The Sight & Sound of Information # LMX2531LQ1146E Evaluation Board Operating Instructions National Semiconductor Corporation Timing Devices Business Group > 10333 North Meridian Suite 400 Indianapolis, IN 46290 LMX2531LQ1146EFPEB Rev 3.31.2008 # **Table of Contents** | Table of Contents | | |--|----| | LOOP FILTER | 3 | | QUICK SETUP | | | Troubleshooting | | | Phase Noise | | | FREE-RUNNING VCO PHASE NOISE (INTERNAL DIVIDE BY 2 DISABLED) | 6 | | FREE-RUNNING VCO PHASE NOISE (INTERNAL DIVIDE BY 2 ENABLED) | 7 | | FRACTIONAL SPURS (INTERNAL DIVIDE BY 2 DISABLED) | 8 | | FRACTIONAL SPURS (INTERNAL DIVIDE BY 2 ENABLED) | 9 | | INTEGER SPURS (INTERNAL DIVIDE BY 2 DISABLED) | 10 | | INTEGER SPURS (INTERNAL DIVIDE BY 2 ENABLED) | 11 | | CODELOADER SETTINGS | | | SCHEMATIC | 17 | | BILL OF MATERIALS | 18 | | Top Layer | 19 | | MID LAYER 1 "GROUND PLANE" | 20 | | Mid Layer 2 "Power" | 21 | | BOTTOM LAYER "SIGNAL" | 22 | | TOP BUILD DIAGRAM | 23 | #### **Loop Filter** | Loop Bandwidth | 7.9 | Кф | 1440 uA (16X) | | | |-------------------|-------------|------------------|--|--|--| | Phase Margin | 61.4 | Fcomp | 10 MHz | | | | Crystal Frequency | 10 MHz | Output Frequency | 1106 - 1184 MHz (DIV2=0)
553 - 592 MHz (DIV2=1) | | | | Supply Voltage | 3.0 Volts | VCO Gain | 2.5-5.5 MHz/Volt | | | | T odo | Chont Chont | 20 KΩ 20 KΩ | VCO
T 100 pF | | | #### **Quick Setup** - Install the CodeLoader software which is available at www.national.com/timing. - Attach the parallel, or USB to parallel, port cable to the computer and the evaluation board. - Connect 3.0 volts to the Vcc connector - Connect the Fout connector to a spectrum analyzer or phase noise analyzer - Connect a clean 10 MHz source to the *OSCin* pin. Typically, the 10 MHz output from the back of the RF test equipment is a good source. Signal generators tend to be very noisy and should be used with caution. If a signal generator is used, the signal generator phase noise contribution can be reduced by setting the signal to 80 MHz and dividing this down to a phase detector frequency of 10 MHz. - Set up the CodeLoader software - Select the proper part from the menu as Select Part->PLL+VCO->LMX2531LQ1146E - Select the proper mode from the Mode menu - Load the part by pressing Ctrl+L or selecting Keyboard Controls->Load Device from the menu - It is recommended to ensure proper communication with the device - Click the REG_RST bit on the bits/pins page and observe the current go to 0 mA - Unclick the REG_RST bit AND press Ctrl+L. The current should be approximately 35 mA - o If device does not respond to this, consult the troubleshooting section - When using the lower frequency band with divide by 2 enabled (DIV2=1), be aware that the frequency programmed to the VCO is actually twice the output frequency of the device because the VCO frequency is being divided by 2. # **Troubleshooting** | Problem | Corrective Actions | | | | | | | |--|---|--|--|--|--|--|--| | S | All Modes | | | | | | | | Ď | • Ensure a valid signal is presented to the OSCin connector. If a signal generator | | | | | | | | 00 | is used, ensure the RF is ON. | | | | | | | | n b | Consult the CodeLoader instructions for more detailed information on | | | | | | | | ţi | communication issues | | | | | | | | Га | <u>LPT Mode (Uses Parallel Port Cable)</u> | | | | | | | | val | Ensure that CodeLoader is selected to LPT mode on the Port Setup tab | | | | | | | | Ó | Ensure the proper port number is selected (LPT1, LPT2, LPT3). CodeLoader | | | | | | | | ţ. | does NOT automatically detect this. | | | | | | | | £ | Ensure the LPT cable is securely connected to the computer and board. | | | | | | | | <u>></u> | Exit and Restart CodeLoader | | | | | | | | ate | Ensure the parallel port is in the correct mode | | | | | | | | ي | Windows often requires Administrative access to write to the parallel | | | | | | | | <u>ה</u> | port | | | | | | | | ли | Ensure that the parallel port is set to "Enabled" in windows device | | | | | | | | Ō | manager | | | | | | | | ot | A reboot upon installation of CodeLoader is sometimes necessary to get | | | | | | | | n s | the parallel port to work. | | | | | | | | Ö | Standard mode is the most reliable. This can be set in the BIOS mode | | | | | | | | Software does not communicate with the evaluation boards | of the computer as "Normal", "Output Only", or "AT" | | | | | | | | are | USB Mode (Uses USB to Parallel Port Converter) | | | | | | | | ft | On the menu, select USB->Version to verify communication with the board Fraum the Cream LEDs and life on the LICB beauty | | | | | | | | Sol | Ensure the Green LEDs are lit on the USB board From the green are an elicited with at the USB devices and rejected the heard. The content of the green are an elicited with at the content of the green are an elicited with a three little and the green are an elicited with a three little and the green are an elicited with a three little and the green are also and the green are also and the green are also are little little and the green are also are little and the green are little and the green are little are little and the green are little are little and the g | | | | | | | | | Ensure there are no conflicts with other USB devices and reinstall the board France that there is a realist size of the | | | | | | | | to
but
the | Ensure that there is a valid signal presented to the OSCin connector. If a signal
generator is used, ensure that the RF is set to ON. | | | | | | | | φ οδ | · | | | | | | | | If using the lower frequency band (DIV2=1), the VCO frequency in 0 should be twice the frequency at the Fout pin. Ensure that the VCO FREQUENCY CAL bits on the Bits/Pins tab are Ensure that the loop filter is optimized if the charge pump current, phase | | | | | | | | | pol
jing
loc
qu | Ensure that the VCO FREQUENCY CAL bits on the Bits/Pins tab are correct | | | | | | | | should be twice the frequency at the Fout pin. Ensure that the VCO FREQUENCY CAL bits on the Bits/Pins tab are Ensure that the loop filter is optimized if the charge pump current, pha frequency, or loop filter values have been changed from their origin Ensure that the integrated loop filter components on CodeLoader are proper settings | | | | | | | | | rar
n
oct | If using the lower frequency band (DIV2=1), the VCO frequency in CodeLoader should be twice the frequency at the Fout pin. Ensure that the VCO FREQUENCY CAL bits on the Bits/Pins tab are correct Ensure that the loop filter is optimized if the charge pump current, phase detector frequency, or loop filter values have been changed from their original settings Ensure that the integrated loop filter components on CodeLoader are set to their | | | | | | | | Part
progi
does
corre | | | | | | | | | Pa
do
co | proper settings | | | | | | | | | Ensure the signal presented to OSCin connector is clean. Try another source, | | | | | | | | Close-in phase noise is worse than evaluation board instructions show | or if it is a signal generator, try using a higher frequency and dividing it down to | | | | | | | | phi
wo
uat
sh | the phase detector frequency. | | | | | | | | all /all | Ensure the OSCin signal and cable provide sufficient power level. | | | | | | | | n
is
e
etio | If the phase detector frequency or charge pump current are lowered from their | | | | | | | | rd
rd
rdc | original settings, the in-band phase noise can be degraded, even if the loop filter | | | | | | | | Close-in
noise
than
board
instructi | is re-designed for the same loop bandwidth. If the loop bandwidth is decreased, | | | | | | | | O € ≠ ₫ E | in-band phase noise can be degraded | | | | | | | | 9 9 E > | Ensure the measurement equipment noise floor is not limiting the measurement. | | | | | | | | Phase
worse
uation
show | For spectrum analyzers, the noise floor at a particular setting can be measured | | | | | | | | PP w
w
lua | by removing the RF input signal | | | | | | | | Phase is worse evaluation ions show | If the settings are changed from what the board was designed for, ensure the | | | | | | | | = ' 등 | delta-sigma modulator is not increasing the far-out noise. To know this, tune to | | | | | | | | Far-out Phase noise is worse than evaluation board instructions show | an integer channel and set the ORDER bit to "Reset Modulator". The far out | | | | | | | | Far-ou
noise
than
board
instru | phase noise should not decrease. If it does, try a loop filter with more | | | | | | | | T C # D := | attenuation or select a lower order delta-sigma modulator. | | | | | | | Fout = 1106 MHz Fout = 1146 MHz Fout = 1184 MHz The plots to the left show the true phase noise capability of the VCO. In order to take these plots, the E5052 phase nose analyzer was used. The method was to lock the PLL to the proper frequency, then disable the EN_PLL, EN_PLLLDO1, and EN_PLLLDO2 bits. The equipment needs to be able to track the VCO phase noise to measure in this way, and one can not let the VCO drift too far off in frequency. If this kind of equipment is not available, the VCO phase noise can also be measured by making a very narrow loop bandwidth filter. Fout = 553 MHz (1106 MHz/2) Fout = 573 MHz (1146 MHz/2) Fout = 592 MHz (1184 Mhz/2) The plots to the left show the true phase noise capability of the VCO. In order to take these plots, the E5052 phase nose analyzer was used. The method was to lock the PLL to the proper frequency, then disable the EN_PLL, EN_PLLLDO1, and EN_PLLLDO2 bits. The equipment needs to be able to track the VCO phase noise to measure in this way, and one can not let the VCO drift too far off in frequency. If this kind of equipment is not available, the VCO phase noise can also be measured by making a very narrow loop bandwidth filter. When divide by 2 is enabled, the phase noise at lower offsets is about 6 dB better; but at high offsets, the phase noise improvement may be less because the divider is noise floor is adding to the phase noise. Fractional Spur at 250 kHz offset at a worst case frequency of 1110.25 MHz is –78.6 dBc. Worst case channels occur at exactly one channel spacing above or below a multiple of the crystal frequency. Fractional Spur at 250 kHz offset at a worst case frequency of 1150.25 MHz is –73.3 dBc. The sub-fractional spur at 125 kHz offset of -81.3 dBc is also visible Fractional Spur at 250 kHz offset at a worst case frequency of 1180.25 MHz is – 76.4 dBc. #### Fractional Spurs (Internal Divide by 2 Enabled) Spur at 250 kHz offset at a frequency of 555.125 MHz is –92.5 dBc. Since this mode uses the divide by 2 mode, the channel spacing here is actually 125 kHz. The spur at 125 kHz could be completely eliminated changing the fractional denominator. Spur at 250 kHz offset for a frequency of 575.125 MHz is -83.4 dBc. Spur at 250 kHz offset for a frequency of 590.125 MHz is –83.6 dBc. Spur at 10 MHz offset for a frequency of 1106 MHz is -94.7 dBc. Spur at 10 MHz offset for a frequency of 1146 MHz is -93.2 dBc.. Spur at 10 MHz offset for a frequency of 1184 MHz is below the spectrum analyzer noise floor. Spur at 10 MHz offset for a frequency of 553 MHz is below the spectrum analyzer noise floor. Spur at 10 MHz offset for a frequency of 573 MHz is below the spectrum analyzer noise floor. Spur at 10 MHz offset for a frequency of 592 MHz is below the spectrum analyzer noise floor. # **CodeLoader Settings** CodeLoader runs many devices. When CodeLoader is first started, it is necessary to select the correct device. There can be different modes defined for a particular part. A mode can be recalled easily from the menu. This restores bit settings and frequencies, but not the Port Setup information. For the CodeLoader program, the default reference oscillator used for these instructions was 10 MHz, but there is a mode for a 61.44 MHz oscillator as well. If the bits become scrambled, their original state may be recalled by choosing the appropriate mode. If the internal divide by 2 (DIV2) is enabled, the VCO frequency still reflects the VCO frequency before the divide by 2. The Bits/Pins tab displays many of the bits used to program the part. Right mouse click any bit to view more information about what this does. When the DIV2 bit is enabled, the frequency from the part will be half of that shown on the PLL/VCO tab. The frequency on the PLL/VCO tab does not reflect this because the divide by 2 is actually after the VCO. Also be sure to load the device (Ctrl+L) after changing this bit to allow the VCO to calibrate for optimal phase noise performance. The Registers tab shows the literal bits that are being sent to the part. These are the registers every time the PLL is loaded by using the menu command or Ctrl+L. R5 (INIT1) and R5 (INIT 2) are just the R5 register being used to properly initialize the part. So a single CNT+L will load the part. The port setup tells CodeLoader what information goes where. If this is wrong, the part will not program. Although LPT1 is usually correct, CodeLoader does NOT automatically detect the correct port. On some laptops, it may be LPT3. #### **Bill of Materials** | Bill of Materials | | | | | | | | | | |-------------------|-----|---------------------------|------------------|--------|-----|---------|---------------------|--------------------------------|---| | Bill of Materials | | | LMX2531_LF | | | | Revision 3.28.2008 | | | | Item | QTY | Manufacturer | Part # | Size | Tol | Voltage | Material | Value | Designators | | 0 | 20 | | n/a | | | | | Open Capacitors | C1_LF, C2pLF, C2, C3, C4, C5, C9, C11, C14, C17, C18, C19, C21, C24, C100, C101, C102, C103, C104, C105 | | | 7 | | | | | | | Open Resistors | R2pLF,R7, R8, R17, R19, R21, R24 | | | 1 | | | | | | | Open Miscellaneous | Ftest/LD | | 1 | 1 | Kemet | C0603C101J5GAC | 603 | 5% | 50V | C0G | 100pF | C16 | | 2 | 2 | Kemet | C0603C103J5RAC | 603 | 5% | 50V | X7R | 10nF | C10, C23 | | 3 | 1 | Kemet | C0805C104K5RACTU | 805 | 5% | 25V | COG | 100nF | C2_LF | | 4 | 6 | Kemet | C0603C104J3RAC | 603 | 5% | 25V | X7R | 100nF | C6, C7, C12, C15, C22, C20 | | 5 | 1 | Kemet | C0603C105K4RAC | 603 | 10% | 16V | X5R | 1uF | C8 | | 6 | 1 | Kemet | C0603C475K9PAC | 603 | 10% | 6.3V | X5R | 4.7uF | C13 | | 7 | 1 | Kemet | C0805C106K8PAC | 805 | 10% | 10V | X5R | 10uF | C1 | | 8 | 1 | Vishay | CRCW0603000ZRT1 | 603 | 5% | 0.1W | Thick Film | 0Ω | R20 | | 9 | 2 | Panasonic | P.22AHCT-ND | 603 | 10% | 0.1W | Thick Film | 0.22Ω | R22, R23 | | 10 | 2 | Vishay | CRCW06033R3JRT1 | 603 | 5% | 0.1W | Thick Film | 3.3Ω | R1, R18 | | 11 | 4 | Vishay | CRCW0603100JRT1 | 603 | 5% | 0.1W | Thick Film | 10Ω | R2, R3, R4, R5 | | 12 | 1 | Vishay | CRCW0603510JRT1 | 603 | 5% | 0.1W | Thick Film | 51Ω | R6 | | 13 | 1 | Vishay | CRCW0603102JRT1 | 603 | 5% | 0.1W | Thick Film | 1ΚΩ | R2 LF | | 14 | 4 | Vishay | CRCW0603103JRT1 | 603 | 5% | 0.1W | Thick Film | 10ΚΩ | R9, R11, R13, R15 | | 15 | 4 | Vishay | CRCW0603123JRT1 | 603 | 5% | 0.1W | Thick Film | 12ΚΩ | R10, R12, R14, R16 | | 16 | 1 | Comm Con
Connectors | HTSM3203-8G2 | 2X4 | n/a | n/a | Metal/Plastic | Header | POWER | | 17 | 1 | FCI Electronics | 52601-S10-8 | 2X5 | n/a | n/a | Metal/Plastic | Header | uWire | | 18 | 3 | Johnson Components | 142-0701-851 | SMA | n/a | n/a | Metal | SMA | Fout, OSCin, Vcc | | 19 | 1 | National
Semiconductor | LMX2531LQEBPCB | n/a | n/a | n/a | FR4
62 mil Thick | PCB Board
1st Layer 10 mils | n/a | | 20 | 1 | National
Semiconductor | LMX2531 | LLP36 | n/a | 2.7 | Silicon | LMX2531 | U1 | | 21 | 4 | Com Con Connectors | CCIJ255G | 2-Pin | n/a | n/a | Metal/Plastic | Shunt | Place Across:
POWER: 1-2, 3-4, 5-6, 7-8 | | 22 | 4 | SPC Technology | SPCS-8 | 0.156" | n/a | n/a | Nylon | Nylon Standoffs | Place in 4 Holes in Corners of Board | # **Top Layer** #### Mid Layer 1 "Ground Plane" (15 Mils Down FR4) ## Mid Layer 2 "Power" #### **Bottom Layer "Signal"** Note: Total Board Thickness = 61 mils ### **Top Build Diagram**