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Using the MCP1631 Family to Develop Low-Cost

Battery Chargers
INTRODUCTION
As portable rechargable applications continue to grow,
there is an increase in demand for unique or custom
battery charger designs. In addition to the increase in
portable rechargable applications, battery chemistry
continues to improve and with that new charge
methods and profiles are emerging. This all leads to the
increase in demand for new or custom charge profile
designs. In this application note, a mixed signal multi-
chemistry battery charger design technique will be
discussed that can accommodate the changing
portable power management world. 

The reliability and safety concerns with charging batter-
ies can also benefit from programmable mixed signal
designs. Charge rates and constant voltage levels can
be updated in the field with a change in firmware. This
allows the user to adapt to new smart battery packs and
select desired runtime versus cycle life. By charging
the battery to a lower constant voltage, the run time is
shortened but the number of charge cycles will
increase.

Another programmable battery charger feature is its
ability to charge multi-chemistry battery packs. By
detecting the number of cells and cell chemistry, a pro-
grammable charger can adapt to a new battery pack.
This enables customers to choose between portability,
runtime and cost when purchasing a portable system.

COMMON CHARGE PROFILES

NiMH Charge Profile
Figure 1 shows a typical charge profile for NiMH
batteries. The charge cycle begins once a battery is
detected by regulating a small current or conditioning
current into the battery pack. If the cell voltage is above
0.9V per cell, it is safe to charge the pack with a fast
charge or high current (for NiMH or NiCd, this current
can range from 50% to over 100% of the batteries
capacity). When the battery reaches capacity, cell
manufactures recommend a top-off charge to complete
the charge cycle. It is typically not recommended to
trickle charge NiMH batteries, this can lead to
overheating and reduced battery life. Fast charge
termination for NiMH batteries can be tricky. As the
battery reaches capacity, it no longer can accept a
charge. The energy from the charger that was stored in
the battery, now turns into heat causing the battery
temperature to rise. There are two primary methods to
determine when the battery has reached full charge,
one is a sudden increase in temperature, the other
being a subtle drop in battery voltage or -dV/dt. With
NiMH batteries, the -dV/dt can be difficult to detect,
since the change can be very small, especially with
lower charge rate designs. The +dT/dt or temperature
rise is typically easier to detect. For a robust design,
both methods should be used so either can terminate
the fast charge portion of the charge cycle. Once the
fast charge is terminated, a timed top off charge is
recommended, a continuous constant charge is not
recommended for NiMH batteries.
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FIGURE 1: NiMH / NiCd Charge Profile.

Li-Ion Charge Profile
The charge profile for Li-Ion batteries starts with cell
qualification. The cell voltage should be greater than
3.0V per cell before initiating a fast or high current
charge. If the cell voltage is less than 3.0V per cell, a
low value conditioning current is used to start the
charge cycle. Once the cell voltage is above the 3.0V
threshold, a fast charge or high current charge is
initiated (0.5C to 1.0C). As the battery cell voltage
rises, it reaches the maximum voltage value before it
reaches full capacity. As an example, most Li-Ion
batteries constant voltage level is 4.2V, where the
battery charger now transitions into a constant voltage
source (regulating voltage instead of current). The
charge cycle continues as the charge current
decreases while in the constant voltage mode. Once
the charge current decreases to about 7% of the fast
charge value, charge is terminated. Continuing the
charge cycle past this point can damage the battery so
the charge must be terminated. Once terminated a new
charge cycle can be initiated when the battery voltage
decreases to approximately 4.0V.
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FIGURE 2: Li-Ion Charge Profile.

Multi-Chemistry Charger
There are significant differences in the charge profile
between Ni batteries versus Li-Ion batteries. A multi-
chemistry charger must be able to implement the
proper profile and proper termination methods. This
application note will demonstrate a charger that has the
capability to charge single or multiple cells in series.

THE POWER BEHIND CHARGING 
BATTERIES
A battery charger and power supply have a lot in
common, delivering a regulated output from a varying
input. Two solutions are prevalent, linear and switch
mode solutions. The linear solution is commonly used
for low input voltage or low power applications. Its main
drawback is internal power dissipation, calculated by
the following formula:

For example, a +12V input linear charger would
dissipate 18 watts when charging a +3.0V Li-Ion battery
at 2A. Any power dissipation over a few watts is a
challenge to cool. 

Cooling 18 watts of power dissipation is no easy task,
airflow and large heatsinks are required making a linear
solution impractical.

A switching charger solution operating at similar
conditions at 85% efficiency would dissipate
approximately 1.05 Watts, making it much easier to
cool. For high input voltage applications, switching
battery chargers are smaller and more cost effective.
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CHARGER POWER TOPOLOGY
Many switching regulator power topologies exist, buck,
boost, SEPIC and flyback are all used to develop
switching battery chargers (including others for very
high power applications). A SEPIC converter is
commonly used, it has advantages over buck and
boost converters when used in battery charger
applications.

• Capacitive Isolation:
- There is no direct dc path from input to output 

providing isolation, this results in less power 
components and a safer battery charger.

• Primary Inductive Converter:
- The SEPIC converter topology has an induc-

tor at the input, smoothing input current 
reducing necessary filtering and generated 
source noise.

• Single Low Side Switch:
- A single low side switch reduces MOSFET 

drive and current limit protection complexity.
• Buck-Boost Capability:

- For applications where the input voltage can 
be above or below the battery voltage a 
SEPIC can buck or boost the input voltage.

FIGURE 3: SEPIC Topology.

MULTI-CHEMISTRY BATTERY 
CHARGER DESIGN
The development of an intelligent multi-chemistry
battery charger starts with the microcontroller. By
implementing the charge algorithm in code, the charger
can be adapted for multi-chemistry, custom charge
profile and unique applications. For dc-dc converters,
switching at high frequency with high performance gate
drive capability, PWM control and high-speed protec-
tion, specialized analog circuitry is required. A new
high-speed analog PWM, the MCP1631HV was
developed for constant current SEPIC applications
(battery chargers and LED drivers). By implementing
the pulse width modulation, PWM, control using the

MCP1631, the battery charger has the benefits of
analog speed and resolution. By controlling the charge
algorithm using the microcontroller, the battery charger
has the intelligence and flexibility to generate a profile
for all battery types using digital timers and
programmed algorithms.

As complex as this project sounds, it is really quite
simple if the SEPIC converter is thought of as a micro-
controller controlled current source. To increase cur-
rent, the microcontroller simply increases the VREF
input to the MCP1631HV and to decrease current, the
microcontroller decreases the VREF input to the
MCP1631HV. To generate a charge algorithm, the
microcontroller measures the battery voltage using an
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analog to digital converter(A/D), computes the desired
charge current and adjusts the SEPIC controlled
current source up or down.

To develop the charge algorithm for the NiMH battery,
the microcontroller A/D converter is used to measure
the battery pack voltage, when the pack voltage is
within the desired range, the microcontroller sets the
proper current level. To terminate the charge, two A/D
inputs are used, one to sense the decreasing battery
voltage and one to sense the increasing battery pack
temperature. Charge termination will occur, if either
one or both are detected.

To develop the algorithm for charging Li-Ion batteries,
the A/D converter is used to measure pack voltage.
Depending on pack voltage, the microcontroller will set
the appropriate charge current. Once the pack voltage
reaches the constant voltage phase, the A/D converter
senses and regulates the pack voltage by adjusting the
amount of current into the battery. The current contin-
ues to decrease until is reaches about 7% of the fast
charge value. At this point, the microcontroller
terminates the charge.

The MCP1631HV Implementation
The MCP1631HV integrates the necessary blocks to
develop an intelligent, programmable battery charger
or constant current source used for driving high power
LED’s.

INPUT VOLTAGE AND BIAS GENERATION
The MCP1631HV provides a regulated bias voltage for
internal circuitry that is available for biasing the micro-
controller and other components. It is available in two
regulated voltage options, +5.0V and +3.3V and can
handle a maximum output current of 250 mA. The
maximum input voltage range for the regulator is
+16.0V and can withstand transients to +18.0V. For
regulated input voltages or higher input voltage
applications, the MCP1631 device option without
internal regulator can be used. By using a high voltage
regulator to bias the MCP1631 and microcontroller, the
range of input voltage for the design is only limited by
the regulator maximum input and power train design.

FIGURE 4: MCP1631HV and MCP1631 
Bias Voltage Options.
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HIGH SPEED ANALOG PWM OPERATION
The high-speed analog PWM is used to control the
power train switch ON and OFF times to regulate the
output of the converter. Voltage or current can be
regulated depending on what is being sensed. For the
SEPIC Battery Charger application, the MCP1631HV
is always regulating current, the microcontroller is
programming this current.

The analog PWM starts with the oscillator input,
typically a microcontroller PWM output or simple clock
output (50% duty cycle). When the oscillator input is
high, the VEXT output is pulled low, (N-Channel MOS-
FET Driver is ON). A new cycle is started when the
OSC_IN input transitions from a high to a low, the inter-
nal N-channel MOSFET driver turns off and the P-
Channel MOSFET turns on driving the VEXT pin high
turning on the external N-Channel MOSFET. Current
begins to ramp up in the external CS sense resistor
until it reaches 1/3 of the level of the error amplifier
output voltage (limited to 0.9V by error amplifier clamp).
The 0.9V limit is used as an overcurrent limit, the

ramping current is used for peak current mode control
CS signal. A filter is used on the CS input to remove the
leading edge turn on spike associated with the turn on
of the external power MOSFET. The driver P-Channel
MOSFET is powered using a separate PVDD pin
helping to keep switching noise off of the AVDD pin and
sensitive CS circuitry.

The error amplifier is configured as an integrator, so
any difference between its inputs, VREF and VFB are
quickly removed. If the VFB input is high, the inverting
error amplifiers output, (COMP), will be pulled down,
lowering the peak current into the switch and lowering
duty cycle bringing the output back into regulation. The
external R and C used for compensation is used to con-
trol the speed of the error amplifiers output response. If
not compensated properly, the error amplifier output
will move to fast (unstable system with under damped
oscillations) or slow (over damped system with no
performance or response to changes). The VREF input
is set by the microcontroller to program the proper
charge current.

FIGURE 5: Analog PWM Operation.
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CURRENT REGULATION
To sense battery current for regulation in a SEPIC con-
verter, the secondary winding of the coupled inductor
can be used. The average current flowing through the
secondary winding is equal to the current flowing into
the battery. As shown, this topology does not require
the sense resistor in series with the battery, removing
any power lost in series with the battery while running
the system. When sensing battery current, a low value
sense resistor is desired to minimize power loss, the

MCP1631HV integrates an inverting 10V/V gain
amplifier to increase the battery current sense signal.
The microcontroller sets the VREF input to the desired
current level, the MCP1631HV uses the VREF input as
a reference for regulation.

The resistor in series with the external SEPIC switch
provides a high speed current limit protecting the
switch and other power train components from a short
circuit or over current condition.

FIGURE 6: Current Regulation Diagram.

SENSING BATTERY VOLTAGE
Using the internal microcontroller A/D converter to
sense battery voltage is a popular approach. An issue
with this technique is the A/D converter requires a low
source impedance to perform accurate readings. Low
source impedance requires low resistance values that
draw excessive quiescent current from the battery. The
MCP1631HV integrates a low current amplifier (A3),
configured as a unity gain buffer. The buffer output
impedance is low, driving the SAR A/D converter, while
consuming very little quiescent current. A high value
resistor divider is used to drop the battery voltage to an
acceptable range. R1, R2 and R3 values are selected
to minimize the drain on the batteries, typically drawing
on the order of 1 µA. The microcontroller reads the A/D
converter, calculates the current setting and adjusts the
VREF input to regulate current.

Overvoltage (OV) protection is a common battery
charger protection feature. The OV protection is not
there to protect the battery, it is used to protect the
power train from excessive voltage if the battery is

removed or opens. OV protection is typically required
for any current source application (battery chargers,
LED drivers).

The MCP1631HV integrates an internal high speed OV
comparator that has a 1.2V reference connected to its
inverting input. If the voltage on the OV_IN pin exceeds
the 1.2V threshold, the VEXT output is asychronously
terminated. Switching will resume after the voltage has
dropped more than the built in 50 mV of hysteresis. If a
battery is removed during the charge cycle, the charger
output voltage will be limited to a safe value.
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FIGURE 7: MCP1631HV Voltage Buffer and Overvoltage Comparator Setup.
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System Level Block Diagram
The system level block diagram shown in Figure 7
represents all of the MCP1631HV internal blocks. The
SHDN input is used to turn off the charger and lower

the quiescent current draw to a 4.4 µA typical, the +5V
generated bias is available and A3 remain powered for
battery monitoring and microcontroller power.

FIGURE 8:  MCP1631HV Block Diagram.
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Charger Reference Board Design
A battery charger reference design was developed for
the MCP1631HV to evaluate the device in a battery

charger application.

FIGURE 9: Charger Diagram.

COMP

PGND

SHDN

OSCIN

OSCDIS

OVIN

VREF

AGND

NC

NC

AVDD_OUT

VSIN

ISIN

VSOUT

ISOUT

FB

CS

PVDD

VEXT

L1A

CIN

SCHOTTKY
DIODE

COUT

L1B

CC

MCP1631HV

VIN

RTHERM

AVDD_OUT

GP0/C

C

GP5

GP3

GP1/C

PIC® Microcontroller

LED

R

GND

GP4

CCP1

VDD

VIN Range +5.5V to +16V

Multi-cell, Multi-Chemistry Charger

BATTERY
ISENSE

ILIMIT

0V PROTECTION

LOW IQ SHUTDOWN
PROGRAMMAGLE
CURRENT SOURCE
REFERENCE

+VDD_OUT

FSW SET

STATUS INDICATOR
DS01137A-page 10 © 2007 Microchip Technology Inc.



AN1137
FIGURE 10: Detailed Schematic.
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FIGURE 11: Board Layout.
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THE DESIGN DETAILS OF CHARGING 
BATTERIES USING THE PIC® 
MICROCONTROLLER AND 
MCP1631HV WITH A SEPIC 
TOPOLOGY

Design Example:
• VIN = 12V
• VBATT = 0V to 4.2V
• IBATT = 200 mA Pre-Charge Current
• IBATT = 2A Fast Charge Current
• IBATT = 140 mA termination or “tail” current
• Overvoltage Protection

SEPIC Power Train Design
• Calculate Maximum Output Power

POUT = 4.2V X 2.0A or 8.4 Watts

• By making an efficiency estimate, the converter 
input power can be estimated. The typical 
efficiency of a SEPIC converter in this power 
range using a schottky diode for the output 
rectifier is around 85%.

• PIN = 8.4 Watts / 0.85 or 9.88 Watts
• IIN = PIN / IIN

- IIN = +12V / 0.88 Watts
- IIN = 1.21 A

With IIN and IBATT known, the average inductor current
for each winding is known.

Inductor Ripple Current
For the coupled inductor, the effective inductance is
twice the value of the inductor, this is a result of 2x the
voltage across 2x the number of turns. Since the value
of L is proportional to n2, the effective inductance is
twice the actual value of the inductor.

 

A 10 µH inductor looks like a 20 µH inductor (for
coupled inductors only). Larger inductance reduces
ripple current and operates in the continuous mode at
lighter loads, an advantage over non-coupled inductor
solutions.

The input and output inductor ripple current is equal to:

Where TON is the amount of time the SEPIC switch is
turned on:

Where Duty Cycle for a SEPIC converter operating in
continuous conduction mode is equal to:

To derive the transfer function of the SEPIC converter,
start by balancing the inductor volt-time product in the
boost stage (W1).

Q1 Turned on (+ Slope):

Q1 Turned off (- Slope):

Inductor slope’s must be equal for volt-time balance:

Multiply both sides by 1/(tON + tOFF):

Solve for VC1: .

For the second stage, the inductor slopes must also be
equal.

Q1 Turned on (+ Slope):

POUT VBATT IBATT×=

PIN
POUT

Efficiency
---------------------------=

2 V×
n2
------------

ΔIL
VL
L
------ tON×=

tON DutyCycle 1
FSW
----------×=

DutyCycle
VOUT

VOUT VIN+
----------------------------=

ΔIW1 tON⁄ VIN LW1⁄=

ΔIW1 tOFF⁄
VC1 VOUT VIN–+

LW1
--------------------------------------------=

tON
VIN
LW1
----------× tOFF

VC1 VOUT VIN–+
LW1

--------------------------------------------×=

VIN D× VC1 VOUT VIN–+( ) 1 D–( )×=

VC1 VIN
1

1 D–
-------------⎝ ⎠
⎛ ⎞× VOUT–=

ΔIW2
tON
------------

VC1
LW2
----------=
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Q1 Turned off (- Slope):

Inductor slope’s must me equal for volt-time balance:

Multiply both sides by 1/(tON + tOFF):

Solving for VC1.

Set VC1 = VC1 for both the Boost stage and the Buck-
Boost stage:

Solving for VOUT/VIN:

Looking back, if D/(1-D) x VIN is substituted for VOUT, it
is shown that VC1 = VIN. This is true, if C1 is large
enough that the ripple voltage on C1 is low.

Now that the duty cycle is known as a VOUT/VIN
relationship, the duty cycle can be calculated for any
input output condition. Remember, this transfer
function is dependent upon the fact that inductor
current is continuous or never reached zero. If it does
reach zero, this transfer function is no longer true and
there is another state added to the operation.

ΔIW2
tOFF
------------

VOUT
LW2
-------------=

tON
VC1
LW2
----------× tOFF

VOUT
LW2
-------------×=

VC1 D× VOUT 1 D–( )×=

VC1 VOUT
1 D–
D
-------------⎝ ⎠
⎛ ⎞×=

VC1 VIN
1

1 D–
-------------⎝ ⎠
⎛ ⎞ VOUT–× VOUT

1 D–
D
-------------⎝ ⎠
⎛ ⎞×= =

VOUT
VIN
------------- D

1 D–
-------------⎝ ⎠
⎛ ⎞=
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Power Train Design

FIGURE 12: SEPIC Converter Inductor, Switch and Diode Currents.
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Inductor Winding Current Calculation
The first step to calculating the inductor winding current
is to know the maximum output power. For this
constant current battery charger application, the output
power is simply the maximum output voltage times the
charge current.

Maximum output voltage is equal to 4.2V (1 battery @
4.2V).

POUT =4.2V x 2 A or 8.4 Watts.

Since energy is conserved, the input power is equal to
the output power (assuming 100% efficiency). An
efficiency estimate can be used to closer approximate
the input current.

The average input current is equal to the input power
divided by the input voltage:

The peak-to-peak W1 inductor current ripple
calculation was shown earlier. Given the derived
transfer function and the maximum voltage on the
output of the converter to be 4.2V, the switch on time is
estimated.

Switch On Time:

For the 12V input and 4.2V output case, the switch ON
time is estimated to be approximately 519 ns. (500 kHz
switching frequency).

The input peak-to-peak ripple current can be
calculated:. 

The ripple current in winding (W2) is calculated in a
similar fashion. The main difference is that the average
current in W2 is equal to IOUT or 2A in this application. 

The coupled inductor winding currents calculated
above are used to determine the size of the inductor
necessary. High switching frequency has several
advantages, smaller ripple current, lower peak and
RMS current and lower volt-time product on the
inductor core. This leads to a small, low-cost solution.

SEPIC Switch Current and Voltage Calculations
The switch current (IQ1) is equal to the combination of
the winding currents during the switch on time. When
the switch is turned on, it conducts the current in W1
and W2.

ISW = IW1 + IW2 = 2.82A (Average)

ISWPK = 2.82A + 311 mA = 3.14A

The minimum switch current is equal to:

ISWMIN = 2.82A - 311 mA = 2.51A

RMS of a Trapezoidal waveform

The RMS value of the switch current is approximately
1.44 mA.

POUT VOUT ICHARGE×=

PIN POUT Efficiency( )⁄=

Where:

PIN = 8.4 Watts / 85%; 85% used as a 
typical efficiency estimate

PIN = 9.88 Watts

IIN AVG )( ) PIN VIN⁄=

Where:

IINAVG = 9.88 Watts/12V (Nominal)
IINAVG = 824 mA. (Typical average input 

current

tON
VOUT VOUT VIN+( )⁄

FSW
----------------------------------------------------=

GIVEN: LW1 = LW2 = 20 µH (10 µH Coupled)
Input Peak-to-Peak Ripple Current (W1)

ΔIL(W1) = (12V / 20 µH) x tON = 311 mA
IL(W1)PK = IINAVG +1/2 x ΔIL(W1)
IL(W1)PK = 980 mA for winding 1 (W1)

IL(W1)MIN = IINAVG -1/2 x ΔIL(W1)
IL(W1)MIN = 669 mA for winding 1 (W1)

W2 Peak-to-Peak Ripple Current
ΔIL(W2) = (12V / 20 µH) x tON = 311 mA

IL(W2)PK = IOUTAVG +1/2 x ΔIL(W2)
IL(W2)PK = 2.16 A for winding 2 (W2)

IL(W2)MIN = IOUTAVG -1/2 x ΔIL(W2)
IL(W2)MIN = 1.85 A for winding 1 (W2)

Note: In the case of VIN = VOUT, the current in 
W1 = W2 (ripple and average).

ISWRMS D
IA
2 IA IB× IB

2+ +
3

---------------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

Where:

IA = 2.51A = Minimum,
IB = 3.14A = Maximum
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The peak switch voltage is equal to VIN + VOUT for the
SEPIC converter. Any leakage inductance voltage
spike is clamped through the output diode by the output
capacitor. A switch voltage rating for this application
should be a minimum of VIN(MAX) + VOUT(MAX).

VSW = 12V +4.2V

VSW = 16.2V

A 30V, 30 milli-ohm, logic-level switch is selected.
MOSFET switching losses should also be considered
when selecting the MOSFET switch. Low on resistance
switches tend to have high capacitance and will switch
slower, increasing switching losses. The lowest RDSON
MOSFET is not necessarily the best choice. When
using the SOIC-8 package for a 30V MOSFET, there
are many choices available.

SEPIC Diode Voltage and Current Calculations
A schottky diode is recommended for low-voltage
applications. For battery charger applications, the
SEPIC diode will block current flow from the battery
back to the input. The reverse leakage current of the
selected schottky diode can be a critical parameter, if
low battery drain is desired. Low schottky diode forward
drop is also a key parameter; the low drop improves
converter efficiency.

The maximum reverse voltage across the SEPIC diode
occurs during the switch on time. The cathode of the
schottky diode is connected to VOUT, the anode of the
schottky diode is connected to the SEPIC coupling
capacitor. The voltage across the coupling capacitor
voltage is equal to VIN; the voltage across the diode is
equal to VOUT - (-VIN) or VOUT + VIN.

The peak SEPIC diode current occurs when the switch
is turned off. The peak diode current is equal to the
peak current in W2, plus the peak current in W1 or
3.14A. The average diode current is equal to the output
current (IOUT), typical of all topologies with a series
diode in the path of the output.

SEPIC Coupling Capacitor (C1) RMS Current 
Calculations and Voltage Rating
The RMS current in the SEPIC coupling capacitor is
mainly dependant upon output power with some
influence by inductor ripple current. As output power
increases, the capacitor ripple current will increase as
well. As shown in Figure 12 (during the switch on time),
the current in winding 2 (output current) is flowing
through the coupling capacitor C1. During the switch off
time, the C1 current is equal to the current in winding
number 1 (W1). As previously discussed, the W1
current is equal to the average input current. Therefore,
the worst case or maximum RMS current in the
coupling capacitor will occur at maximum output power

and minimum input voltage. To estimate size for the
coupling capacitor, the capacitor derivative equation
can be used.  

The rate of change of voltage across the capacitor is
related to the amount of current through the capacitor
and the size or energy storage capability of the
capacitor.

For the SEPIC converter coupling capacitor, the
voltage is approximated to be a DC value when
deriving the duty cycle. The ripple voltage should be no
more than 5% of the voltage across the capacitor or the
input voltage. In this example, the input voltage and C1
DC voltage is 12V, so there should be no more than 5%
or 600 mV of ripple on the coupling capacitor.

In this example there is an average of 2A flowing
through the coupling capacitor during the switch on
time. The on time is approximately 26% or 520 ns. To
keep the capacitor voltage ripple less than 5% of VIN,
or 600 mV, the amount of capacitance is equal to (2A)
/ (600mV/520 ns) or 1.73 µF. For this application a
standard value 2.2 µF X7R 25V rated ceramic
capacitor should be used.

FIGURE 13: C1 Ripple Current.
As shown in Figure 13, the coupling capacitor ripple
current is largely dependent upon output power and
input voltage. As the input voltage decreases, the
current in W1 increases. During the switch on time, the
current flowing in W2 is equal to the current flowing in
C1. When the switch turns off, the current quickly
changes magnitude and direction so that the current
flowing in C1 is equal to the current in W1, magnitude
and direction.

IC C dV
dt
-------×=

IW1

IW2

IC1

0

+IW2

-IW1

Note: Area above 0 equals the area below
zero.
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As an approximation, the RMS current in C1:

For worst-case situations, the RMS current in the C1
coupling capacitor is equal to 2A x (4.2V / 12V)1/2 or
1.18A. The current rating for small multi-layer ceramic
capacitors is typically much higher than 1.18A. For
higher power applications, it may be necessary to use
multiple capacitors in parallel to keep the RMS current
within ratings.

CONCLUSION
For applications that require intelligent power manage-
ment solutions like battery chargers, the combination of
a microcontroller and MCP1631 high-speed PWM is
very powerful. It brings the programmability benefits of
the microcontroller and adds the performance of a
high-speed analog PWM. The analog PWM will
respond to changes in input voltage and output current
very quickly. No code or execution time is necessary to
regulate or protect the circuit. The microcontroller is
used for programmability, establishing charge profile
conditions and monitoring the circuit for fault conditions
and taking the appropriate action, in the event of a
specific fault.

IC1 RMS( ) IOUT VOUT VIN⁄×=
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