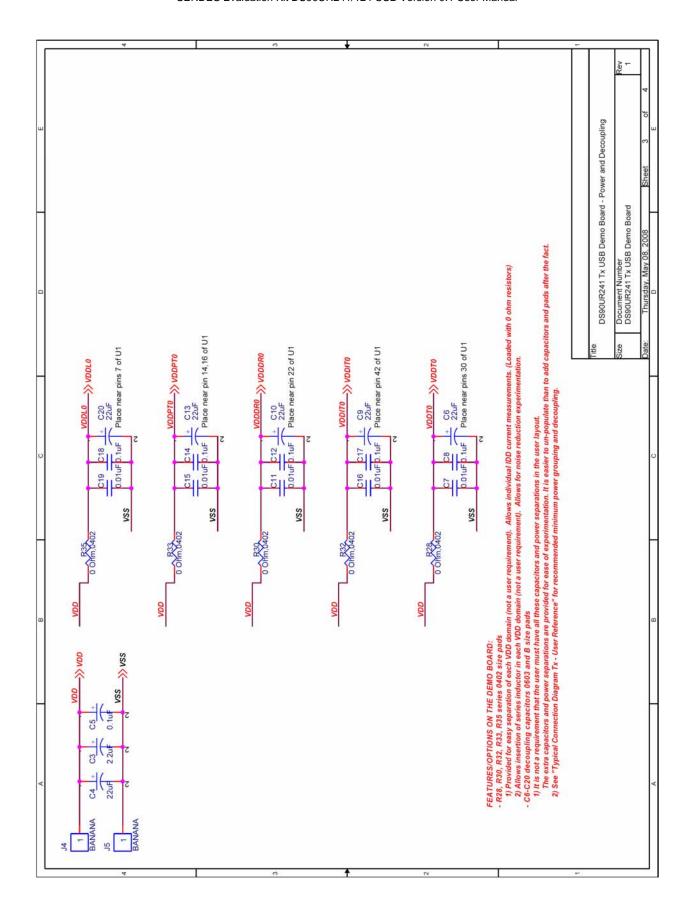

www.component.tdk.com

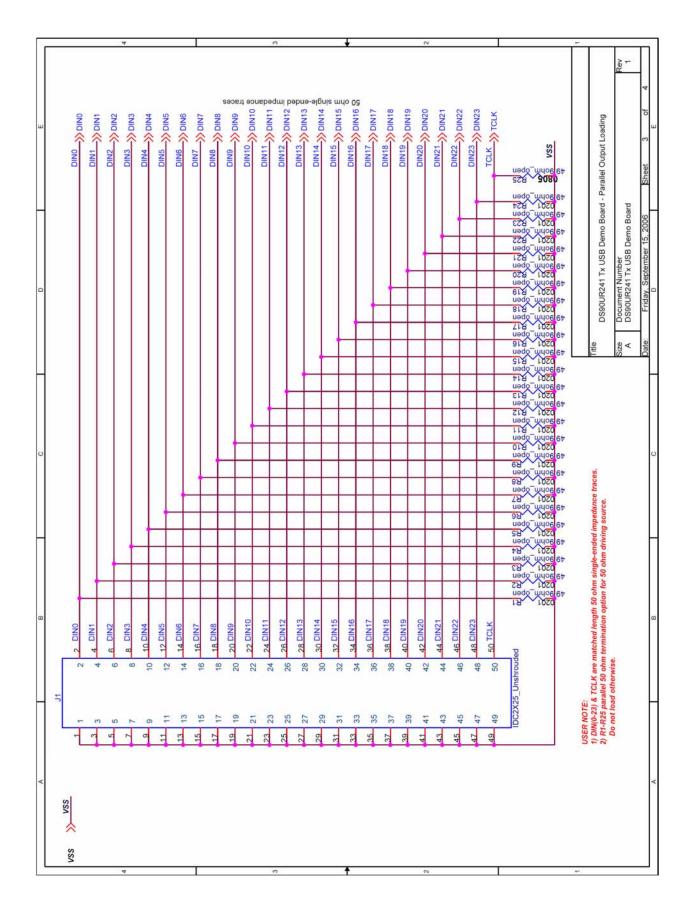
Optional EMI Filters – TDK Chip Beads (or equivalent)

National Semiconductor Corporation


Date: 5/8/2008 Page 22 of 36

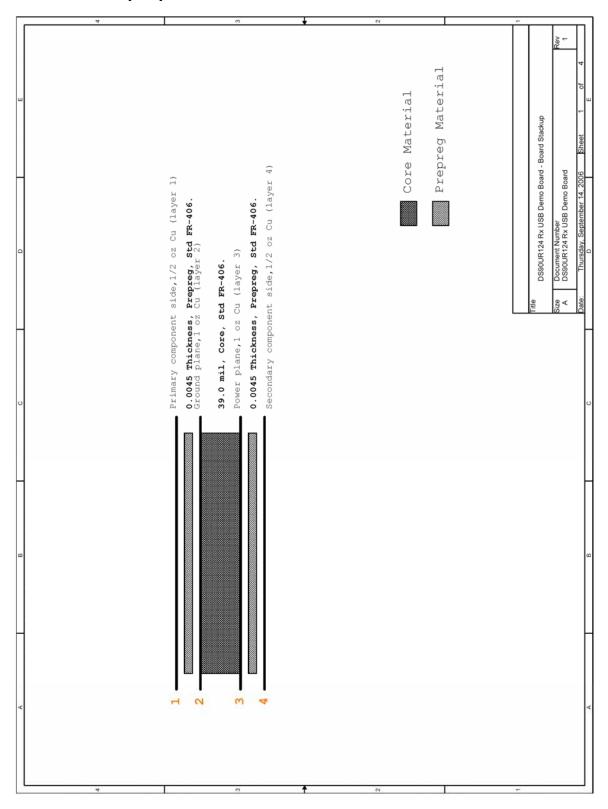
Appendix Serializer (Tx) PCB Schematic:


National Semiconductor Corporation

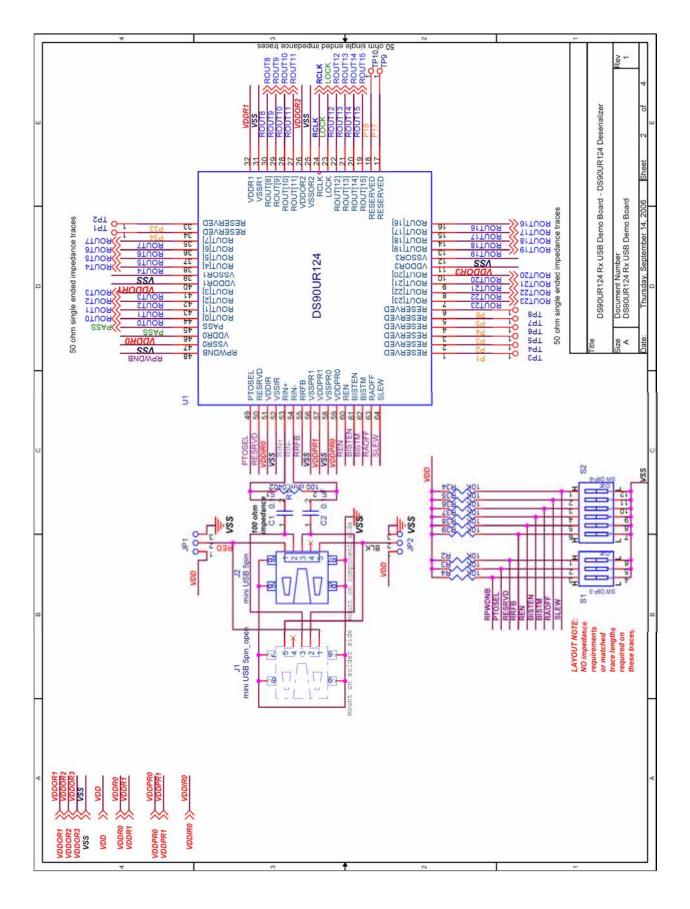

Date: 5/8/2008 Page 23 of 36

National Semiconductor Corporation

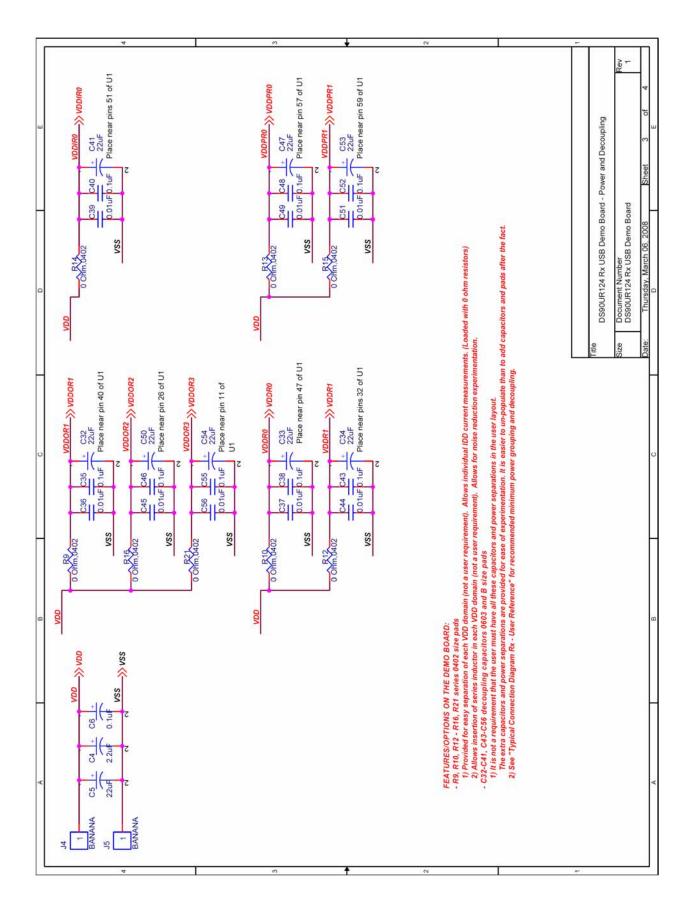
Date: 5/8/2008 Page 24 of 36

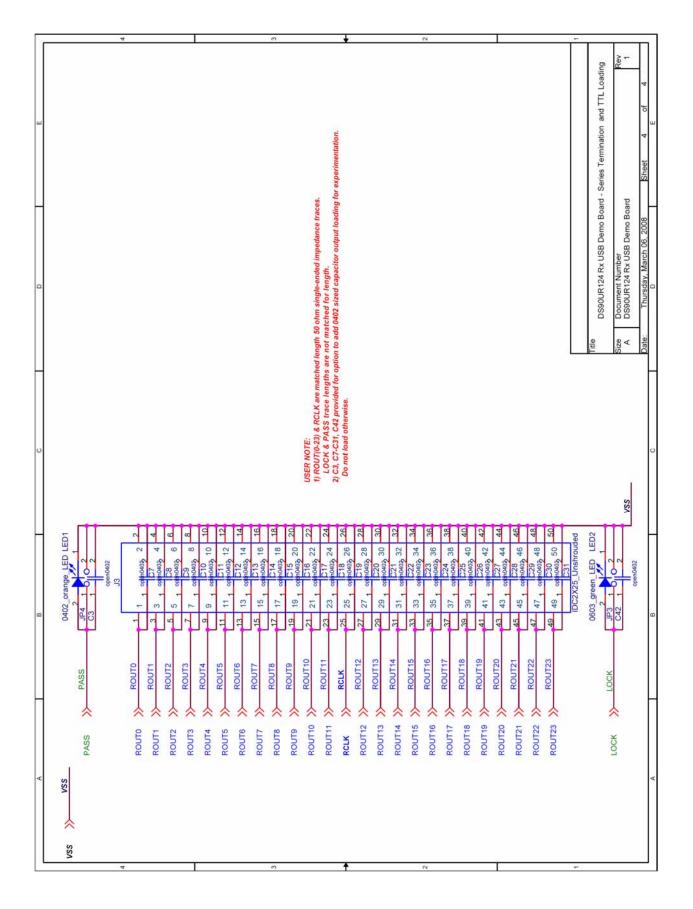


National Semiconductor Corporation


Date: 5/8/2008 Page 26 of 36

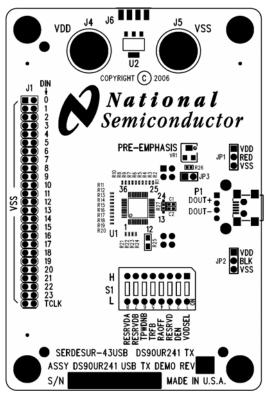
De-serializer (Rx) PCB Schematic:

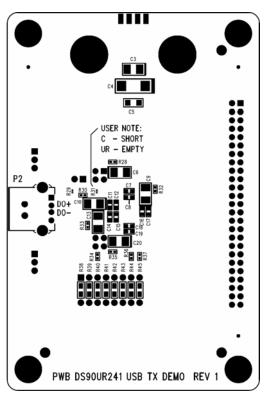

National Semiconductor Corporation


Date: 5/8/2008 Page 27 of 36

National Semiconductor Corporation

Date: 5/8/2008 Page 28 of 36

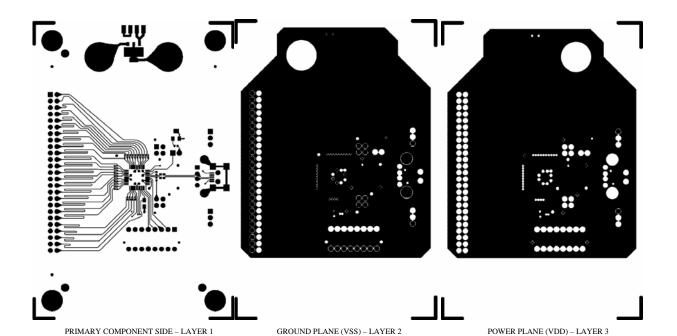


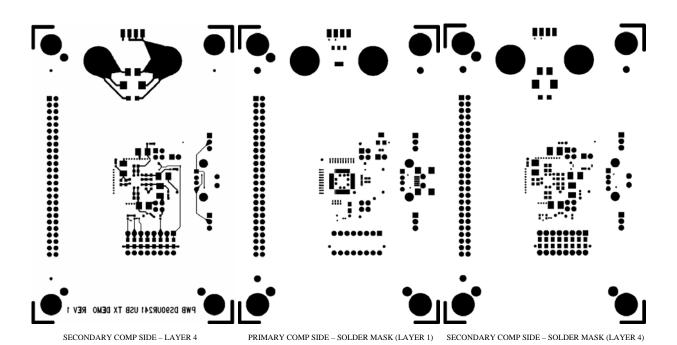


National Semiconductor Corporation

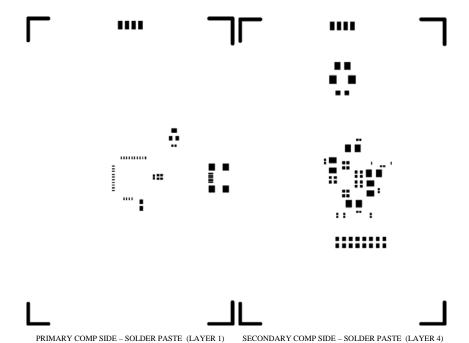
Date: 5/8/2008 Page 30 of 36

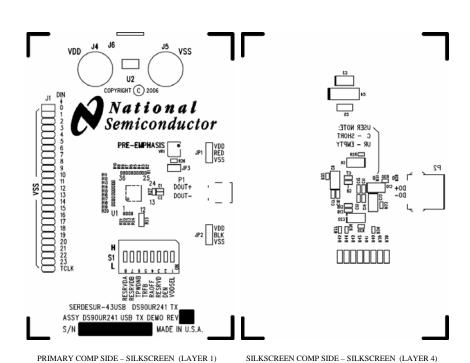
Serializer (Tx) PCB Layout:



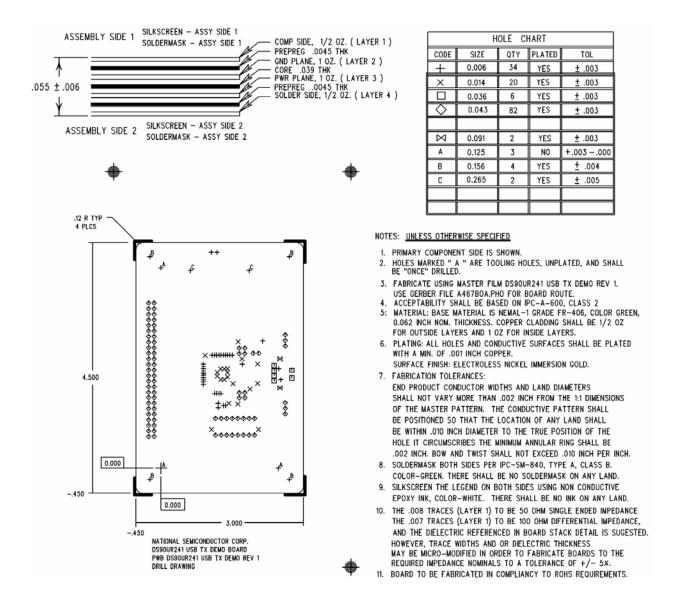


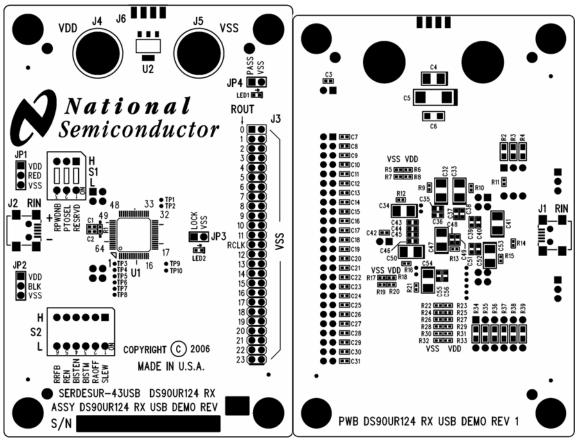
TOP VIEW BOTTOMSIDE VIEW


National Semiconductor Corporation

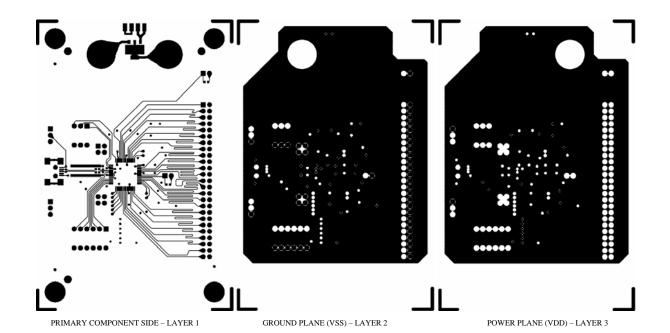

Date: 5/8/2008 Page 31 of 36

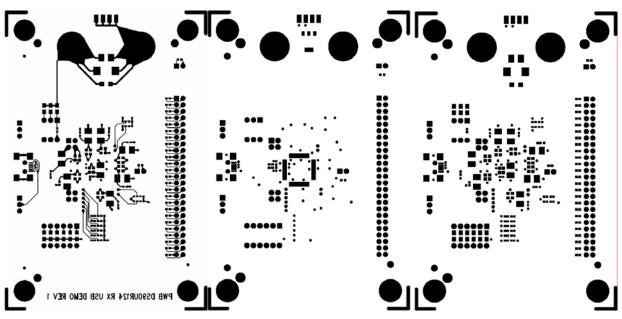
National Semiconductor Corporation



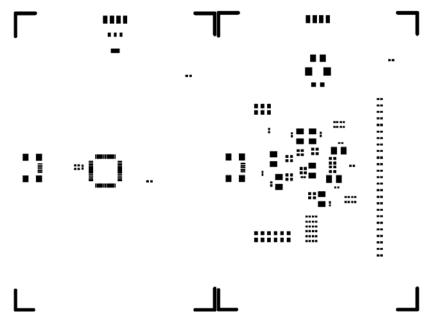

National Semiconductor Corporation

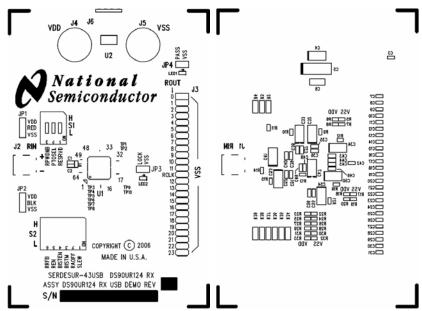
Date: 5/8/2008 Page 33 of 36


Serializer (Tx) PCB Stackup:



Deserializer (Rx) PCB Layout:

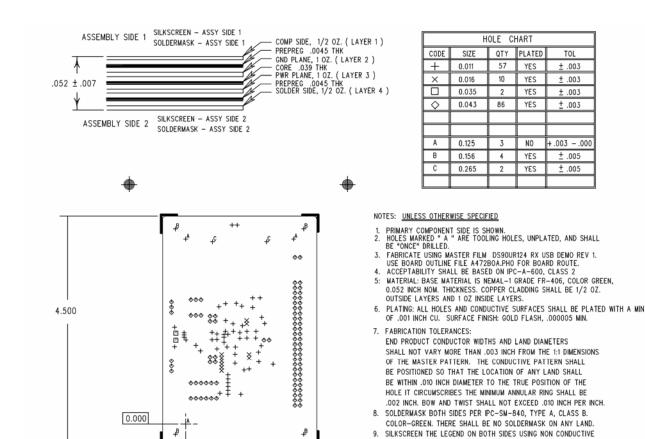

TOP VIEW BOTTOMSIDE VIEW



SECONDARY COMP SIDE – LAYER 4

 $PRIMARY\ COMP\ SIDE-SOLDER\ MASK\ (LAYER\ 1) \qquad SECONDARY\ COMP\ SIDE-SOLDER\ MASK\ (LAYER\ 4)$

PRIMARY COMP SIDE – SOLDER PASTE (LAYER 1) SECONDARY COMP SIDE – SOLDER PASTE (LAYER 4)


PRIMARY COMP SIDE – SILKSCREEN (LAYER 1)

SILKSCREEN COMP SIDE - SILKSCREEN (LAYER 4)

National Semiconductor Corporation

Date: 5/8/2008 Page 37 of 36

Deserializer (Rx) PCB Stackup:

EPOXY INK, COLOR-WHITE. THERE SHALL BE NO INK ON ANY LAND.

DIELECTRIC REFERENCED IN BOARD STACK DETAIL IS SUGGESTED.

REQUIRED IMPEDANCE NOMINALS TO A TOLERANCE OF $\pm/-5\%$.

11. BOARD TO BE FABRICATED IN COMPLIANCY TO ROHS REQUIREMENTS.

HOWEVER, TRACE WIDTHS AND OR DIELECTRIC THICKNESS MAY BE MICRO-MODIFIED IN ORDER TO FABRICATE BOARDS TO THE

10. THE .008 (LAYER 1) TRACES TO BE 50 OHM SINGLE ENDED IMPEDANCE AND THE .007 TRACES (LAYER 1) TO BE 100 OHM DIFFERENTIAL IMPEDANCE AND THE

- 450

.06 R TYP

4 PLCS

0.000

-0.450

3.000

NATIONAL SEMICONDUCTOR CORP. SERDESUR-43USB DS90UR124 RX USB DEMO BOARD PWB DS90UR124 RX USB DEMO REV 1