To our customers,

Old Company Name in Catalogs and Other Documents

On April $1^{\text {st }}, 2010$, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1 ${ }^{\text {st }}, 2010$
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

7540 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 7540 Group is the 8 -bit microcomputer based on the 740 family core technology.
The 7540 Group has a serial I/O, 8-bit timers, a 16-bit timer, and an A/D converter, and is useful for control of home electric appliances and office automation equipment.

FEATURES

- Basic machine-language instructions
- The minimum instruction execution tim $0.34 \mu \mathrm{~s}$ (at 6 MHz oscillation frequency, double-speed mode for the shortest instruction
- Memory size ROM \qquad 8 K to 32 K bytes
RAM 384 to 768 bytes
- Programmable I/O ports 29 (25 in 32-pin version)
- Interrupts \qquad 15 sources, 15 vectors
(14 sources, 14 vectors for 32-pin version)
- Timers

Time

 8 -bit $\times 4$ 16 -bit $\times 1$- Serial I/O1 \qquad 8 -bit $\times 1$ (UART or Clock-synchronized)
- Serial I/O2 (Note 1) \qquad 8 -bit $\times 1$ (Clock-synchronized)
- A/D converter \qquad
\qquad 0 -bit $\times 8$ channels (6 channels for 32-pin version)
- Clock generating circuit \qquad
(low-power dissipation by an on-chip oscillator enabled)
(connect to external ceramic resonator or quartz-crystal oscillator permitting RC oscillation)
- Watchdog timer 16 -bit $\times 1$
- Power source voltage

XIN oscillation frequency at ceramic oscillation, in double-speed mode At 6 MHz .
4.5 to 5.5 V

XIN oscillation frequency at ceramic oscillation, in high-speed mode
At 8 MHz .. 4.0 to 5.5 V
At 4 MHz .. 2.4 to 5.5 V
At 2 MHz .. 2.2 to 5.5 V
XIN oscillation frequency at RC oscillation in high-speed mode or middle-speed mode
At 4 MHz .. 4.0 to 5.5 V
At 2 MHz ... 2.4 to 5.5 V
At 1 MHz .. 2.2 to 5.5 V

- Power dissipation

Mask ROM version 22.5 mW (standard)
One Time PROM version 30 mW (standard)

- Operating temperature range -20 to $85^{\circ} \mathrm{C}$
(-40 to $85^{\circ} \mathrm{C}$ for extended operating temperature version)
$\left(-40\right.$ to $125^{\circ} \mathrm{C}$ for extended operating temperature $125^{\circ} \mathrm{C}$ version (Note 2))

APPLICATION

Office automation equipment, factory automation equipment, home electric appliances, consumer electronics, car, etc.

Notes 1: Serial I/O2 can be used in the following cases;
(1) Serial I/O1 is not used,
(2) Serial I/O1 is used as UART and BRG output divided by 16 is selected as the synchronized clock
2: In this version, the operating temperature range and total time are limited as follows;
$55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$: within total 6000 hours, $85^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$: within total 1000 hours.

PIN CONFIGURATION (TOP VIEW)

Package type: 32P6U-A

Fig. 1 Pin configuration (32P6U-A type)

Package tvpe: 36P2R-A
Fig. 2 Pin configuration (36P2R-A type)

Package type: 32P4B

Fig. 3 Pin configuration (32P4B-A type)

Fig. 4 Pin configuration (42S1M type)

FUNCTIONAL BLOCK

Fig. 5 Functional block diagram (32P6U package)

Fig. 6 Functional block diagram (36P2R package)

Fig. 7 Functional block diagram (32P4B package)

PIN DESCRIPTION

Table 1 Pin description

Pin	Name	Function	Function expect a port function
Vcc, Vss	Power source (Note 1)	-Apply voltage of 2.2 to 5.5 V to Vcc, and 0 V to Vss.	
VREF	Analog reference voltage	-Reference voltage input pin for A/D converter	
CNVss	CNVss	-Chip operating mode control pin, which is always connected to Vss.	
RESET	Reset input	- Reset input pin for active "L"	
XIN Xout	Clock input	- Input and output pins for main clock generating circuit -Connect a ceramic resonator or quartz crystal oscillator between the XIN and XOUT pins. -For using RC oscillator, short between the XIN and XOUT pins, and connect the capacitor and resistor. -If an external clock is used, connect the clock source to the Xin pin and leave the Xout pin open. - When the on-chip oscillator is selected as the main clock, connect XIN pin to Vss and leave Xout open.	
P00/CNTR1 P01/TYout P02/TZOUT P03/TXout P04-P07	I/O port P0	-8-bit I/O port. - I/O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level -CMOS 3-state output structure -Whether a built-in pull-up resistor is to be used or not can be determined by program.	- Key-input (key-on wake up interrupt input) pins - Timer Y , timer Z , timer X and timer A function pin
$\begin{aligned} & \text { P10/RxD1 } \\ & \text { P11/TxD1 } \end{aligned}$	I/O port P1	-5-bit I/O port - I/O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level -CMOS 3-state output structure -CMOS/TTL level can be switched for P10, P12 and P13	- Serial I/O1 function pin
$\begin{aligned} & \mathrm{P} 12 / \mathrm{SCLK} 1 / \mathrm{SCLK} 2 \\ & \mathrm{P} 13 / \mathrm{SRDY1} / \mathrm{SDATA} 2 \end{aligned}$			- Serial I/O1 function pin - Serial I/O2 function pin
P14/CNTR0			- Timer X function pin
P20/AN0-P27/AN7	$\begin{array}{\|l} \hline \text { I/O port P2 } \\ \text { (Note } 2) \end{array}$	-8-bit I/O port having almost the same function as P0 -CMOS compatible input level -CMOS 3-state output structure	- Input pins for A/D converter
P30-P35	$\begin{array}{\|l} \hline \text { I/O port P3 } \\ \text { (Note 3) } \end{array}$	-8-bit I/O port -1/O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level (CMOS/TTL level can be switched for P36 and P37). -CMOS 3-state output structure -P30 to P36 can output a large current for driving LED.	
$\begin{aligned} & \text { P36/INT1 } \\ & \text { P37/INT0 } \end{aligned}$		-Whether a built-in pull-up resistor is to be used or not can be determined by program.	Interrupt input pins

[^0]
GROUP EXPANSION

Renesas plans to expand the 7540 group as follow:

Memory type

Support for Mask ROM version, One Time PROM version, and Emulator MCU .

Memory size

ROM/PROM size .. 8 K to 32 K bytes
RAM size 384 to 768 bytes

Package

32P4B ... 32-pin plastic molded SDIP
32P6U-A 0.8 mm-pitch 32-pin plastic molded LQFP
36P2R-A 0.8 mm-pitch 36-pin plastic molded SSOP
42S1M 42-pin shrink ceramic PIGGY BACK

Fig. 8 Memory expansion plan

Currently supported products are listed below.
Table 2 List of supported products

Part Number	(P) ROM size (bytes) ROM size for User ()	RAM size (bytes)	Package	Remarks
M37540M2-XXXSP	$\begin{gathered} \hline 8192 \\ (8062) \end{gathered}$	384	32P4B	Mask ROM version
M37540M2-XXXFP			36P2R-A	Mask ROM version
M37540M2T-XXXFP				Mask ROM version (extended operating temperature version)
M37540M2V-XXXFP				Mask ROM version (extended operating temperature $125^{\circ} \mathrm{C}$ version)
M37540M2-XXXGP			32P6U-A	Mask ROM version
M37540M2T-XXXGP				Mask ROM version (extended operating temperature version)
M37540M2V-XXXGP				Mask ROM version (extended operating temperature $125^{\circ} \mathrm{C}$ version)
M37540M4-XXXSP	$\begin{gathered} \hline 16384 \\ (16254) \end{gathered}$	512	32P4B	Mask ROM version
M37540M4-XXXFP			36P2R-A	Mask ROM version
M37540M4T-XXXFP				Mask ROM version (extended operating temperature version)
M37540M4V-XXXFP				Mask ROM version (extended operating temperature $125^{\circ} \mathrm{C}$ version)
M37540M4-XXXGP			32P6U-A	Mask ROM version
M37540M4T-XXXGP				Mask ROM version (extended operating temperature version)
M37540M4V-XXXGP				Mask ROM version (extended operating temperature $125{ }^{\circ} \mathrm{C}$ version)
M37540E2SP	$\begin{gathered} 8192 \\ (8062) \end{gathered}$	384	32P4B	One Time PROM version (blank)
M37540E2FP			36P2R-A	One Time PROM version (blank)
M37540E2GP			32P6U-A	One Time PROM version (blank)
M37540E8SP	$\begin{gathered} 32768 \\ (32638) \end{gathered}$	768	32P4B	One Time PROM version (blank)
M37540E8FP			36P2R-A	One Time PROM version (blank)
M37540E8T-XXXFP				One Time PROM version (shipped after programming, extended operating temperature version)
M37540E8V-XXXFP				One Time PROM version (shipped after programming, extended operating temperature $125^{\circ} \mathrm{C}$ version)
M37540E8GP			32P6U-A	One Time PROM version (blank)
M37540E8T-XXXGP				One Time PROM version (shipped after programming, extended operating temperature version)
M37540E8V-XXXGP				One Time PROM version (shipped after programming, extended operating temperature $125^{\circ} \mathrm{C}$ version)
M37540RSS		768	42S1M	Emulator MCU

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

The MCU uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine-language instructions or the SERIES 740 <SOFTWARE> USER'S MANUAL for details on each instruction set.
Machine-resident 740 family instructions are as follows:

1. The FST and SLW instructions cannot be used.
2. The MUL and DIV instructions can be used.
3. The WIT instruction can be used.
4. The STP instruction can be used. (This instruction cannot be used while an on-chip oscillator is operating.)

Accumulator (A)

The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.

Index register $\mathbf{X}(\mathrm{X})$, Index register $\mathbf{Y}(\mathrm{Y})$

Both index register X and index register Y are 8-bit registers. In the index addressing modes, the value of the OPERAND is added to the contents of register X or register Y and specifies the real address.
When the T flag in the processor status register is set to " 1 ", the value contained in index register X becomes the address for the second OPERAND.

Stack pointer (S)

The stack pointer is an 8-bit register used during subroutine calls and interrupts. The stack is used to store the current address data and processor status when branching to subroutines or interrupt routines.
The lower eight bits of the stack address are determined by the contents of the stack pointer. The upper eight bits of the stack address are determined by the Stack Page Selection Bit. If the Stack Page Selection Bit is " 0 ", then the RAM in the zero page is used as the stack area. If the Stack Page Selection Bit is "1", then RAM in page 1 is used as the stack area.
The Stack Page Selection Bit is located in the SFR area in the zero page. Note that the initial value of the Stack Page Selection Bit varies with each microcomputer type. Also some microcomputer types have no Stack Page Selection Bit and the upper eight bits of the stack address are fixed. The operations of pushing register contents onto the stack and popping them from the stack are shown in Fig. 10.

Program counter (PC)

The program counter is a 16 -bit counter consisting of two 8-bit registers PCH and PCL. It is used to indicate the address of the next instruction to be executed.

Fig. 9740 Family CPU register structure

Note : The condition to enable the interrupt \rightarrow Interrupt enable bit is " 1 " Interrupt disable flag is " 0 "

Fig. 10 Register push and pop at interrupt generation and subroutine call

Table 3 Push and pop instructions of accumulator or processor status register

	Push instruction to stack	Pop instruction from stack
Accumulator	PHA	PLA
Processor status register	PHP	PLP

Processor status register (PS)

The processor status register is an 8-bit register consisting of flags which indicate the status of the processor after an arithmetic operation. Branch operations can be performed by testing the Carry (C) flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the $\mathrm{Z}, \mathrm{V}, \mathrm{N}$ flags are not valid.
After reset, the Interrupt disable (I) flag is set to "1", but all other flags are undefined. Since the Index X mode (T) and Decimal mode (D) flags directly affect arithmetic operations, they should be initialized in the beginning of a program.

(1) Carry flag (C)

The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.

(2) Zero flag (Z)

The Z flag is set if the result of an immediate arithmetic operation or a data transfer is " 0 ", and cleared if the result is anything other than " 0 ".

(3) Interrupt disable flag (I)

The I flag disables all interrupts except for the interrupt generated by the BRK instruction. Interrupts are disabled when the I flag is "1".
When an interrupt occurs, this flag is automatically set to "1" to prevent other interrupts from interfering until the current interrupt is serviced.

(4) Decimal mode flag (D)

The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is " 0 "; decimal arithmetic is executed when it is " 1 ".
Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal arithmetic.

(5) Break flag (B)

The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always " 0 ". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to " 1 ". The saved processor status is the only place where the break flag is ever set.

(6) Index X mode flag (T)

When the T flag is " 0 ", arithmetic operations are performed between accumulator and memory, e.g. the results of an operation between two memory locations is stored in the accumulator. When the T flag is " 1 ", direct arithmetic operations and direct data transfers are enabled between memory locations, i.e. between memory and memory, memory and I/O, and I/O and I/O. In this case, the result of an arithmetic operation performed on data in memory location 1 and memory location 2 is stored in memory location 1. The address of memory location 1 is specified by index register X , and the address of memory location 2 is specified by normal addressing modes.

(7) Overflow flag (V)

The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128 . When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.

(8) Negative flag (N)

The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.

Table 4 Set and clear instructions of each bit of processor status register

	C flag	Z flag	I flag	D flag	B flag	T flag	V flag	N flag
Set instruction	SEC	-	SEI	SED	-	SET	-	-
Clear instruction	CLC	-	CLI	CLD	-	CLT	CLV	-

[CPU mode register] CPUM

The CPU mode register contains the stack page selection bit.
This register is allocated at address 003B16.

Switching method of CPU mode register

Switch the CPU mode register (CPUM) at the head of program after releasing Reset in the following method.

Fig. 11 Structure of CPU mode register

Start with an on-chip oscillator

An initial value is set as a ceramic oscillation mode. When it is switched to an RC oscillation, its oscillation starts.

When using a ceramic oscillation, wait until establlishment of oscillation from oscillation starts. When using an RC oscillation, wait time is not required basically (time to execute the instruction to switch from an on-chip oscillator meets the requirement).

Select $1 / 1,1 / 2,1 / 8$ or on-chip oscillator.

Fig. 12 Switching method of CPU mode register

Memory

Special function register (SFR) area
The SFR area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for a stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is a user area for storing programs.

Interrupt vector area

The interrupt vector area contains reset and interrupt vectors.

Zero page

The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special page

The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode.

Fig. 13 Memory map diagram

000016	Port P0 (P0)
000116	Port P0 direction register (POD)
000216	Port P1 (P1)
000316	Port P1 direction register (P1D)
000416	Port P2 (P2)
000516	Port P2 direction register (P2D)
000616	Port P3 (P3)
000716	Port P3 direction register (P3D)
000816	
000916	
000A16	
000B16	
$000 \mathrm{C}_{16}$	
000D16	
000E16	
000F16	
001016	
001116	
001216	
001316	
001416	
001516	
001616	Pull-up control register (PULL)
001716	Port P1P3 control register (P1P3C)
001816	Transmit/Receive buffer register (TB/RB)
001916	Serial I/O1 status register (SIO1STS)
001A16	Serial I/O1 control register (SIO1CON)
001B16	UART control register (UARTCON)
$001 \mathrm{C}_{16}$	Baud rate generator (BRG)
001D16	Timer A mode register (TAM)
001E16	Timer A (low-order) (TAL)
001F16	Timer A (high-order) (TAH)

002016	Timer Y, Z mode register (TYZM)
002116	Prescaler Y (PREY)
002216	Timer Y secondary (TYS)
002316	Timer Y primary (TYP)
002416	Timer Y, Z waveform output control register (PUM)
002516	Prescaler Z (PREZ)
002616	Timer Z secondary (TZS)
002716	Timer Z primary (TZP)
002816	Prescaler 1 (PRE1)
002916	Timer 1 (T1)
002A16	One-shot start register (ONS)
002B16	Timer X mode register (TXM)
002C16	Prescaler X (PREX)
002D16	Timer X (TX)
002E16	Timer count source set register (TCSS)
002F16	
003016	Serial I/O2 control register (SIO2CON)
003116	Serial I/O2 register (SIO2)
003216	
003316	
003416	A/D control register (ADCON)
003516	A/D conversion register (low-order) (ADL)
003616	A/D conversion register (high-order) (ADH)
003716	
003816	MISRG
003916	Watchdog timer control register (WDTCON)
003A16	Interrupt edge selection register (INTEDGE)
003B16	CPU mode register (CPUM)
$003 \mathrm{C}_{16}$	Interrupt request register 1 (IREQ1)
003D16	Interrupt request register 2 (IREQ2)
003E16	Interrupt control register 1 (ICON1)
003F16	Interrupt control register 2 (ICON2)

Note : Do not access to the SFR area including nothing.

Fig. 14 Memory map of special function register (SFR)

I/O Ports

[Direction registers] PiD
The I/O ports have direction registers which determine the input/ output direction of each pin. Each bit in a direction register corresponds to one pin, and each pin can be set to be input or output. When " 1 " is set to the bit corresponding to a pin, this pin becomes an output port. When " 0 " is set to the bit, the pin becomes an input port.
When data is read from a pin set to output, not the value of the pin itself but the value of port latch is read. Pins set to input are floating, and permit reading pin values.
If a pin set to input is written to, only the port latch is written to and the pin remains floating.

[Pull-up control register] PULL

By setting the pull-up control register (address 001616), ports P0 and P3 can exert pull-up control by program. However, pins set to output are disconnected from this control and cannot exert pull-up control.

Note: P26/AN6, P27/AN7, P35 and P36 do not exist for the 32-pin version.
Accordingly, the following settings are required;
. Set direction registers of ports P26 and P27 to output.
. Set direction registers of ports P35 and P36 to output.

[Port P1P3 control register] P1P3C

By setting the port P1P3 control register (address 001716), a CMOS input level or a TTL input level can be selected for ports $\mathrm{P} 10, \mathrm{P} 12, \mathrm{P} 13, \mathrm{P} 36$, and P 37 by program.

Note : Pins set to output ports are disconnected from pull-up control.
Fig. 15 Structure of pull-up control register

Fig. 16 Structure of port P1P3 control register

Table 5 I/O port function table

Pin	Name	Input/output	I/O format	Non-port function	Related SFRs	Diagram No.
P00/CNTR1 P01/TYOUT P02/TZOUT P03/TXOUT P04-P07	I/O port P0	I/O individual bits	-CMOS compatible input level -CMOS 3-state output (Note 1)	Key input interrupt Timer X function output Timer Y function output Timer Z function output Timer A function input	Pull-up control register Timer Y mode register Timer Z mode register Timer X mode register Timer Y,Z waveform output control register Timer A mode register	(1) (2) (3) (4)
$\begin{aligned} & \hline \text { P10/RxD1 } \\ & \text { P11/TxD1 } \end{aligned}$	I/O port P1			Serial I/O1 function input/output	Serial I/O1 control register	(5) (6)
$\begin{aligned} & \text { P12/ScLK1/SCLK2 } \\ & \text { P13/SRDY1/SDATA2 } \end{aligned}$				Serial I/O2 function input/output	Serial I/O1 control register Serial I/O2 control register	(7) (8)
P14/CNTR0				Timer X function input/output	Timer X mode register	(9)
$\begin{aligned} & \text { P20/AN0- } \\ & \text { P27/AN7 } \end{aligned}$	I/O port P2 (Note 2)			A/D conversion input	A/D control register	(10)
P30-P35	$\begin{aligned} & \text { I/O port P3 } \\ & \text { (Note 3) } \end{aligned}$					(11)
$\begin{aligned} & \hline \text { P36/INT1 } \\ & \text { P37/INT0 } \end{aligned}$				External interrupt input	Interrupt edge selection register	(12)

Notes 1: Ports P10, P12, P13, P36, and P37 are CMOS/TTL level.
2: $\mathrm{P} 26 / \mathrm{AN} 6$ and $\mathrm{P} 27 / \mathrm{AN} 7$ do not exist for the 32-pin version.
3: P35 and P36/INT1 do not exist for the 32-pin version.

Fig. 17 Block diagram of ports (1)
(8) Port P13

(10) Ports P20-P27

(11) Ports P30-P35

(12) Ports P36, P37

* P10, P12, P13, P36, and P37 input level are switched to the CMOS/TTL level by the port P1P3 control register.

When the TTL level is selected, there is no hysteresis characteristics.

Fig. 18 Block diagram of ports (2)

Interrupts

Interrupts occur by 15 different sources : 5 external sources, 9 internal sources and 1 software source.

Interrupt control

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit, and they are controlled by the interrupt disable flag. When the interrupt enable bit and the interrupt request bit are set to " 1 " and the interrupt disable flag is set to " 0 ", an interrupt is accepted.
The interrupt request bit can be cleared by program but not be set. The interrupt enable bit can be set and cleared by program.
The reset and BRK instruction interrupt can never be disabled with any flag or bit. All interrupts except these are disabled when the interrupt disable flag is set.
When several interrupts occur at the same time, the interrupts are received according to priority.

Interrupt operation

Upon acceptance of an interrupt the following operations are automatically performed:

1. The processing being executed is stopped.
2. The contents of the program counter and processor status register are automatically pushed onto the stack.
3. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
4. Concurrently with the push operation, the interrupt destination address is read from the vector table into the program counter.

- Notes on use

When setting the followings, the interrupt request bit may be set to "1".
-When setting external interrupt active edge
Related register: Interrupt edge selection register (address 003A16)
Timer X mode register (address 2B16)
Timer A mode register (address 1D16)

When not requiring the interrupt occurrence synchronized with these setting, take the following sequence.
(1) Set the corresponding interrupt enable bit to " 0 " (disabled).
(2) Set the interrupt edge select bit (active edge switch bit) to "1".
(3) Set the corresponding interrupt request bit to "0" after 1 or more instructions have been executed.
(4) Set the corresponding interrupt enable bit to " 1 " (enabled).

Table 6 Interrupt vector address and priority

Interrupt source	Priority	Vector addresses (Note 1)		Interrupt request generating conditions	
		High-order	Low-order		Remarks
Reset (Note 2)	1	FFFD16	FFFC16	At reset input	Non-maskable
Serial I/O1 receive	2	FFFB16	FFFA16	At completion of serial I/O1 data receive	Valid only when serial I/O1 is selected
Serial I/O1 transmit	3	FFF916	FFF816	At completion of serial I/O1 transmit shift or when transmit buffer is empty	Valid only when serial I/O1 is selected
INT0	4	FFF716	FFF616	At detection of either rising or falling edge of INT0 input	External interrupt (active edge selectable)
INT1 (Note 3)	5	FFF516	FFF416	At detection of either rising or falling edge of INT1 input	External interrupt (active edge selectable)
Key-on wake-up	6	FFF316	FFF216	At falling of conjunction of input logical level for port P0 (at input)	External interrupt (valid at falling)
CNTR0	7	FFF116	FFF016	At detection of either rising or falling edge of CNTR0 input	External interrupt (active edge selectable)
CNTR1	8	FFEF16	FFEE16	At detection of either rising or falling edge of CNTR1 input	External interrupt (active edge selectable)
Timer X	9	FFED16	FFEC16	At timer X underflow	
Timer Y	10	FFEB16	FFEA16	At timer Y underflow	
Timer Z	11	FFE916	FFE816	At timer Z underflow	
Timer A	12	FFE716	FFE616	At timer A underflow	
Serial I/O2	13	FFE516	FFE416	At completion of transmit/receive shift	
A/D conversion	14	FFE316	FFE216	At completion of A/D conversion	
Timer 1	15	FFE116	FFE016	At timer 1 underflow	
Reserved area	16	FFDF16	FFDE16	Not available	
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	

Note 1: Vector addressed contain internal jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
3: It is an interrupt which can use only for 36 pin version.

Fig. 19 Interrupt control

Fig. 20 Structure of Interrupt-related registers

Key Input Interrupt (Key-On Wake-Up)

A key-on wake-up interrupt request is generated by applying " L " level to any pin of port P0 that has been set to input mode.
In other words, it is generated when the AND of input level goes from " 1 " to " 0 ". An example of using a key input interrupt is shown in Figure 21, where an interrupt request is generated by pressing one of the keys provided as an active-low key matrix which uses ports P 00 to P 03 as input ports.

Fig. 21 Connection example when using key input interrupt and port P0 block diagram

Timers

The 7540 Group has 5 timers: timer 1, timer A , timer X , timer Y and timer Z.
The division ratio of every timer and prescaler is $1 /(n+1)$ provided that the value of the timer latch or prescaler is n.
All the timers are down count timers. When a timer reaches " 0 ", an underflow occurs at the next count pulse, and the corresponding timer latch is reloaded into the timer. When a timer underflows, the interrupt request bit corresponding to each timer is set to " 1 ".

- Timer 1

Timer 1 is an 8-bit timer and counts the prescaler output.
When Timer 1 underflows, the timer 1 interrupt request bit is set to "1".
Prescaler 1 is an 8 -bit prescaler and counts the signal which is the oscillation frequency divided by 16.
Prescaler 1 and Timer 1 have the prescaler 1 latch and the timer 1 latch to retain the reload value, respectively. The value of prescaler 1 latch is set to Prescaler 1 when Prescaler 1 underflows. The value of timer 1 latch is set to Timer 1 when Timer 1 underflows.
When writing to Prescaler 1 (PRE1) is executed, the value is written to both the prescaler 1 latch and Prescaler 1.
When writing to Timer $1(\mathrm{~T} 1)$ is executed, the value is written to both the timer 1 latch and Timer 1.
When reading from Prescaler 1 (PRE1) and Timer 1 (T1) is executed, each count value is read out.
Timer 1 always operates in the timer mode.
Prescaler 1 counts the signal which is the oscillation frequency divided by 16. Each time the count clock is input, the contents of Prescaler 1 is decremented by 1 . When the contents of Prescaler 1 reach "0016", an underflow occurs at the next count clock, and the prescaler 1 latch is reloaded into Prescaler 1 and count continues. The division ratio of Prescaler 1 is $1 /(n+1)$ provided that the value of Prescaler 1 is n.
The contents of Timer 1 is decremented by 1 each time the underflow signal of Prescaler 1 is input. When the contents of Timer 1 reach " 0016 ", an underflow occurs at the next count clock, and the timer 1 latch is reloaded into Timer 1 and count continues. The division ratio of Timer 1 is $1 /(m+1)$ provided that the value of Timer 1 is m. Accordingly, the division ratio of Prescaler 1 and Timer 1 is $1 /((n+1) \times(m+1))$ provided that the value of Prescaler 1 is n and the value of Timer 1 is m.
Timer 1 cannot stop counting by software.

-Timer A

Timer A is a 16 -bit timer and counts the signal which is the oscillation frequency divided by 16. When Timer A underflows, the timer A interrupt request bit is set to " 1 ".
Timer A consists of the low-order of Timer A (TAL) and the high-order of Timer A (TAH).
Timer A has the timer A latch to retain the reload value. The value of timer A latch is set to Timer A at the timing shown below.

- When Timer A undeflows.
- When an active edge is input from CNTR1 pin (valid only when period measurement mode and pulse width HL continuously measurement mode).
When writing to both the low-order of Timer A (TAL) and the highorder of Timer $\mathrm{A}(\mathrm{TAH})$ is executed, the value is written to both the timer A latch and Timer A.
When reading from the low-order of Timer A (TAL) and the high-order of Timer A (TAH) is executed, the following values are read out according to the operating mode.
- In timer mode, event counter mode:

The count value of Timer A is read out.

- In period measurement mode, pulse width HL continuously measurement mode:
The measured value is read out.

Be sure to write to/read out the low-order of Timer A (TAL) and the high-order of Timer A (TAH) in the following order;
Read
Read the high-order of Timer A (TAH) first, and the low-order of Timer A (TAL) next and be sure to read out both TAH and TAL.
Write
Write to the low-order of Timer A (TAL) first, and the high-order of Timer A (TAH) next and be sure to write to both TAL and TAH.

Timer A can be selected in one of 4 operating modes by setting the timer A mode register.

(1) Timer mode

Timer A counts the oscillation frequency divided by 16. Each time the count clock is input, the contents of Timer A is decremented by 1. When the contents of Timer A reach "000016", an underflow occurs at the next count clock, and the timer A latch is reloaded into Timer A. The division ratio of Timer A is $1 /(n+1)$ provided that the value of Timer A is n.

(2) Period measurement mode

In the period measurement mode, the pulse period input from the P00/CNTR1 pin is measured.
CNTR1 interrupt request is generated at rising/falling edge of CNTR1 pin input singal. Simultaneousuly, the value in the timer A latch is reloaded inTimer A and count continues. The active edge of CNTR1 pin input signal can be selected from rising or falling by the CNTR1 active edge switch bit .The count value when trigger input from CNTR1 pin is accepted is retained until Timer A is read once.

(3) Event counter mode

Timer A counts signals input from the P00/CNTR1 pin.
Except for this, the operation in event counter mode is the same as in timer mode.
The active edge of CNTR1 pin input signal can be selected from rising or falling by the CNTR1 active edge switch bit .

(4) Pulse width HL continuously measurement mode

In the pulse width HL continuously measurement mode, the pulse width ("H" and "L" levels) input to the P00/CNTR1 pin is measured. CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal. Except for this, the operation in pulse width HL continuously measurement mode is the same as in period measurement mode.
The count value when trigger input from the CNTR1 pin is accepted is retained until Timer A is read once.

Timer A can stop counting by setting " 1 " to the timer A count stop bit in any mode.
Also, when Timer A underflows, the timer A interrupt request bit is set to "1".

Note on Timer A is described below;

■ Note on Timer A

CNTR1 interrupt active edge selection
CNTR1 interrupt active edge depends on the CNTR1 active edge switch bit.
When this bit is " 0 ", the CNTR1 interrupt request bit is set to " 1 " at the falling edge of the CNTR1 pin input signal. When this bit is " 1 ", the CNTR1 interrupt request bit is set to " 1 " at the rising edge of the CNTR1 pin input signal.
However, in the pulse width HL continuously measurement mode, CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit.

Fig. 22 Structure of timer A mode register

-Timer X

Timer X is an 8 -bit timer and counts the prescaler X output.
When Timer X underflows, the timer X interrupt request bit is set to "1".
Prescaler X is an 8-bit prescaler and counts the signal selected by the timer X count source selection bit.
Prescaler X and Timer X have the prescaler X latch and the timer X latch to retain the reload value, respectively. The value of prescaler X latch is set to Prescaler X when Prescaler X underflows. The value of timer X latch is set to Timer X when Timer X underflows.
When writing to Prescaler X (PREX) is executed, the value is written to both the prescaler X latch and Prescaler X.
When writing to Timer $X(T X)$ is executed, the value is written to both the timer X latch and Timer X .
When reading from Prescaler X (PREX) and Timer $X(T X)$ is executed, each count value is read out.

Timer X can can be selected in one of 4 operating modes by setting the timer X operating mode bits of the timer X mode register.

(1) Timer mode

Prescaler X counts the count source selected by the timer X count source selection bits. Each time the count clock is input, the contents of Prescaler X is decremented by 1 . When the contents of Prescaler X reach " 0016 ", an underflow occurs at the next count clock, and the prescaler X latch is reloaded into Prescaler X and count continues. The division ratio of Prescaler X is $1 /(n+1)$ provided that the value of Prescaler X is n.
The contents of Timer X is decremented by 1 each time the underflow signal of Prescaler X is input. When the contents of Timer X reach " 0016 ", an underflow occurs at the next count clock, and the timer X latch is reloaded into Timer X and count continues. The division ratio of Timer X is $1 /(m+1)$ provided that the value of Timer X is m. Accordingly, the division ratio of Prescaler X and Timer X is $1 /((n+1) \times(m+1))$ provided that the value of Prescaler X is n and the value of Timer X is m.

(2) Pulse output mode

In the pulse output mode, the waveform whose polarity is inverted each time timer X underflows is output from the CNTRo pin.
The output level of CNTRo pin can be selected by the CNTRo active edge switch bit. When the CNTRo active edge switch bit is " 0 ", the output of CNTRo pin is started at "H" level. When this bit is " 1 ", the output is started at "L" level.
Also, the inverted waveform of pulse output from CNTRo pin can be output from TXOUT pin by setting " 1 " to the P03/TXOUT output valid bit.
When using a timer in this mode, set the port P14 and P03 direction registers to output mode.

(3) Event counter mode

The timer A counts signals input from the P14/CNTRo pin.
Except for this, the operation in event counter mode is the same as in timer mode.
The active edge of CNTRo pin input signal can be selected from rising or falling by the CNTRo active edge switch bit .

(4) Pulse width measurement mode

In the pulse width measurement mode, the pulse width of the signal input to P14/CNTRo pin is measured.
The operation of Timer X can be controlled by the level of the signal input from the CNTRo pin.
When the CNTRo active edge switch bit is " 0 ", the signal selected by the timer X count source selection bit is counted while the input signal level of CNTRo pin is " H ". The count is stopped while the pin is "L". Also, when the CNTRo active edge switch bit is " 1 ", the signal selected by the timer X count source selection bit is counted while the input signal level of CNTRo pin is "L". The count is stopped while the pin is " H ".

Timer X can stop counting by setting " 1 " to the timer X count stop bit in any mode.
Also, when Timer X underflows, the timer X interrupt request bit is set to " 1 ".

Note on Timer X is described below;

■ Note on Timer X

CNTRo interrupt active edge selection
CNTRo interrupt active edge depends on the CNTRo active edge switch bit.
When this bit is " 0 ", the CNTRo interrupt request bit is set to " 1 " at the falling edge of CNTRo pin input signal. When this bit is " 1 ", the CNTRo interrupt request bit is set to " 1 " at the rising edge of CNTRo pin input signal.

Fig. 23 Structure of timer X mode register

Fig. 24 Timer count source set register

- Timer Y

Timer Y is an 8-bit timer and counts the prescaler Y output. When Timer Y underflows, the timer Y interrupt request bit is set to "1".
Prescaler Y is an 8-bit prescaler and counts the signal selected by the timer Y count source selection bit.
Prescaler Y has the prescaler Y latch to retain the reload value. Timer Y has the timer Y primary latch and timer Y secondary latch to retain the reload value.
The value of prescaler Y latch is set to Prescaler Y when Prescaler Y underflows. The value of timer Y primary latch or timer Y secondary latch are set to Timer Y when Timer Y underflows. As for the value to transfer to Timer Y , either of timer Y primary or timer Y secondary is selected depending on the timer Y operating mode.

When writing to Prescaler Y (PREY), timer Y primary (TYP) or timer Y secondary (TYS) is executed, writing to "latch only" or "latch and prescaler (timer)" can be selected by the setting value of the timer Y write control bit. Be sure to set the timer Y write control bit because there are some notes according to the operating mode.
When reading from Prescaler Y (PREY) is executed, the count value of Prescaler Y is read out. When reading from timer Y primary (TYP) is executed, the count value of Timer Y is read out. The count value of Timer Y can be read out by reading from the timer Y primary (TYP) even when the value of timer Y primary latch or timer Y secondary latch is counted. When reading the timer Y secondary (TYS) is executed, the undefined value is read out.

Timer Y can be selected in one of 2 operating modes by setting the timer Y operating mode bits of the timer Y, Z mode register.

(1) Timer mode

Prescaler Y counts the count source selected by the timer Y count source selection bits. Each time the count clock is input, the contents of Prescaler Y is decremented by 1. When the contents of Prescaler Y reach "0016", an underflow occurs at the next count clock, and the prescaler Y latch is reloaded into Prescaler Y. The division ratio of Prescaler Y is $1 /(n+1)$ provided that the value of Prescaler Y is n .
The contents of Timer Y is decremented by 1 each time the underflow signal of Prescaler Y is input. When the contents of Timer Y reach " 0016 ", an underflow occurs at the next count clock, and the timer Y primary latch is reloaded into Timer Y and count continues. (In the timer mode, the contents of timer Y primary latch is counted. Timer Y secondary latch is not used in this mode.)
The division ratio of Timer Y is $1 /(m+1)$ provided that the value of Timer Y is m . Accordingly, the division ratio of Prescaler Y and Timer Y is $1 /((n+1) \times(m+1))$ provided that the value of Prescaler Y is n and the value of Timer Y is m.
In the timer mode, writing to "latch only" or "latches and Prescaler Y and timer Y primary" can be selected by the setting value of the timer Y write control bit.

(2) Programmable waveform generation mode

In the programmable waveform generation mode, timer counts the setting value of timer Y primary and the setting value of timer Y secondary alternately, the waveform inverted each time Timer Y underflows is output from TYOUT pin.
When using this mode, be sure to set " 1 " to the timer Y write control bit to select "write to latch only". Also, set the port P01 direction registers to output mode.
The active edge of output waveform is set by the timer Y output level latch (b5) of the timer Y, Z waveform output control register (PUM). When "0" is set to b5 of PUM, " H " interval by the setting value of TYP or "L" interval by the setting value of TYS is output alternately. When " 1 " is set to b5 of PUM, " L " interval by the setting value of TYP or "H" interval by the setting value of TYS is output alternately.
Also, in this mode, the primary interval and the secondary interval of the output waveform can be extended respectively for 0.5 cycle of timer count source clock by setting the timer Y primary waveform extension control bit (b2) and the timer Y secondary waveform extension control bit (b3) of PUM to "1". As a result, the waveforms of more accurate resolution can be output.
When b2 and b3 of PUM are used, the frequency and duty of the output waveform are as follows;

Waveform frequency:
FYOUT $=\frac{2 \times T M Y C L}{2 \times(T Y P+1)+2 \times(T Y S+1)+(E X P Y P+E X P Y S)}$

Duty:
DYOUT $=\frac{2 \times(T Y P+1)+E X P Y P}{(2 \times(T Y P+1)+E X P Y P)+(2 \times(T Y S+1)+E X P Y S)}$

TMYCL: Timer Y count source (frequency)
TYP: Timer Y primary (8bit)
TYS: Timer Y secondary (8bit)
EXPYP: Timer Y primary waveform extension control bit (1bit) EXPYS: Timer Y secondary waveform extension control bit (1bit)

In the programmable waveform generation mode, when values of the TYP, TYS, EXPYP and EXPYS are changed, the output waveform is changed at the beginning (timer Y primary waveform interval) of waveform period.
When the count values are changed, set values to the TYS, EXPYP and EXPYS first. After then, set the value to TYP. The values are set all at once at the beginning of the next waveform period when the value is set to TYP. (When writing at timer stop is executed, writing to TYP at last is required.)

Notes on programmable waveform generation mode is described below;

- Notes on programmable generation waveform mode

- Count set value

In the programmable waveform generation mode, values of TYS, EXPYP, and EXPYS are valid by writing to TYP because the setting to them is executed all at once by writing to TYP. Even when changing TYP is not required, write the same value again.

- Write timing to TYP

In the programmable waveform generation mode, when the setting value is changed while the waveform is output, set by software in order not to execute the writing to TYP and the timing of timer underflow during the secondary interval simultanesously. - Usage of waveform extension function

The waveform extension function by the timer Y waveform extension control bit can be used only when " 0016 " is set to Prescaler Y. When the value other than " 0016 " is set to Prescaler Y , be sure to set " 0 " to EXPYP and EXPYS.

- Timer Y write mode

When using this mode, be sure to set " 1 " to the timer Y write control bit to select "write to latch only".

Timer Y can stop counting by setting "1" to the timer Y count stop bit in any mode.
Also, when Timer Y underflows, the timer Y interrupt request bit is set to " 1 ".

Timer Y reloads the value of latch when counting is stopped by the timer Y count stop bit. (When timer is read out while timer is stopped, the value of latch is read. The value of timer can be read out only while timer is operating.)

-Timer Z

Timer Z is an 8 -bit timer and counts the prescaler Z output. When Timer Z underflows, the timer Z interrupt request bit is set to "1".
Prescaler Z is an 8-bit prescaler and counts the signal selected by the timer Z count source selection bit.
Prescaler Z has the prescaler Z latch to retain the reload value. Timer Z has the timer Z primary latch and timer Z secondary latch to retain the reload value.
The value of prescaler Z latch is set to Prescaler Z when Prescaler Z underflows. The value of timer Z primary latch or timer Z secondary latch are set to Timer Z when Timer Z underflows.
As for the value to transfer to Timer Z, either of timer Z primary or timer Z secondary is selected depending on the timer Z operating mode.

When writing to Prescaler Z (PREZ), timer Z primary (TZP) or timer Z secondary (TZS) is executed, writing to "latch only" or "latches and Prescaler Z and Timer Z" can be selected by the setting value of the timer Z write control bit. Be sure to set the write control bit because there are some notes according to the operating mode.
When reading from Prescaler Z (PREZ) is executed, the count value of Prescaler Z is read out. When reading from timer Z primary (TZP) is executed, the count value of Timer Z is read out. The count value of Timer Z can be read out by reading from the timer Z primary (TZP) even when the value of timer Z primary latch or timer Z secondary latch is counted. When reading the timer Z secondary (TZS) is executed, the undefined value is read out.

Timer Z can be selected in one of 4 operating modes by setting the timer Z operating mode bits of the timer Y, Z mode register.

(1) Timer mode

Prescaler Z counts the count source selected by the timer Z count source selection bits. Each time the count clock is input, the contents of Prescaler Z is decremented by 1 . When the contents of Prescaler Z reach "0016", an underflow occurs at the next count clock, and the prescaler Z latch is reloaded into Prescaler Z. The division ratio of Prescaler Z is $1 /(n+1)$ provided that the value of Prescaler Z is n .
The contents of Timer Z is decremented by 1 each time the underflow signal of Prescaler Z is input. When the contents of Timer Z reach " 0016 ", an underflow occurs at the next count clock, and the timer Z primary latch is reloaded into Timer Z and count continues. (In the timer mode, the contents of timer Z primary latch is counted. Timer Z secondary latch is not used in this mode.)
The division ratio of Timer Z is $1 /(m+1)$ provided that the value of Timer Z is m. Accordingly, the division ratio of Prescaler Z and Timer Z is $1 /((n+1) \times(m+1))$ provided that the value of Prescaler Z is n and the value of Timer Z is m.
In the timer mode, writing to "latch only" or "latches and Prescaler Z and timer Z primary" can be selected by the setting value of the timer Z write control bit.

(2) Programmable waveform generation mode

In the programmable waveform generation mode, timer counts the setting value of timer Z primary and the setting value of timer Z secondary alternately, the waveform inverted each time Timer Z underflows is output from TZOUT pin.
When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only". Also, set the port P02 direction registers to output mode.
The active edge of output waveform is set by the timer Z output level latch (b4) of the timer Y, Z waveform output control register (PUM). When " 0 " is set to b4 of PUM, " H " interval by the setting value of TZP or "L" interval by the setting value of TZS is output alternately. When " 1 " is set to b4 of PUM, " L " interval by the setting value of TZP or "H" interval by the setting value of TZS is output alternately.
Also, in this mode, the primary interval and the secondary interval of the output waveform can be extended respectively for 0.5 cycle of timer count source clock by setting the timer Z primary waveform extension control bit (b0) and the timer Z secondary waveform extension control bit (b1) of PUM to " 1 ". As a result, the waveforms of more accurate resolution can be output.
When b0 and b1 of PUM are used, the frequency and duty of the output waveform are as follows;

Waveform frequency:
$F Z O U T=\frac{2 \times T M Z C L}{2 \times(T Z P+1)+2 \times(T Z S+1)+(E X P Z P+E X P Z S)}$

Duty:
$\mathrm{DZOUT}=\frac{2 \times(\mathrm{TZP}+1)+\mathrm{EXPZP}}{(2 \times(\mathrm{TZP}+1)+\mathrm{EXPZP})+(2 \times(\mathrm{TZS}+1)+\mathrm{EXPZS}}$

TMZCL: Timer Z count source (frequency)
TZP: Timer Z primary (8bit)
TZS: Timer Z secondary (8bit)
EXPZP: Timer Z primary waveform extension control bit (1bit)
EXPZS: Timer Z secondary waveform extension control bit (1bit)

In the programmable waveform generation mode, when values of the TZP, TZS, EXPZP and EXPZS are changed, the output waveform is changed at the beginning (timer Z primary waveform interval) of waveform period.
When the count values are changed, set values to the TZS, EXPZP and EXPZS first. After then, set the value to TZP. The values are set all at once at the beginning of the next waveform period when the value is set to TZP. (When writing at timer stop is executed, writing to TZP at last is required.)

Notes on the programmable waveform generation mode are described below;

- Notes on programmable waveform generation mode

- Count set value

In the programmable waveform generation mode, values of TZS, EXPZP, and EXPZS are valid by writing to TZP because the setting to them is executed all at once by writing to TZP. Even when changing TZP is not required, write the same value again.

- Write timing to TZP

In the programmable waveform generation mode, when the setting value is changed while the waveform is output, set by software in order not to execute the writing to TZP and the timing of timer underflow during the secondary interval simultanesously. - Usage of waveform extension function

The waveform extension function by the timer Z waveform extension control bit can be used only when " 0016 " is set to Prescaler Z. When the value other than " 0016 " is set to Prescaler Z, be sure to set " 0 " to EXPZP and EXPZS. Also, when the timer Y underflow is selected as the count source, the waveform extension function cannot be used.

- Timer Z write mode

When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only".

(3) Programmable one-shot generation mode

In the programmable one-shot generation mode, the one-shot pulse by the setting value of timer Z primary can be output from TZout pin by software or external trigger. When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only". Also, set the port P02 direction registers to output mode. In this mode, TZS is not used.
The active edge of output waveform is set by the timer Z output level latch (b5) of the timer Y, Z waveform output control register (PUM). When " 0 " is set to b 5 of PUM, " H " pulse during the interval of the TZP setting value is output. When " 1 " is set to b5 of PUM, " L " pulse during the interval of the TZP setting value is output.
Also, in this mode, the interval of the one-shot pulse output can be extended for 0.5 cycle of timer count source clock by setting the timer Z primary waveform extension control bit (b2) of PUM to " 1 ". As a result, the waveforms of more accurate resolution can be output.
In the programmable one-shot generation mode, the trigger by software or the external INTo pin can be accepted by writing " 0 " to the timer Z count stop bit after the count value is set. (At the time when " 0 " is written to the timer Z count stop bit, Timer Z stops.) By writing " 1 " to the timer Z one-shot start bit, or by inputting the valid trigger to the INTo pin after the trigger to the INTo pin becomes valid by writing " 1 " to the INTo pin one-shot trigger control bit, Timer Z starts counting, at the same time, the output of TZout pin is inverted. When Timer Z underflows, the output of TZout pin is inverted again and Timer Z stops. When also the trigger of INT0 pin is accepted, the contents of the one-shot start bit is changed to " 1 " by hardware.

The falling or rising can be selected as the edge of the valid trigger of INTo pin by the INTo pin one-shot trigger edge selection bit. During the one-shot pulse output interval, the one-shot pulse output can be stopped forcibly by writing " 0 " to the timer Z one-shot start bit.
In the programmable one-shot generation mode, when the count values are changed, set value to the EXPZP first. After then, set the value to TZP. The values are set all at once at the beginning of the next one-shot pulse when the value is set to TZP. (When writing at timer stop is executed, writing to TZP at last is required.)

Notes on the programmable one-shot generation mode are described below;

Notes on programmable one-shot generation mode

- Count set value

In the programmable one-shot generation mode, the value of EXPZP becomes valid by writing to TZP. Even when changing TZP is not required, write the same value again.

- Write timing to TZP

In the programmable one-shot generation mode, when the setting value is changed while the waveform is output, set by software in order not to execute the writing to TZP and the timing of timer underflow simultanesously.

- Usage of waveform extension function

The waveform extension function by the timer Z waveform extension control bit can be used only when " 0016 " is set to Prescaler Z. When the value other than " 0016 " is set to Prescaler Z, be sure to set " 0 " to EXPZP. Also, when the timer Y underflow is selected as the count source, the waveform extension function cannot be used.

- Timer Z write mode

When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only".

(4) Programmable wait one-shot generation mode

In the programmable wait one-shot generation mode, the one-shot pulse by the setting value of timer Z secondary can be output from TZOUT pin by software or external trigger to INT0 pin after the wait by the setting value of the timer Z primary. When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only". Also, set the port P02 direction registers to output mode.
The active edge of output waveform is set by the timer Z output level latch (b5) of the timer Y, Z waveform output control register (PUM). When " 0 " is set to b5 of PUM, after the wait during the interval of the TZP setting value, " H " pulse during the interval of the TZS setting value is output. When " 1 " is set to b5 of PUM, after the wait during the interval of the TZP setting value, "L" pulse during the interval of the TZS setting value is output.
Also, in this mode, the intervals of the wait and the one-shot pulse output can be extended for 0.5 cycle of timer count source clock by setting EXPZP and EXPZS of PUM to "1". As a result, the waveforms of more accurate resolution can be output.

In the programmable one-shot generation mode, the trigger by software or the external INTo pin can be accepted by writing " 0 " to the timer Z count stop bit after the count value is set. (At the time when " 0 " is written to the timer Z count stop bit, Timer Z stops.) By writing " 1 " to the timer Z one-shot start bit, or by inputting the valid trigger to the INTo pin after the trigger to the INTo pin becomes valid by writing " 1 " to the INTo pin one-shot trigger control bit, Timer Z starts counting.
While Timer Z counts the TZP, the initial value of the TZout pin output is retained. When Timer Z underflows, the value of TZS is reloaded, at the same time, the output of TZout pin is inverted. When Timer Z underflows, the output of TZout pin is inverted again and Timer Z stops. When also the trigger of INTo pin is accepted, the contents of the one-shot start bit is changed to " 1 " by hardware.
The falling or rising can be selected as the edge of the valid trigger of INTo pin by the INTo pin one-shot trigger edge selection bit. During the wait interval and the one-shot pulse output interval, the one-shot pulse output can be stopped forcibly by writing " 0 " to the timer Z one-shot start bit.
In the programmable wait one-shot generation mode, when the count values are changed, set values to the TZS, EXPZP and EXPZS first. After then, set the value to TZP. The values are set all at once at the beginning of the next wait interval when the value is set to TZP. (When writing at timer stop is executed, writing to TZP at last is required.)

Notes on the programmable wait one-shot generation mode are described below;

- Notes on programmable wait one-shot generation mode
- Count set value

In the programmable wait one-shot generation mode, values of TZS, EXPZP and EXPZS are valid by writing to TZP. Even when changing TZP is not required, write the same value again.

- Write timing to TZP

In the programmable wait one-shot generation mode, when the setting value is changed while the waveform is output, set by software in order not to execute the writing to TZP and the timing of timer underflow during the secondary interval simultanesously.

- Usage of waveform extension function

The waveform extension function by the timer Z waveform extension control bit can be used only when " 0016 " is set to Prescaler Z. When the value other than " 0016 " is set to Prescaler Z, be sure to set " 0 " to EXPZP and EXPZS. Also, when the timer Y underflow is selected as the count source, the waveform extension function cannot be used.

- Timer Z write mode

When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only".

Timer Z can stop counting by setting " 1 " to the timer Z count stop bit in any mode.
Also, when Timer Z underflows, the timer Z interrupt request bit is set to "1".

Timer Z reloads the value of latch when counting is stopped by the timer Z count stop bit. (When timer is read out while timer is stopped, the value of latch is read. The value of timer can be read out only while timer is operating.)

Fig. 25 Structure of timer Y, \mathbf{Z} mode register

Fig. 26 Structure of timer YZ waveform output control register

Fig. 27 Structure of one-shot start register

Fig. 28 Block diagram of timer 1 and timer A

Fig. 29 Block diagram of timer \mathbf{X}, timer \mathbf{Y} and timer \mathbf{Z}

Serial I/O

-Serial I/01

Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.

(1) Clock Synchronous Serial I/O Mode

Clock synchronous serial I/O1 mode can be selected by setting the serial I/O1 mode selection bit of the serial I/O1 control register (bit 6) to " 1 ".
For clock synchronous serial I/O1, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB.

Fig. 30 Block diagram of clock synchronous serial I/O1

Fig. 31 Operation of clock synchronous serial I/O1 function

(2) Asynchronous Serial I/O (UART) Mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O1 mode selection bit of the serial I/O1 control register to " 0 ".
Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical.

The transmit and receive shift registers each have a buffer, but the two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer register, and receive data is read from the receive buffer register.
The transmit buffer register can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.

Fig. 32 Block diagram of UART serial I/O1

Fig. 33 Operation of UART serial I/O1 function

[Transmit buffer register/receive buffer register (TB/RB)] 001816

The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is " 0 ".

[Serial I/O1 status register (SIO1STS)] 001916

The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O1 function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to " 0 " when the receive buffer register is read.
If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O1 status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing "0" to the serial I/O1 enable bit SIOE (bit 7 of the serial I/O1 control register) also clears all the status flags, including the error flags.
Bits 0 to 6 of the serial I/O1 status register are initialized to " 0 " at reset, but if the transmit enable bit of the serial I/O1 control register has been set to " 1 ", the transmit shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become " 1 ".

[Serial I/O1 control register (SIO1CON)] 001A16

The serial I/O1 control register consists of eight control bits for the serial I/O1 function.

[UART control register (UARTCON)] 001B16

The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer and one bit (bit 4) which is always valid and sets the output structure of the P11/TXD1 pin.

[Baud rate generator (BRG)] 001C16

The baud rate generator determines the baud rate for serial transfer. The baud rate generator divides the frequency of the count source by $1 /(n+1)$, where n is the value written to the baud rate generator.

- Notes on serial I/O

- Serial I/O interrupt

When setting the transmit enable bit to " 1 ", the serial I/O transmit interrupt request bit is automatically set to " 1 ". When not requiring the interrupt occurrence synchronized with the transmission enabled, take the following sequence.
(1) Set the serial I/O transmit interrupt enable bit to "0" (disabled).
(2) Set the transmit enable bit to " 1 ".
(3) Set the serial I/O transmit interrupt request bit to " 0 " after 1 or more instructions have been executed.
(5) Set the serial I/O transmit interrupt enable bit to "1" (enabled).

- I/O pin function when serial I/O1 is enabled.

The functions of P12 and P13 are switched with the setting values of a serial I/O1 mode selection bit and a serial I/O1 synchronous clock selection bit as follows.
(1) Serial I/O1 mode selection bit \rightarrow " 1 ":

Clock synchronous type serial I/O is selected.
Setup of a serial I/O1 synchronous clock selection bit " 0 " : P12 pin turns into an output pin of a synchronous clock.
"1": P12 pin turns into an input pin of a synchronous clock.
Setup of a SRDY1 output enable bit (SRDY)
"0" : P13 pin can be used as a normal I/O pin.
"1": P13 pin turns into a SRDY output pin.
(2) Serial I/O1 mode selection bit \rightarrow " 0 " :

Clock asynchronous (UART) type serial I/O is selected.
Setup of a serial I/O1 synchronous clock selection bit " 0 ": P12 pin can be used as a normal I/O pin.
"1": P12 pin turns into an input pin of an external clock.
When clock asynchronous (UART) type serial I/O is selected, it is P13 pin. It can be used as a normal I/O pin.

| b0 | Serial I/O1 control register |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (SIO1CON : address 001A 16, initial value: 00 16) | |

Serial I/O1 synchronous clock selection bit (SCS) 0 : BRG output divided by 4 when clock synchronous serial I/O is selected, BRG output divided by 16 when UART is selected.
1: External clock input when clock synchronous serial I/O is selected, external clock input divided by 16 when UART is selected.
$\overline{\text { SRDY } 1}$ output enable bit (SRDY)
0: P13 pin operates as ordinary I/O pin
1: P13 pin operates as SRDY1 output pin
Transmit interrupt source selection bit (TIC)
0 : Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0 : Transmit disabled
1: Transmit enabled

Receive enable bit (RE)
0 : Receive disabled
1: Receive enabled

Serial I/O1 mode selection bit (SIOM)
0: Clock asynchronous (UART) serial I/O
1: Clock synchronous serial I/O
Serial I/O1 enable bit (SIOE)
0: Serial I/O1 disabled (pins P1o to P13 operate as ordinary I/O pins)
1: Serial I/O1 enabled (pins P1 o to P1 3operate as serial I/O pins)

Fig. 34 Structure of serial I/O1-related registers

-Serial I/O2

The serial I/O2 function can be used only for clock synchronous serial I/O.
For clock synchronous serial I/O2 the transmitter and the receiver must use the same clock. When the internal clock is used, transfer is started by a write signal to the serial I/O2 register.
Note: Serial I/O2 can be used in the following cases;
(1) Serial I/O1 is not used,
(2) Serial I/O1 is used as UART and BRG output divided by 16 is selected as the synchronized clock.

[Serial I/O2 control register] SIO2CON

The serial I/O2 control register contains 8 bits which control various serial I/O functions.

- Set " 0 " to bit 3 to receive.
- At reception, clear bit 7 to " 0 " by writing a dummy data to the serial I/O2 register after completion of shift.

Fig. 35 Structure of serial I/O2 control registers

Fig. 36 Block diagram of serial I/O2

Serial I/O2 operation

By writing to the serial I/O2 register (address 003116) the serial I/ O2 counter is set to " 7 ".
After writing, the SDATA2 pin outputs data every time the transfer clock shifts from " H " to " L ". And, as the transfer clock shifts from " L " to " H ", the Sdata2 pin reads data, and at the same time the contents of the serial I/O2 register are shifted by 1 bit.
When the internal clock is selected as the transfer clock source, the following operations execute as the transfer clock counts up to 8.

- Serial I/O2 counter is cleared to " 0 ".
- Transfer clock stops at an "H" level.
- Interrupt request bit is set.
- Shift completion flag is set.

Also, the Sdata2 pin is in a high impedance state after the data transfer is completed (refer to Fig.37).
When the external clock is selected as the transfer clock source, the interrupt request bit is set as the transfer clock counts up to 8 , but external control of the clock is required since it does not stop. Notice that the SDATA2 pin is not in a high impedance state on the completion of data transfer.
Also, after the receive operation is completed, the transmit/receive shift completion flag is cleared by reading the serial I/O2 register. At transmit, the transmit/receive shift completion flag is cleared and the transmit operation is started by writing to serial I/O2 register.

Fig. 37 Serial I/O2 timing (LSB first)

A/D Converter

The functional blocks of the A/D converter are described below.

[A/D conversion register] AD

The A/D conversion register is a read-only register that stores the result of A / D conversion. Do not read out this register during an $A /$ D conversion.

[A/D control register] ADCON

The A / D control register controls the A / D converter. Bit 2 to 0 are analog input pin selection bits. Bit 4 is the AD conversion completion bit. The value of this bit remains at " 0 " during A/D conversion, and changes to " 1 " at completion of A / D conversion.
A/D conversion is started by setting this bit to " 0 ".

[Comparison voltage generator]

The comparison voltage generator divides the voltage between AVSS and VREF by 1024, and outputs the divided voltages.

[Channel selector]

The channel selector selects one of ports P27/AN7 to P2o/AN0, and inputs the voltage to the comparator.

[Comparator and control circuit]

The comparator and control circuit compares an analog input voltage with the comparison voltage and stores its result into the A / D conversion register. When A/D conversion is completed, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to " 1 ". Because the comparator is constructed linked to a capacitor, set $f($ XIN) to 500 kHz or more during A/D conversion.

■ Note on A/D converter

As for AD translation accuracy, on the following operating conditions, accuracy may become low.
(1) Since the analog circuit inside a microcomputer becomes sensitive to noise when Vref voltage is set up lower than Vcc voltage, accuracy may become low rather than the case where VREF voltage and Vcc voltage are set up to the same value.
(2) When Vref voltage is lower than [3.0 V], the accuracy at the low temperature may become extremely low compared with that at room temperature When the system would be used at low temperature, the use at $\mathrm{V}_{\mathrm{REF}}=3.0 \mathrm{~V}$ or more is recommended.

Note: These can be used only for 36 pin version.
Fig. 38 Structure of A/D control register

Read 8-bit (Read only address 003516)

Read 10-bit (read in order address 003616, 003516)
(Address 003616)

(Address 003516)

Note: High-order 6-bit of address 003616 returns " 0 " when read.

Fig. 39 Structure of A/D conversion register

Fig. 40 Block diagram of A/D converter

Watchdog Timer

The watchdog timer gives a means for returning to a reset status when the program fails to run on its normal loop due to a runaway. The watchdog timer consists of an 8-bit watchdog timer H and an 8 -bit watchdog timer L, being a 16-bit counter.

Standard operation of watchdog timer

The watchdog timer stops when the watchdog timer control register (address 003916) is not set after reset. Writing an optional value to the watchdog timer control register (address 003916) causes the watchdog timer to start to count down. When the watchdog timer H underflows, an internal reset occurs. Accordingly, it is programmed that the watchdog timer control register (address 003916) can be set before an underflow occurs.
When the watchdog timer control register (address 003916) is read, the values of the high-order 6-bit of the watchdog timer H , STP instruction disable bit and watchdog timer H count source selection bit are read.

Operation of watchdog timer H count source selection bit

A watchdog timer H count source can be selected by bit 7 of the watchdog timer control register (address 003916). When this bit is " 0 ", the count source becomes a watchdog timer L underflow signal. The detection time is 131.072 ms at $f(\mathrm{XIN})=8 \mathrm{MHz}$.
When this bit is " 1 ", the count source becomes $f(\operatorname{XIN}) / 16$. In this case, the detection time is $512 \mu \mathrm{~s}$ at $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$.
This bit is cleared to " 0 " after reset.

Operation of STP instruction disable bit

When the watchdog timer is in operation, the STP instruction can be disabled by bit 6 of the watchdog timer control register (address 003916).
When this bit is " 0 ", the STP instruction is enabled.
When this bit is " 1 ", the STP instruction is disabled, and an internal reset occurs if the STP instruction is executed.
Once this bit is set to " 1 ", it cannot be changed to " 0 " by program. This bit is cleared to "0" after reset.

Initial value of watchdog timer

By a reset or writing to the watchdog timer control register (address 003916), the watchdog timer H is set to " FF 16 " and the watchdog timer L is set to "FF16".

Fig. 41 Block diagram of watchdog timer

Fig. 42 Structure of watchdog timer control register

Reset Circuit

The microcomputer is put into a reset status by holding the $\overline{\mathrm{RE}}$ $\overline{\text { SET }}$ pin at the "L" level for $2 \mu \mathrm{~s}$ or more when the power source voltage is 2.2 to 5.5 V and XIN is in stable oscillation.
After that, this reset status is released by returning the RESET pin to the " H " level. The program starts from the address having the contents of address FFFD16 as high-order address and the contents of address FFFC16 as low-order address.
In the case of $f(\phi) \leq 6 \mathrm{MHz}$, the reset input voltage must be 0.9 V or less when the power source voltage passes 4.5 V .
In the case of $f(\phi) \leq 4 \mathrm{MHz}$, the reset input voltage must be 0.8 V or less when the power source voltage passes 4.0 V .
In the case of $\mathrm{f}(\phi) \leq 2 \mathrm{MHz}$, the reset input voltage must be 0.48 V or less when the power source voltage passes 2.4 V .
In the case of $\mathrm{f}(\phi) \leq 1 \mathrm{MHz}$, the reset input voltage must be 0.44 V or less when the power source voltage passes 2.2 V .

Fig. 43 Example of reset circuit

Fig. 44 Timing diagram at reset

Fig. 45 Internal status of microcomputer at reset

Clock Generating Circuit

An oscillation circuit can be formed by connecting a resonator between XIN and XOUT, and an RC oscillation circuit can be formed by connecting a resistor and a capacitor.
Use the circuit constants in accordance with the resonator manufacturer's recommended values.

(1) On-chip oscillator operation

When the MCU operates by the on-chip oscillator for the main clock, connect XIN pin to Vss and leave Xout pin open.
The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that variable frequencies when designing application products.

(2) Ceramic resonator

When the ceramic resonator is used for the main clock, connect the ceramic resonator and the external circuit to pins XIN and Xout at the shortest distance. A feedback resistor is built in between pins XIN and Xout.

(3) RC oscillation

When the RC oscillation is used for the main clock, connect the XIN pin and XOUT pin to the external circuit of resistor R and the capacitor C at the shortest distance.
The frequency is affected by a capacitor, a resistor and a microcomputer.
So, set the constants within the range of the frequency limits.

(4) External clock

When the external signal clock is used for the main clock, connect the XIN pin to the clock source and leave Xout pin open.

Fig. 46 External circuit of ceramic resonator

Fig. 47 External circuit of RC oscillation

Fig. 48 External clock input circuit

Fig. 49 Processing of XIN and Xout pins at on-chip oscillator operation

(1) Oscillation control

- Stop mode

When the STP instruction is executed, the internal clock ϕ stops at an "H" level and the XIN oscillator stops. At this time, timer 1 is set to " 0116 " and prescaler 1 is set to "FF16" when the oscillation stabilization time set bit after release of the STP instruction is " 0 ". On the other hand, timer 1 and prescaler 1 are not set when the above bit is " 1 ". Accordingly, set the wait time fit for the oscillation stabilization time of the oscillator to be used. $f($ XIN $) / 16$ is forcibly connected to the input of prescaler 1. When an external interrupt is accepted, oscillation is restarted but the internal clock ϕ remains at "H" until timer 1 underflows. As soon as timer 1 underflows, the internal clock ϕ is supplied. This is because when a ceramic oscillator is used, some time is required until a start of oscillation. In case oscillation is restarted by reset, no wait time is generated. So apply an "L" level to the RESET pin while oscillation becomes stable.
Also, the STP instruction cannot be used while CPU is operating by an on-chip oscillator.

- Wait mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level, but the oscillator does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted. To ensure that interrupts will be received to release the STP or WIT state, interrupt enable bits must be set to " 1 " before the STP or WIT instruction is executed.

- Notes on clock generating circuit

For use with the oscillation stabilization set bit after release of the STP instruction set to " 1 ", set values in timer 1 and prescaler 1 after fully appreciating the oscillation stabilization time of the oscillator to be used.

- Switch of ceramic and RC oscillations

After releasing reset the operation starts by starting an on-chip oscillator. Then, a ceramic oscillation or an RC oscillation is selected by setting bit 5 of the CPU mode register.

- Double-speed mode

When a ceramic oscillation is selected, a double-speed mode can be used. Do not use it when an RC oscillation is selected.

- CPU mode register

Bits 5, 1 and 0 of CPU mode register are used to select oscillation mode and to control operation modes of the microcomputer. In order to prevent the dead-lock by error-writing (ex. program run-away), these bits can be rewritten only once after releasing reset. After rewriting it is disable to write any data to the bit. (The emulator MCU "M37540RSS" is excluded.)
Also, when the read-modify-write instructions (SEB, CLB) are executed to bits 2 to 4,6 and 7 , bits 5 , 1 and 0 are locked.

- Clock division ratio, XIN oscillation control, on-chip oscillator control The state transition shown in Fig. 52 can be performed by setting the clock division ratio selection bits (bits 7 and 6), XIN oscillation control bit (bit 4), on-chip oscillator oscillation control bit (bit 3) of CPU mode register. Be careful of notes on use in Fig. 52.

- Oscillation stop detection circuit (Note)

The oscillation stop detection circuit is used for reset occurrence when a ceramic resonator or an oscillation circuit stops by disconnection. When internal reset occurs, reset because of oscillation stop can be detected by setting " 1 " to the oscillation stop detection status bit.
Also, when using the oscillation stop detection circuit, an on-chip oscillator is required.
Figure 53 shows the state transition.

Note: The oscillation stop detection circuit is not included in the emulator MCU "M37540RSS".

Fig. 50 Structure of MISRG

Fig. 51 Block diagram of internal clock generating circuit (for ceramic resonator)

Fig. 52 Block diagram of internal clock generating circuit (for RC oscillation)

Fig. 53 State transition

NOTES ON PROGRAMMING

Processor Status Register

The contents of the processor status register (PS) after reset are undefined except for the interrupt disable flag I which is "1". After reset, initialize flags which affect program execution. In particular, it is essential to initialize the T flag and the D flag because of their effect on calculations.

Interrupts

The contents of the interrupt request bit do not change even if the BBC or BBS instruction is executed immediately after they are changed by program because this instruction is executed for the previous contents. For executing the instruction for the changed contents, execute one instruction before executing the BBC or BBS instruction.

Decimal Calculations

- For calculations in decimal notation, set the decimal mode flag D to "1", then execute the ADC instruction or SBC instruction. In this case, execute SEC instruction, CLC instruction or CLD instruction after executing one instruction before the ADC instruction or SBC instruction.
- In the decimal mode, the values of the N (negative), V (overflow) and Z (zero) flags are invalid.

Ports

- The values of the port direction registers cannot be read.

That is, it is impossible to use the LDA instruction, memory operation instruction when the T flag is " 1 ", addressing mode using direction register values as qualifiers, and bit test instructions such as BBC and BBS.
It is also impossible to use bit operation instructions such as CLB and SEB and read/modify/write instructions of direction registers for calculations such as ROR.
For setting direction registers, use the LDM instruction, STA instruction, etc.

A/D Conversion

Do not execute the STP instruction during A/D conversion.

Instruction Execution Timing

The instruction execution time can be obtained by multiplying the frequency of the internal clock ϕ by the number of cycles mentioned in the machine-language instruction table.
The frequency of the internal clock ϕ is the same as that of the XIN in double-speed mode, twice the XIN cycle in high-speed mode and 8 times the XIN cycle in middle-speed mode.

CPU Mode Register

The oscillation mode selection bit and processor mode bits can be rewritten only once after releasing reset. However, after rewriting it is disable to write any value to the bit. (Emulator MCU is excluded.)
When a ceramic oscillation is selected, a double-speed mode of the clock division ratio selection bits can be used. Do not use it when an RC oscillation is selected.

State transition

Do not stop the clock selected as the operation clock because of setting of CM3, 4 .

NOTES ON HARDWARE

Handling of Power Source Pin

In order to avoid a latch-up occurrence, connect a capacitor suitable for high frequencies as bypass capacitor between power source pin (Vcc pin) and GND pin (Vss pin). Besides, connect the capacitor to as close as possible. For bypass capacitor which should not be located too far from the pins to be connected, a ceramic capacitor of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ is recommended.

One Time PROM Version

The CNVss pin is connected to the internal memory circuit block by a low-ohmic resistance, since it has the multiplexed function to be a programmable power source pin (VPP pin) as well.
To improve the noise reduction, connect a track between CNVss pin and Vss pin with 1 to $10 \mathrm{k} \Omega$ resistance.
The mask ROM version track of CNVss pin has no operational interference even if it is connected via a resistor.

NOTES ON PERIPHERAL FUNCTIONS

■ Interrupt

When setting the followings, the interrupt request bit may be set to " 1 ". -When setting external interrupt active edge
Related register: Interrupt edge selection register (address 003A16)
Timer X mode register (address 2B16)
Timer A mode register (address 1D16)

When not requiring the interrupt occurrence synchronized with these setting, take the following sequence.
(1) Set the corresponding interrupt enable bit to "0" (disabled).
(2) Set the interrupt edge select bit (active edge switch bit) to " 1 ".
(3) Set the corresponding interrupt request bit to " 0 " after 1 or more instructions have been executed.
(4) Set the corresponding interrupt enable bit to "1" (enabled).

- Timers

- When $\mathrm{n}(0$ to 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.
- When a count source of timer X , timer Y or timer Z is switched, stop a count of timer X.

Timer A

CNTR1 interrupt active edge selection
CNTR1 interrupt active edge depends on the CNTR1 active edge switch bit. When this bit is " 0 ", the CNTR1 interrupt request bit is set to " 1 " at the falling edge of the CNTR1 pin input signal. When this bit is " 1 ", the CNTR1 interrupt request bit is set to " 1 " at the rising edge of the CNTR1 pin input signal.
However, in the pulse width HL continuously measurement mode, CNTR1 interrupt request is generated at both rising and falling edges of CNTR1 pin input signal regardless of the setting of CNTR1 active edge switch bit.

Timer X

CNTRo interrupt active edge selection
CNTRo interrupt active edge depends on the CNTRo active edge switch bit. When this bit is " 0 ", the CNTR0 interrupt request bit is set to " 1 " at the falling edge of CNTRo pin input signal. When this bit is " 1 ", the CNTRo interrupt request bit is set to " 1 " at the rising edge of CNTR0 pin input signal.

■ Timer Y: Programmable Generation Waveform Mode

- Count set value

In the programmable waveform generation mode, values of TYS, EXPYP, and EXPYS are valid by writing to TYP because the setting to them is executed all at once by writing to TYP. Even when changing TYP is not required, write the same value again.

- Write timing to TYP

In the programmable waveform generation mode, when the setting value is changed while the waveform is output, set by software in order not to execute the writing to TYP and the timing of timer underflow during the secondary interval simultanesously.

- Usage of waveform extension function

The waveform extension function by the timer Y waveform extension control bit can be used only when " 0016 " is set to Prescaler Y. When the value other than " 0016 " is set to Prescaler Y , be sure to set " 0 " to EXPYP and EXPYS.

- Timer Y write mode

When using this mode, be sure to set " 1 " to the timer Y write control bit to select "write to latch only".

Timer Y can stop counting by setting "1" to the timer Y count stop bit in any mode.
Also, when Timer Y underflows, the timer Y interrupt request bit is set to " 1 ".

Timer Y reloads the value of latch when counting is stopped by the timer Y count stop bit. (When timer is read out while timer is stopped, the value of latch is read. The value of timer can be read out only while timer is operating.)

Timer Z: Programmable Waveform Generation Mode

- Count set value

In the programmable waveform generation mode, values of TZS, EXPZP, and EXPZS are valid by writing to TZP because the setting to them is executed all at once by writing to TZP. Even when changing TZP is not required, write the same value again.

- Write timing to TZP

In the programmable waveform generation mode, when the setting value is changed while the waveform is output, set by software in order not to execute the writing to TZP and the timing of timer underflow during the secondary interval simultanesously. - Usage of waveform extension function

The waveform extension function by the timer Z waveform extension control bit can be used only when " 0016 " is set to Prescaler Z. When the value other than " 0016 " is set to Prescaler Z, be sure to set " 0 " to EXPZP and EXPZS. Also, when the timer Y underflow is selected as the count source, the waveform extension function cannot be used.

- Timer Z write mode

When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only".

Timer Z: Programmable One-shot Generation Mode

- Count set value

In the programmable one-shot generation mode, the value of EXPZP becomes valid by writing to TZP. Even when changing TZP is not required, write the same value again.

- Write timing to TZP

In the programmable one-shot generation mode, when the setting value is changed while the waveform is output, set by software in order not to execute the writing to TZP and the timing of timer underflow simultanesously.

- Usage of waveform extension function

The waveform extension function by the timer Z waveform extension control bit can be used only when " 0016 " is set to Prescaler Z. When the value other than " 0016 " is set to Prescaler Z, be sure to set " 0 " to EXPZP. Also, when the timer Y underflow is selected as the count source, the waveform extension function cannot be used.

- Timer Z write mode

When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only".

■ Timer Z: Programmable Wait One-shot Generation Mode

- Count set value

In the programmable wait one-shot generation mode, values of TZS, EXPZP and EXPZS are valid by writing to TZP. Even when changing TZP is not required, write the same value again.

- Write timing to TZP

In the programmable wait one-shot generation mode, when the setting value is changed while the waveform is output, set by software in order not to execute the writing to TZP and the timing of timer underflow during the secondary interval simultanesously.

- Usage of waveform extension function

The waveform extension function by the timer Z waveform extension control bit can be used only when " 0016 " is set to Prescaler Z. When the value other than " 0016 " is set to Prescaler Z , be sure to set " 0 " to EXPZP and EXPZS. Also, when the timer Y underflow is selected as the count source, the waveform extension function cannot be used.

- Timer Z write mode

When using this mode, be sure to set " 1 " to the timer Z write control bit to select "write to latch only".

Timer Z can stop counting by setting " 1 " to the timer Z count stop bit in any mode.
Also, when Timer Z underflows, the timer Z interrupt request bit is set to "1".

Timer Z reloads the value of latch when counting is stopped by the timer Z count stop bit. (When timer is read out while timer is stopped, the value of latch is read. The value of timer can be read out only while timer is operating.)

■ Serial I/O

- Serial I/O interrupt

When setting the transmit enable bit to " 1 ", the serial I/O transmit interrupt request bit is automatically set to " 1 ". When not requiring the interrupt occurrence synchronized with the transmission enabled, take the following sequence.
(1) Set the serial I/O transmit interrupt enable bit to "0" (disabled).
(2) Set the transmit enable bit to " 1 ".
(3) Set the serial I/O transmit interrupt request bit to " 0 " after 1 or more instructions have been executed.
(5) Set the serial I/O transmit interrupt enable bit to "1" (enabled).

- I/O pin function when serial I/O1 is enabled.

The functions of P12 and P13 are switched with the setting values of a serial I/O1 mode selection bit and a serial I/O1 synchronous clock selection bit as follows.
(1) Serial I/O1 mode selection bit \rightarrow " 1 " Clock synchronous type serial I/O is selected. Setup of a serial I/O1 synchronous clock selection bit "0" : P12 pin turns into an output pin of a synchronous clock.
"1": P12 pin turns into an input pin of a synchronous clock. Setup of a SRDY1 output enable bit (SRDY)
" 0 " : P13 pin can be used as a normal I/O pin.
"1": P13 pin turns into a SRDY output pin.
(2) Serial I/O1 mode selection bit \rightarrow "0" :

Clock asynchronous (UART) type serial I/O is selected.
Setup of a serial I/O1 synchronous clock selection bit
"0": P12 pin can be used as a normal I/O pin.
"1": P12 pin turns into an input pin of an external clock.
When clock asynchronous (UART) type serial I/O is selected, it is P13 pin. It can be used as a normal I/O pin.

A/D Converter

- The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low.
Make sure that $f(X I N)$ is 500 kHz or more during A/D conversion.
- As for AD translation accuracy, on the following operating conditions, accuracy may become low.
(1) Since the analog circuit inside a microcomputer becomes sensitive to noise when Vref voltage is set up lower than Vcc voltage, accuracy may become low rather than the case where Vref voltage and Vcc voltage are set up to the same value.
(2) When Vref voltage is lower than [3.0 V], the accuracy at the low temperature may become extremely low compared with that at room temperature When the system would be used at low temperature, the use at V REF $=3.0 \mathrm{~V}$ or more is recommended.

Notes on clock generating circuit

For use with the oscillation stabilization set bit after release of the STP instruction set to " 1 ", set values in timer 1 and prescaler 1 after fully appreciating the oscillation stabilization time of the oscillator to be used.

- Switch of ceramic and RC oscillations

After releasing reset the operation starts by starting an on-chip oscillator. Then, a ceramic oscillation or an RC oscillation is selected by setting bit 5 of the CPU mode register.

- Double-speed mode

When a ceramic oscillation is selected, a double-speed mode can be used. Do not use it when an RC oscillation is selected.

- CPU mode register

Bits 5, 1 and 0 of CPU mode register are used to select oscillation mode and to control operation modes of the microcomputer. In order to prevent the dead-lock by error-writing (ex. program run-away), these bits can be rewritten only once after releasing reset. After rewriting it is disable to write any data to the bit. (The emulator MCU "M37540RSS" is excluded.)
Also, when the read-modify-write instructions (SEB, CLB) are executed to bits 2 to 4,6 and 7 , bits 5,1 and 0 are locked.

- Clock division ratio, XIN oscillation control, on-chip oscillator control The state transition shown in Fig. 53 can be performed by setting the clock division ratio selection bits (bits 7 and 6), XIN oscillation control bit (bit 4), on-chip oscillator oscillation control bit (bit 3) of CPU mode register. Be careful of notes on use in Fig. 53.
- On-chip oscillator operation

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.
Be careful that variable frequencies when designing application products.

Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.
In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

- Electric Characteristic Differences Among Mask ROM and One TIme PROM Version MCUs

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation among mask ROM and One Time PROM version MCUs due to the differences in the manufacturing processes.
When manufacturing an application system with One Time PROM version and then switching to use of the mask ROM version, perform sufficient evaluations for the commercial samples of the mask ROM version.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:
1.Mask ROM Order Confirmation Form *
2.Mark Specification Form *
3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.

DATA REQUIRED FOR ROM PROGRAMMING ORDERS

The following are necessary when ordering a One Time PROM production:
1.ROM Programming Order Confirmation Form *
2.Mark Specification Form *
3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.

* For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area.

Table 7 Special programming adapter

Package	Name of Programming Adapter
32P4B	PCA7435SPG02
32P6U-A	PCA7435GPG03
36P2R-A	PCA7435FPG02

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 54 is recommended to verify programming.

Caution: The screening temperature is far higher than the storage temperature. Never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Fig. 54 Programming and testing of One Time PROM version

ELECTRICAL CHARACTERISTICS

1.7540Group (General purpose)

Applied to: M37540M2-XXXFP/SP/GP, M37540M4-XXXFP/SP/GP, M37540E2FP/SP/GP, M37540E8FP/SP/GP

Absolute Maximum Ratings (General purpose)

Table 8 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 6.5 (Note 1)	V
VI	Input voltage P00-P07, P10-P14, P20-P27, P30-P37, VreF		-0.3 to Vcc + 0.3	V
VI	Input voltage RESET, XIN		-0.3 to Vcc + 0.3	V
VI	Input voltage CNVss (Note 2)		-0.3 to 13	V
Vo	Output voltage P00-P07, P10-P14, P20-P27, P30-P37, Xout		-0.3 to Vcc +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300 (Note 3)	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Notes 1: This is the rating value for the Mask ROM version.
The rating value for the One Time PROM version is -0.3 to 7.0 V .
2: It is a rating only for the One Time PROM version. Connect to Vss for the mask ROM version.
3: 200 mW for the 32P6U package product.

Recommended Operating Conditions (General purpose)

Table 9 Recommended operating conditions (1) ($\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
Vcc	Power source voltage (ceramic)	$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$f($ XIN $)=4 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (High-, Middle-speed mode)	2.2	5.0	5.5	V
		$f($ XIN $)=6 \mathrm{MHz}$ (Double-speed mode)	4.5	5.0	5.5	V
		$f(X I N)=4 \mathrm{MHz}$ (Double-speed mode)	4.0	5.0	5.5	V
		$f(X I N)=2 \mathrm{MHz}$ (Double-speed mode)	2.4	5.0	5.5	V
		$f($ XIN $)=1 \mathrm{MHz}$ (Double-speed mode)	2.2	5.0	5.5	V
	Power source voltage (RC)	$f($ XIN $)=4 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=1 \mathrm{MHz}$ (High-, Middle-speed mode)	2.2	5.0	5.5	V
Vss	Power source voltage			0		V
Vref	Analog reference voltage		2.0		Vcc	V
VIH	"H" input voltage P00-P07, P10-P14, P20-P27, P30-P37		0.8 Vcc		Vcc	V
VIH	" H " input voltage (TTL input level selected) P10, P12, P13, P36, P37 (Note 1)		2.0		Vcc	V
VIH	" H " input voltage RESET, XIN		0.8Vcc		Vcc	V
VIL	"L" input voltage P00-P07, P10-P14, P20-P27, P30-P37		0		0.3Vcc	V
VIL	"L" input voltage (TTL input level selected) P10, P12, P13, P36, P37 (Note 1)		0		0.8	V
VIL	"L" input voltage RESET, CNVss		0		0.2Vcc	V
VIL	"L" input voltage XIN		0		0.16Vcc	V
$\sum \mathrm{lOH}$ (peak)	" H " total peak output current (Note 2) P00-P07, P10-P14, P20-P27, P30-P37				-80	mA
$\sum \mathrm{IOL}$ (peak)	"L" total peak output current (Note 2) P00-P07, P10-P14, P20-P27, P37				80	mA
$\sum \mathrm{loL}$ (peak)	"L" total peak output current (Note 2) P30-P36				60	mA
$\sum \mathrm{IOH}(\mathrm{avg})$	"H" total average output current (Note 2) P00-P07, P10-P14, P20-P27, P30-P37				-40	mA
$\sum \mathrm{loL}(\mathrm{avg})$	" L " total average output current (Note 2) P00-P07, P10-P14, P20-P27, P37				40	mA
$\Sigma \mathrm{IOL}(\mathrm{avg})$	"L" total average output current (Note 2) P30-P36				30	mA

Note 1: Vcc $=4.0$ to 5.5 V
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.

Recommended Operating Conditions (General purpose)(continued)

Table 10 Recommended operating conditions (2) (Vcc = 2.2 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current loL (avg), loh (avg) in an average value measured over 100 ms .
3: When the oscillation frequency has a duty cycle of 50%.

Electrical Characteristics (General purpose)

Table 11 Electrical characteristics (1) (Vcc=2.2 to 5.5 V , $\mathrm{Vss}=\mathbf{0} \mathrm{V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VOH	"H" output voltage P00-P07, P10-P14, P20-P27, P30-P37 (Note 1)	$\begin{aligned} & \mathrm{IOH}=-5 \mathrm{~mA} \\ & \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	Vcc-1.5			V
		$\begin{aligned} & \mathrm{IOH}=-1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \text { to } 5.5 \mathrm{~V} \end{aligned}$	Vcc-1.0			V
VOL	"L" output voltage P00-P07, P10-P14, P20-P27, P37	$\begin{aligned} & \mathrm{IOL}=5 \mathrm{~mA} \\ & \mathrm{Vcc}=4.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$			1.5	V
		$\begin{array}{\|l\|} \hline \mathrm{IOL}=1.5 \mathrm{~mA} \\ \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{array}$			0.3	V
		$\begin{array}{\|l\|} \hline \mathrm{IOL}=1.0 \mathrm{~mA} \\ \mathrm{VCC}=2.2 \text { to } 5.5 \mathrm{~V} \end{array}$			1.0	V
VoL	"L" output voltage P30-P36	$\begin{aligned} & \mathrm{IOL}=15 \mathrm{~mA} \\ & \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \mathrm{IOL}=1.5 \mathrm{~mA} \\ & \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$			0.3	V
		$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=2.2 \text { to } 5.5 \mathrm{~V} \end{aligned}$			1.0	V
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V}^{-}$	Hysteresis CNTRo, CNTR1, INT0, INT1(Note 2) P00-P07 (Note 3)			0.4		V
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V}^{-}$	Hysteresis RxD, Sclk1, Sclk2, Sdata2 (Note 2)			0.5		V
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V}^{-}$	Hysteresis RESET			0.5		V
IIH	" H " input current P00-P07, P10-P14, P20-P27, P30-P37	$\mathrm{VI}=\mathrm{Vcc}$ (Pin floating. Pull up transistors "off")			5.0	$\mu \mathrm{A}$
IIH	" H " input current RESET	$\mathrm{VI}=\mathrm{VCC}$			5.0	$\mu \mathrm{A}$
IIH	"H" input current XIN	$\mathrm{VI}=\mathrm{Vcc}$		4.0		$\mu \mathrm{A}$
IIL	"L" input current P00-P07, P10-P14, P20-P27, P30-P37	$\mathrm{VI}=\mathrm{VSS}$ (Pin floating. Pull up transistors "off")			-5.0	$\mu \mathrm{A}$
IIL	"L" input current RESET, CNVss	$\mathrm{VI}=\mathrm{V}$ SS			-5.0	$\mu \mathrm{A}$
IIL	"L" input current XIN	$\mathrm{VI}=\mathrm{VSS}$		-4.0		$\mu \mathrm{A}$
IIL	"L" input current P00-P07, P30-P37	$\begin{array}{\|l\|} \hline \mathrm{V} \text { = Vss } \\ \text { (Pull up transistors "on") } \\ \hline \end{array}$		-0.2	-0.5	mA
VRam	RAM hold voltage	When clock stopped	2.0		5.5	V
Rosc	On-chip oscillator oscillation frequency	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	1000	2000	3000	kHz
Dosc	Oscillation stop detection circuit detection frequency	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	62.5	125	187.5	kHz

Notes 1: P11 is measured when the P11/TxD1 P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".
2: RXD1, SCLK1, SCLK2, SDATA2, INT0, and INT1 have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to " 0 " (CMOS level).
3: It is available only when operating key-on wake up.

Electrical Characteristics (General purpose)(continued)

Table 12 Electrical characteristics (2) (Vcc=2.2 to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions			Limits			Unit
					Min.	Typ.	Max.	
ICC	Power source current	One Time PROM version	High-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			5.0	8.0	mA
			High-speed mode, $\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}, \mathrm{Vcc}=2.2 \mathrm{~V}$ Output transistors "off"			0.5	1.5	mA
			Double-speed mode, $\mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz}$ Output transistors "off"			6.0	10.0	mA
			Middle-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			2.0	5.0	mA
			On-chip oscillator operation mode, $\mathrm{Vcc}=5 \mathrm{~V}$ Output transistors "off"			350	1000	$\mu \mathrm{A}$
			$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			1.6	3.2	mA
			$f(X I N)=2 \mathrm{MHz}, \mathrm{Vcc}=2.2 \mathrm{~V}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			0.2		mA
			On-chip oscillator operation mode, Vcc $=5 \mathrm{~V}$ Output transistors "off"			150	450	$\mu \mathrm{A}$
			Increment when A/D conversion is executed $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}, \mathrm{Vcc}=5 \mathrm{~V}$			0.5		mA
			All oscillation stopped (in STP state) Output transistors "off"	Ta $=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
				Ta $=85^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
		Mask ROM version	High-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			3.5	6.5	mA
			High-speed mode, $\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}, \mathrm{Vcc}=2.2 \mathrm{~V}$ Output transistors "off"			0.4	1.2	mA
			Double-speed mode, $f(\mathrm{XIN})=6 \mathrm{MHz}$ Output transistors "off"			4.5	8.0	mA
			Middle-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			2.0	5.0	mA
			On-chip oscillator operation mode, Vcc $=5 \mathrm{~V}$ Output transistors "off"			300	900	$\mu \mathrm{A}$
			$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			1.6	3.2	mA
			$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}, \mathrm{VcC}=2.2 \mathrm{~V}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			0.2		mA
			On-chip oscillator operation mode, Vcc $=5 \mathrm{~V}$ Output transistors "off"			150	450	$\mu \mathrm{A}$
			Increment when A/D conversion is executed $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}, \mathrm{Vcc}=5 \mathrm{~V}$			0.5		mA
			All oscillation stopped (in STP state) Output transistors "off"	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
				$\mathrm{Ta}=85^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$

A/D Converter Characteristics (General purpose)

Table 13 A/D Converter characteristics
(Vcc = 2.7 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Timing Requirements (General purpose)

Table 14 Timing requirements (1) (Vcc = 4.0 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	125			ns
twh(XIN)	External clock input "H" pulse width	50			ns
twL(XIN)	External clock input "L" pulse width	50			ns
tc(CNTRo)	CNTRo input cycle time	200			ns
twh(CNTRo)	CNTR0, INT0, INT1, input "H" pulse width	80			ns
twL(CNTRo)	CNTRo, INT0, INT1, input "L" pulse width	80			ns
tc(CNTR1)	CNTR1 input cycle time	2000			ns
twh(CNTR1)	CNTR1 input "H" pulse width	800			ns
twL(CNTR1)	CNTR1 input "L" pulse width	800			ns
tc(SCLK1)	Serial I/O1 clock input cycle time (Note)	800			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
tWL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD1-ScLK1)	Serial l/O1 input set up time	220			ns
th(ScLK1-RxD1)	Serial I/O1 input hold time	100			ns
tc(ScLK2)	Serial I/O2 clock input cycle time	1000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	400			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SDATA2-ScLK2)	Serial I/O2 input set up time	200			ns
th(SCLK2-SDATA2)	Serial I/O2 input hold time	200			ns

Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to "1" (clock synchronous serial I/O1 is selected).
When bit 6 of the serial I/O1 control register is " 0 " (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.

Table 15 Timing requirements (2) (Vcc = 2.4 to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$, $\mathbf{T a}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	250			ns
twh(XIN)	External clock input "H" pulse width	100			ns
twL(XIN)	External clock input "L" pulse width	100			ns
tc(CNTRo)	CNTRo input cycle time	500			ns
twh(CNTRo)	CNTRo, INT0, INT1, input "H" pulse width	230			ns
twL(CNTRo)	CNTR0, INT0, INT1, input "L" pulse width	230			ns
tc(CNTR1)	CNTR1 input cycle time	4000			ns
twh(CNTR1)	CNTR1 input "H" pulse width	1600			ns
twL(CNTR1)	CNTR1 input "L" pulse width	1600			ns
tc(SCLK1)	Serial I/O1 clock input cycle time (Note)	2000			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	950			ns
twL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	950			ns
tsu(RxD1-ScLK1)	Serial I/O1 input set up time	400			ns
th(ScLK1-RxD1)	Serial I/O1 input hold time	200			ns
tC(SCLK2)	Serial I/O2 clock input cycle time	2000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	950			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	950			ns
tsu(SDATA2-ScLK2)	Serial I/O2 input set up time	400			ns
th(SCLK2-SDATA2)	Serial I/O2 input hold time	400			ns

Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to "1" (clock synchronous serial I/O1 is selected).
When bit 6 of the serial I/O1 control register is " 0 " (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.

Table 16 Timing requirements (3) $\left(\mathrm{Vcc}=2.2\right.$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	500			ns
twh(XIN)	External clock input "H" pulse width	200			ns
twL(XIN)	External clock input "L" pulse width	200			ns
tc(CNTRo)	CNTRo input cycle time	1000			ns
twh(CNTRo)	CNTRo, INT0, INT1, input "H" pulse width	460			ns
twL(CNTRo)	CNTR0, INT0, INT1, input "L" pulse width	460			ns
tc(CNTR1)	CNTR1 input cycle time	8000			ns
twh(CNTR1)	CNTR1 input "H" pulse width	3200			ns
twL(CNTR1)	CNTR1 input "L" pulse width	3200			ns
tc(ScLK1)	Serial I/O1 clock input cycle time (Note)	4000			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	1900			ns
twL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	1900			ns
tsu(RxD1-SCLK1)	Serial I/O1 input set up time	800			ns
th(SCLK1-RxD1)	Serial I/O1 input hold time	400			ns
tc(SCLK2)	Serial I/O2 clock input cycle time	4000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	1900			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	1900			ns
tsu(SDATA2-ScLK2)	Serial I/O2 input set up time	800			ns
th(SCLK2-SDATA2)	Serial I/O2 input hold time	800			ns

Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to "1" (clock synchronous serial I/O1 is selected). When bit 6 of the serial I/O1 control register is " 0 " (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.

Switching Characteristics (General purpose)

Table 17 Switching characteristics (1) (Vcc = 4.0 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(SCLK1)	Serial I/O1 clock output "H" pulse width	tc(SCLK1)/2-30			ns
twL(SCLK1)	Serial I/O1 clock output "L" pulse width	tc(SCLK1)/2-30			ns
td(SCLK1-TxD1)	Serial I/O1 output delay time			140	ns
tv(SCLK1-TxD1)	Serial I/O1 output valid time	-30			ns
tr(SCLK1)	Serial I/O1 clock output rising time			30	ns
tf(SCLK1)	Serial I/O1 clock output falling time			30	ns
tWH(SCLK2)	Serial I/O2 clock output "H" pulse width	tc(ScLK2)/2-30			ns
tWL(SCLK2)	Serial I/O2 clock output "L" pulse width	tc(SCLK2)/2-30			ns
td(SCLK2-SDATA2)	Serial I/O2 output delay time			140	ns
tv(ScLK2-SDATA2)	Serial I/O2 output valid time	0			ns
tr(SCLK2)	Serial I/O2 clock output rising time			30	ns
tf(SCLK2)	Serial I/O2 clock output falling time			30	ns
tr(CMOS)	CMOS output rising time (Note 1)		10	30	ns
tf(CMOS)	CMOS output falling time (Note 1)		10	30	ns

Note 1: Pin Xout is excluded.

Table 18 Switching characteristics (2) (Vcc = 2.4 to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twH(SCLK1)	Serial I/O1 clock output " H " pulse width	tC(SCLK1)/2-50			ns
twL(SCLK1)	Serial I/O1 clock output "L" pulse width	tc(SCLK1)/2-50			ns
td(SCLK1-TxD1)	Serial I/O1 output delay time			350	ns
tv(SCLK1-TxD1)	Serial I/O1 output valid time	-30			ns
tr(SCLK1)	Serial I/O1 clock output rising time			50	ns
ti(SCLK1)	Serial I/O1 clock output falling time			50	ns
twh(ScLK2)	Serial I/O2 clock output "H" pulse width	tc(SCLK2)/2-50			ns
twL(SCLK2)	Serial I/O2 clock output "L" pulse width	tC(SCLK2)/2-50			ns
td(SclK2-SdATA2)	Serial I/O2 output delay time			350	ns
tv(SCLK2-SDATA2)	Serial I/O2 output valid time	0			ns
tr(SCLK2)	Serial I/O2 clock output rising time			50	ns
tf(SCLK2)	Serial I/O2 clock output falling time			50	ns
tr(CMOS)	CMOS output rising time (Note 1)		20	50	ns
tif(CMOS)	CMOS output falling time (Note 1)		20	50	ns

Note 1: Pin Xout is excluded.

Table 19 Switching characteristics (3) (Vcc =2.2 to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol		Limits		
		Marameter	Min.	Typ.

Note 1: Pin Xout is excluded.

Switching characteristics measurement circuit diagram (General purpose)

Fig. 55 Timing chart (General purpose)

ELECTRICAL CHARACTERISTICS

2.7540Group (Extended operating temperature version)

Applied to: M37540M2T-XXXFP/GP, M37540M4T-XXXFP/GP, M37540E8T-XXXFP/GP

Absolute Maximum Ratings (Extended operating temperature version)

Table 20 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 6.5 (Note 1)	V
VI	Input voltage P00-P07, P10-P14, P20-P27, P30-P37, Vref		-0.3 to Vcc + 0.3	V
VI	Input voltage RESET, XIN, CNVss		-0.3 to Vcc + 0.3	V
Vo	Output voltage P00-P07, P10-P14, P20-P27, P30-P37, Xout		-0.3 to Vcc +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300 (Note 2)	mW
Topr	Operating temperature		-40 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$

Notes 1: This is the rating value for the Mask ROM version.
The rating value for the One Time PROM version is -0.3 to 7.0 V .
2: 200 mW for the 32P6U package product.

Recommended Operating Conditions (Extended operating temperature version)

Table 21 Recommended operating conditions (1) (VCc $=2.4$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
Vcc	Power source voltage (ceramic)	$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz}$ (Double-speed mode)	4.5	5.0	5.5	V
		$f(X I N)=4 \mathrm{MHz}$ (Double-speed mode)	4.0	5.0	5.5	V
		$f(X I N)=2 \mathrm{MHz}$ (Double-speed mode)	2.4	5.0	5.5	V
	Power source voltage (RC)	$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
Vss	Power source voltage			0		V
Vref	Analog reference voltage		2.0		Vcc	V
VIH	"H" input voltage P00-P07, P10-P14, P20-P27, P30-P37		0.8Vcc		Vcc	V
VIH	"H" input voltage (TTL input level selected) P10, P12, P13, P36, P37 (Note 1)		2.0		Vcc	V
VIH	"H" input voltage RESET, XIN		0.8Vcc		Vcc	V
VIL	"L" input voltage P00-P07, P10-P14, P20-P27, P30-P37		0		0.3Vcc	V
VIL	" L " input voltage (TTL input level selected) P10, P12, P13, P36, P37 (Note 1)		0		0.8	V
VIL	"L" input voltage RESET, CNVss		0		0.2 Vcc	V
VIL	"L" input voltage XIN		0		0.16Vcc	V
$\sum \mathrm{IOH}$ (peak)	"H" total peak output current (Note 2) P00-P07, P10-P14, P20-P27, P30-P37				-80	mA
$\sum \mathrm{IOL}$ (peak)	"L" total peak output current (Note 2) P00-P07, P10-P14, P20-P27, P37				80	mA
$\sum \mathrm{IOL}$ (peak)	"L" total peak output current (Note 2) P30-P36				60	mA
$\sum \mathrm{IOH}(\mathrm{avg})$	" H " total average output current (Note 2) P00-P07, P10-P14, P20-P27, P30-P37				-40	mA
$\sum \mathrm{loL}(\mathrm{avg})$	" L " total average output current (Note 2) P00-P07, P10-P14, P20-P27, P37				40	mA
「IOL(avg)	"L" total average output current (Note 2) P30-P36				30	mA

Note 1: Vcc $=4.0$ to 5.5 V
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.

Recommended Operating Conditions (Extended operating temperature version)(continued)

Table 22 Recommended operating conditions (2) (Vcc = 2.4 to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
IOH (peak)	"H" peak output current (Note 1) P00-P07, P10-P14, P20-P27, P30-P37	P00-P07, P10-P14, P20-P27, P30-P37			-10	mA
IOL(peak)	"L" peak output current (Note 1) P00-P07, P10-P14, P20-P27, P37				10	mA
IOL(peak)	"L" peak output current (Note 1) P30-P36				30	mA
IOH(avg)	"H" average output current (Note 2) P00-P07, P10-P14, P20-P27, P30-P37				-5	mA
IOL(avg)	"L" average output current (Note 2) P00-P07, P10-P14, P20-P27, P37				5	mA
IOL(avg)	"L" average output current (Note 2) P30-P36				15	mA
$\mathrm{f}(\mathrm{XIN})$	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{VCC}=4.5 \text { to } 5.5 \mathrm{~V}$ Double-speed mode			6	MHz
	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{Vcc}=4.0 \text { to } 5.5 \mathrm{~V}$ Double-speed mode			4	MHz
	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{VCc}=2.4 \text { to } 5.5 \mathrm{~V}$ Double-speed mode			2	MHz
	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \hline \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			8	MHz
	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \hline \mathrm{VCC}=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Internal clock oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { VCC }=4.0 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Internal clock oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { VCC }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			2	MHz

Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current $\operatorname{loL}(\mathrm{avg}), \mathrm{IOH}(\mathrm{avg})$ in an average value measured over 100 ms .
3: When the oscillation frequency has a duty cycle of 50%.

Electrical Characteristics (Extended operating temperature version)

Table 23 Electrical characteristics (1) (Vcc $=2.4$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VOH	"H" output voltage P00-P07, P10-P14, P20-P27, P30-P37 (Note 1)	$\begin{aligned} & \mathrm{IOH}=-5 \mathrm{~mA} \\ & \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	Vcc-1.5			V
		$\begin{aligned} & \mathrm{IOH}=-1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.4 \text { to } 5.5 \mathrm{~V} \end{aligned}$	Vcc-1.0			V
VOL	"L" output voltage P00-P07, P10-P14, P20-P27, P37	$\begin{array}{\|l\|} \hline \mathrm{IOL}=5 \mathrm{~mA} \\ \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \\ \hline \end{array}$			1.5	V
		$\begin{aligned} & \mathrm{IOL}=1.5 \mathrm{~mA} \\ & \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$			0.3	V
		$\begin{array}{\|l\|} \hline \mathrm{IOL}=1.0 \mathrm{~mA} \\ \mathrm{VCC}=2.4 \text { to } 5.5 \mathrm{~V} \end{array}$			1.0	V
VoL	"L" output voltage P30-P36	$\begin{array}{\|l} \hline \mathrm{IOL}=15 \mathrm{~mA} \\ \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{array}$			2.0	V
		$\begin{array}{\|l\|} \hline \mathrm{IOL}=1.5 \mathrm{~mA} \\ \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \\ \hline \end{array}$			0.3	V
		$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=2.4 \text { to } 5.5 \mathrm{~V} \end{aligned}$			1.0	V
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V}^{-}$	Hysteresis CNTRo, CNTR1, INT0, INT1(Note 2) P00-P07 (Note 3)			0.4		V
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V}^{-}$	Hysteresis RxD, Sclk1, Sclk2, Sdata2 (Note 2)			0.5		V
VT+-VT-	Hysteresis RESET			0.5		V
IIH	"H" input current $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 14, \mathrm{P} 20-\mathrm{P} 27, \mathrm{P} 30-\mathrm{P} 37$	$\mathrm{VI}=\mathrm{VCC}$ (Pin floating. Pull up transistors "off")			5.0	$\mu \mathrm{A}$
IIH	" H " input current	$\mathrm{VI}=\mathrm{VCC}$			5.0	$\mu \mathrm{A}$
IIH	"H" input current XIN	$\mathrm{VI}=\mathrm{Vcc}$		4.0		$\mu \mathrm{A}$
IIL	"L" input current P00-P07, P10-P14, P20-P27, P30-P37	$\mathrm{VI}=\mathrm{VSS}$ (Pin floating. Pull up transistors "off")			-5.0	$\mu \mathrm{A}$
IIL	"L" input current RESET, CNVss	$\mathrm{VI}=\mathrm{Vss}$			-5.0	$\mu \mathrm{A}$
IIL	"L" input current XIN	$\mathrm{VI}=\mathrm{Vss}$		-4.0		$\mu \mathrm{A}$
IIL	"L" input current P00-P07, P30-P37	$\begin{array}{\|l} \hline \mathrm{VI}=\mathrm{VSS} \\ \text { (Pull up transistors "on") } \end{array}$		-0.2	-0.5	mA
Vram	RAM hold voltage	When clock stopped	2.0		5.5	V
Rosc	On-chip oscillator oscillation frequency	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	1000	2000	3000	kHz
Dosc	Oscillation stop detection circuit detection frequency	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	62.5	125	187.5	kHz

Notes 1: P11 is measured when the P11/TxD1 P-channel output disable bit of the UART control register (bit 4 of address 001 B 16) is " 0 ".
2: RXD1, SCLK1, SCLK2, SDATA2, INT0, and INT1 have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to " 0 " (CMOS level).
3: It is available only when operating key-on wake up.

Electrical Characteristics (Extended operating temperature version)(continued)

Table 24 Electrical characteristics (2) (Vcc = 2.4 to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Test conditions			Limits			Unit
				Min.	Typ.	Max.	
ICC	One Time PROM version	High-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			5.0	8.0	mA
		High-speed mode, $f(\mathrm{XIN})=2 \mathrm{MHz}, \mathrm{Vcc}=2.4 \mathrm{~V}$ Output transistors "off"			0.5	1.5	mA
		Double-speed mode, $\mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz}$, Output transistors "off"			6.0	10.0	mA
		Middle-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$, Output transistors "off"			2.0	5.0	mA
		On-chip oscillator operation mode, Vcc $=5 \mathrm{~V}$ Output transistors "off"			350	1000	$\mu \mathrm{A}$
		$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			1.6	3.2	mA
		$f(X I N)=2 \mathrm{MHz}, \mathrm{Vcc}=2.4 \mathrm{~V}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			0.2		mA
		On-chip oscillator operation mode, $\mathrm{Vcc}=5 \mathrm{~V}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			150	450	$\mu \mathrm{A}$
		Increment when A/D conversion is executed $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}, \mathrm{Vcc}=5 \mathrm{~V}$			0.5		mA
		All oscillation stopped (in STP state) Output transistors "off"	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			Ta $=85^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
	Mask ROM version	High-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			3.5	6.5	mA
		High-speed mode, $f(\mathrm{XIN})=2 \mathrm{MHz}, \mathrm{Vcc}=2.4 \mathrm{~V}$ Output transistors "off"			0.4	1.2	mA
		Double-speed mode, $f(\mathrm{XIN})=6 \mathrm{MHz}$ Output transistors "off"			4.5	8.0	mA
		Middle-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			2.0	5.0	mA
		On-chip oscillator operation mode, $\mathrm{Vcc}=5 \mathrm{~V}$ Output transistors "off"			300	900	$\mu \mathrm{A}$
		$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			1.6	3.2	mA
		$f(X I N)=2 \mathrm{MHz}, \mathrm{Vcc}=2.4 \mathrm{~V}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			0.2		mA
		On-chip oscillator operation mode, $\mathrm{Vcc}=5 \mathrm{~V}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			150	450	$\mu \mathrm{A}$
		Increment when A / D conversion is executed $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}, \mathrm{Vcc}=5 \mathrm{~V}$			0.5		mA
		All oscillation stopped (in STP state) Output transistors "off"	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			$\mathrm{Ta}=85^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$

A/D Converter Characteristics (Extended operating temperature version)

Table 25 A/D Converter characteristics
(Vcc = 2.7 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

	Symbol	Parameter	Test conditions	Limits			Unit
				Min.	Typ.	Max.	
One Time PROM version	-	Resolution				10	Bits
	-	Linearity error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 3	LSB
	-	Differential nonlinear error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 0.9	LSB
	Vot	Zero transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	0	5	20	mV
			$\mathrm{VCC}=\mathrm{VREF}=3.072 \mathrm{~V}$	0	3	15	mV
	VFST	Full scale transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	5105	5115	5125	mV
			$\mathrm{VCC}=\mathrm{VREF}=3.072 \mathrm{~V}$	3060	3069	3075	mV
	tCONV	Conversion time				122	tc(XIN)
	RLADDER	Ladder resistor			55		$\mathrm{k} \Omega$
	IVREF	Reference power source input current	VREF $=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
			VREF $=3.0 \mathrm{~V}$	50	70	120	
	II(AD)	A/D port input current				5.0	$\mu \mathrm{A}$
Mask ROM version	-	Resolution				10	Bits
	-	Linearity error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 3	LSB
	-	Differential nonlinear error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 1.5	LSB
	Vot	Zero transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	0	15	35	mV
			$\mathrm{VCC}=\mathrm{VREF}=3.072 \mathrm{~V}$	0	9	21	mV
	VFST	Full scale transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	5105	5125	5150	mV
			$\mathrm{VCC}=\mathrm{VREF}=3.072 \mathrm{~V}$	3060	3075	3090	mV
	tconv	Conversion time				122	tc(XIN)
	RLADDER	Ladder resistor			55		$\mathrm{k} \Omega$
	IVREF	Reference power source input current	VREF $=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
			VREF $=3.0 \mathrm{~V}$	30	70	120	
	II(AD)	A/D port input current				5.0	$\mu \mathrm{A}$

Timing Requirements (Extended operating temperature version)

Table 26 Timing requirements (1) (Vcc $=4.0$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$, $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	125			ns
twh(XIN)	External clock input "H" pulse width	50			ns
twL(XIN)	External clock input "L" pulse width	50			ns
tc(CNTRo)	CNTRo input cycle time	200			ns
twh(CNTRo)	CNTRo, INT0, INT1, input "H" pulse width	80			ns
twL(CNTR0)	CNTR0, INT0, INT1, input "L" pulse width	80			ns
tc(CNTR1)	CNTR1 input cycle time	2000			ns
twh(CNTR1)	CNTR1 input "H" pulse width	800			ns
twL(CNTR1)	CNTR1 input "L" pulse width	800			ns
tc(ScLK1)	Serial I/O1 clock input cycle time (Note)	800			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
tWL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD1-ScLK1)	Serial I/O1 input set up time	220			ns
th (ScLK1-RxD1)	Serial I/O1 input hold time	100			ns
tc(ScLK2)	Serial I/O2 clock input cycle time	1000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	400			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SDATA2-ScLK2)	Serial I/O2 input set up time	200			ns
th(SCLK2-SDATA2)	Serial I/O2 input hold time	200			ns

Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to "1" (clock synchronous serial I/O1 is selected).
When bit 6 of the serial I/O1 control register is " 0 " (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.

Table 27 Timing requirements (2) (Vcc = 2.4 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	250			ns
twh(XIN)	External clock input "H" pulse width	100			ns
twL(XIN)	External clock input "L" pulse width	100			ns
tc(CNTRo)	CNTRo input cycle time	500			ns
twh(CNTRo)	CNTRo, INT0, INT1, input "H" pulse width	230			ns
twL(CNTR0)	CNTR0, INT0, INT1, input "L" pulse width	230			ns
tc(CNTR1)	CNTR1 input cycle time	4000			ns
twh(CNTR1)	CNTR1 input "H" pulse width	1600			ns
twL(CNTR1)	CNTR1 input "L" pulse width	1600			ns
tc(SCLK1)	Serial I/O1 clock input cycle time (Note)	2000			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	950			ns
tWL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	950			ns
tsu(RxD1-ScLK1)	Serial I/O1 input set up time	400			ns
th(ScLK1-RxD1)	Serial I/O1 input hold time	200			ns
tC(SCLK2)	Serial I/O2 clock input cycle time	2000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	950			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	950			ns
tsu(SDATA2-ScLK2)	Serial I/O2 input set up time	400			ns
th(SCLK2-SDATA2)	Serial I/O2 input hold time	400			ns

Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to " 1 " (clock synchronous serial I/O1 is selected).
When bit 6 of the serial I/O1 control register is " 0 " (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.

Switching Characteristics (Extended operating temperature version)

Table 28 Switching characteristics (1) (Vcc = 4.0 to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(SCLK1)	Serial I/O1 clock output "H" pulse width	tc(SCLK1)/2-30			ns
tWL(SCLK1)	Serial I/O1 clock output "L" pulse width	tC(SCLK1)/2-30			ns
td(SCLK1-TxD1)	Serial I/O1 output delay time			140	ns
tv(SCLK1-TxD1)	Serial I/O1 output valid time	-30			ns
tr(SCLK1)	Serial I/O1 clock output rising time			30	ns
tf(SCLK1)	Serial I/O1 clock output falling time			30	ns
tWH(SCLK2)	Serial I/O2 clock output "H" pulse width	tC(SCLK2)/2-30			ns
twL(SCLK2)	Serial I/O2 clock output "L" pulse width	tc(ScLK2)/2-30			ns
td(ScLK2-SDATA2)	Serial I/O2 output delay time			140	ns
tv(SCLK2-SDATA2)	Serial I/O2 output valid time	0			ns
tr(SCLK2)	Serial I/O2 clock output rising time			30	ns
tf(SCLK2)	Serial I/O2 clock output falling time			30	ns
tr(CMOS)	CMOS output rising time (Note 1)		10	30	ns
tf(CMOS)	CMOS output falling time (Note 1)		10	30	ns

Note 1: Pin Xout is excluded.

Table 29 Switching characteristics (2) (Vcc = 2.4 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(SCLK1)	Serial I/O1 clock output "H" pulse width	tC(SCLK1)/2-50			ns
twL(SCLK1)	Serial I/O1 clock output "L" pulse width	tc(SCLK1)/2-50			ns
td(SCLK1-TxD1)	Serial I/O1 output delay time			350	ns
tv(ScLK1-TxD1)	Serial I/O1 output valid time	-30			ns
tr(SCLK1)	Serial I/O1 clock output rising time			50	ns
tf(SCLK1)	Serial I/O1 clock output falling time			50	ns
twh(SCLK2)	Serial I/O2 clock output "H" pulse width	tc(SCLK2)/2-50			ns
twL(ScLK2)	Serial I/O2 clock output "L" pulse width	tc(SCLK2)/2-50			ns
td(SclK2-SdATA2)	Serial I/O2 output delay time			350	ns
tv(SCLK2-SDATA2)	Serial I/O2 output valid time	0			ns
tr(SCLK2)	Serial I/O2 clock output rising time			50	ns
ti(SCLK2)	Serial I/O2 clock output falling time			50	ns
tr(CMOS)	CMOS output rising time (Note 1)		20	50	ns
tif(CMOS)	CMOS output falling time (Note 1)		20	50	ns

Note 1: Pin Xout is excluded.

Switching characteristics measurement circuit diagram (General purpose)

Fig. 56 Timing chart (Extended operating temperature version)

ELECTRICAL CHARACTERISTICS

3.7540Group (Extended operating temperature $125{ }^{\circ} \mathrm{C}$ version)

Applied to: M37540M2V-XXXFP/GP, M37540M4V-XXXFP/GP, M37540E8V-XXXFP/GP

Absolute Maximum Ratings (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

Table 30 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 6.5 (Note 1)	V
VI	Input voltage P00-P07, P10-P14, P20-P27, P30-P37, Vref		-0.3 to Vcc + 0.3	V
VI	Input voltage RESET, XIN, CNVss		-0.3 to Vcc +0.3	V
Vo	Output voltage P00-P07, P10-P14, P20-P27, P30-P37, Xout		-0.3 to Vcc +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300 (Note 2)	mW
Topr	Operating temperature		-40 to 125 (Note 3)	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$

Notes 1: This is the rating value for the Mask ROM version.
The rating value for the One Time PROM version is -0.3 to 7.0 V .
2: 200 mW for the 32P6U package product.
3: In this version, the operating temperature range and total time are limited as follows;
$55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$: within total 6000 hours,
$85^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$: within total 1000 hours.

Recommended Operating Conditions (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

Table 31 Recommended operating conditions (1) (Vcc $=2.4$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
Vcc	Power source voltage (ceramic)	$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (Double-speed mode)	4.0	5.0	5.5	V
		$f(X I N)=2 \mathrm{MHz}$ (Double-speed mode)	2.4	5.0	5.5	V
	Power source voltage (RC)	$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
VSS	Power source voltage			0		V
VREF	Analog reference voltage		2.0		Vcc	V
VIH	" H " input voltage P00-P07, P10-P14, P20-P27, P30-P37		0.8Vcc		Vcc	V
VIH	" H " input voltage (TTL input level selected) P10, P12, P13, P36, P37 (Note 1)		2.0		Vcc	V
VIH	"H" input voltage RESET, XIN		0.8 Vcc		Vcc	V
VIL	"L" input voltage P00-P07, P10-P14, P20-P27, P30-P37		0		0.3 Vcc	V
VIL	" L " input voltage (TTL input level selected) P10, P12, P13, P36, P37 (Note 1)		0		0.8	V
VIL	" L " input voltage RESET, CNVss		0		0.2 Vcc	V
VIL	"L" input voltage XIN		0		0.16 Vcc	V
$\sum \mathrm{IOH}($ peak $)$	"H" total peak output current (Note 2) P00-P07, P10-P14, P20-P27, P30-P37				-80	mA
$\sum \mathrm{loL}$ (peak)	"L" total peak output current (Note 2) P00-P07, P10-P14, P20-P27, P37				80	mA
$\sum \mathrm{loL}$ (peak)	"L" total peak output current (Note 2) P30-P36				60	mA
$\sum \mathrm{IOH}(\mathrm{avg})$	" H " total average output current (Note 2) P00-P07, P10-P14, P20-P27, P30-P37				-40	mA
EloL(avg)	" L " total average output current (Note 2) P00-P07, P10-P14, P20-P27, P37				40	mA
$\sum \mathrm{IOL}(\mathrm{avg})$	"L" total average output current (Note 2) P30-P36				30	mA

Note 1: $\mathrm{Vcc}=4.0$ to 5.5 V
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.

Recommended Operating Conditions (Extended operating temperature $125{ }^{\circ} \mathrm{C}$ version) (continued)

Table 32 Recommended operating conditions (2) $\left(\mathrm{Vcc}=2.4\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
IOH (peak)	"H" peak output current (Note 1) P00-P	P00-P07, P10-P14, P20-P27, P30-P37			-10	mA
IOL(peak)	"L" peak output current (Note 1) P00-P	P00-P07, P10-P14, P20-P27, P37			10	mA
IOL(peak)	"L" peak output current (Note 1) P30-P36	P30-P36			30	mA
IOH (avg)	"H" average output current (Note 2) P00-P07, P10-P14, P20-P27, P30-P37				-5	mA
IOL(avg)	"L" average output current (Note 2) P00-P07, P10-P14, P20-P27, P37				5	mA
IOL(avg)	"L" average output current (Note 2) P30-P36				15	mA
f (XIN)	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V}$ Double-speed mode			4	MHz
	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{VCC}=2.4 \text { to } 5.5 \mathrm{~V}$ Double-speed mode			2	MHz
	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{Vcc}=4.0$ to 5.5 V High-, Middle-speed mode			8	MHz
	Internal clock oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \text { VCC }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Internal clock oscillation frequency (Note 3) at RC oscillation	$\mathrm{Vcc}=4.0$ to 5.5 V High-, Middle-speed mode			4	MHz
	Internal clock oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { VCC }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			2	MHz

Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current loL (avg), loh (avg) in an average value measured over 100 ms .
3: When the oscillation frequency has a duty cycle of 50%.

Electrical Characteristics (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

Table 33 Electrical characteristics (1) (Vcc $=2.4$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VOH	"H" output voltage P00-P07, P10-P14, P20-P27, P30-P37 (Note 1)	$\begin{aligned} & \mathrm{IOH}=-5 \mathrm{~mA} \\ & \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	Vcc-1.5			V
		$\begin{aligned} & \mathrm{IOH}=-1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.4 \text { to } 5.5 \mathrm{~V} \end{aligned}$	Vcc-1.0			V
VOL	"L" output voltage P00-P07, P10-P14, P20-P27, P37	$\begin{array}{\|l\|} \hline \mathrm{IOL}=5 \mathrm{~mA} \\ \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \\ \hline \end{array}$			1.5	V
		$\begin{aligned} & \mathrm{IOL}=1.5 \mathrm{~mA} \\ & \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$			0.3	V
		$\begin{array}{\|l\|} \hline \mathrm{IOL}=1.0 \mathrm{~mA} \\ \mathrm{VCC}=2.4 \text { to } 5.5 \mathrm{~V} \end{array}$			1.0	V
VoL	"L" output voltage P30-P36	$\begin{array}{\|l} \hline \mathrm{IOL}=15 \mathrm{~mA} \\ \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \end{array}$			2.0	V
		$\begin{array}{\|l\|} \hline \mathrm{IOL}=1.5 \mathrm{~mA} \\ \mathrm{VCC}=4.0 \text { to } 5.5 \mathrm{~V} \\ \hline \end{array}$			0.3	V
		$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=2.4 \text { to } 5.5 \mathrm{~V} \end{aligned}$			1.0	V
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V}^{-}$	Hysteresis CNTRo, CNTR1, INT0, INT1(Note 2) P00-P07 (Note 3)			0.4		V
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V}^{-}$	Hysteresis RxD, Sclk1, Sclk2, Sdata2 (Note 2)			0.5		V
VT+-VT-	Hysteresis RESET			0.5		V
IIH	"H" input current $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 14, \mathrm{P} 20-\mathrm{P} 27, \mathrm{P} 30-\mathrm{P} 37$	$\mathrm{VI}=\mathrm{VCC}$ (Pin floating. Pull up transistors "off")			5.0	$\mu \mathrm{A}$
IIH	" H " input current	$\mathrm{VI}=\mathrm{VCC}$			5.0	$\mu \mathrm{A}$
IIH	"H" input current XIN	$\mathrm{VI}=\mathrm{Vcc}$		4.0		$\mu \mathrm{A}$
IIL	"L" input current P00-P07, P10-P14, P20-P27, P30-P37	$\mathrm{VI}=\mathrm{VSS}$ (Pin floating. Pull up transistors "off")			-5.0	$\mu \mathrm{A}$
IIL	"L" input current RESET, CNVss	$\mathrm{VI}=\mathrm{Vss}$			-5.0	$\mu \mathrm{A}$
IIL	"L" input current XIN	$\mathrm{VI}=\mathrm{Vss}$		-4.0		$\mu \mathrm{A}$
IIL	"L" input current P00-P07, P30-P37	$\begin{array}{\|l} \hline \mathrm{VI}=\mathrm{VSS} \\ \text { (Pull up transistors "on") } \end{array}$		-0.2	-0.5	mA
Vram	RAM hold voltage	When clock stopped	2.0		5.5	V
Rosc	On-chip oscillator oscillation frequency	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	1000	2000	3000	kHz
Dosc	Oscillation stop detection circuit detection frequency	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	62.5	125	187.5	kHz

Notes 1: P11 is measured when the P11/TxD1 P-channel output disable bit of the UART control register (bit 4 of address 001 B 16) is " 0 ".
2: RXD1, SCLK1, SCLK2, SDATA2, INT0, and INT1 have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to " 0 " (CMOS level).
3: It is available only when operating key-on wake up.

Electrical Characteristics (Extended operating temperature $125^{\circ} \mathrm{C}$ version)(continued)

Table 34 Electrical characteristics (2) (Vcc =2.4 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Test conditions			Limits			Unit
				Min.	Typ.	Max.	
ICC	One Time PROM version	High-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			5.0	8.0	mA
		High-speed mode, $f(X I N)=2 \mathrm{MHz}, \mathrm{Vcc}=2.4 \mathrm{~V}$ Output transistors "off"			0.5	1.5	mA
		Middle-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$, Output transistors "off"			2.0	5.0	mA
		On-chip oscillator operation mode, Vcc $=5 \mathrm{~V}$ Output transistors "off"			350	1000	$\mu \mathrm{A}$
		$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			1.6	3.2	mA
		$f(X I N)=2 \mathrm{MHz}, \mathrm{Vcc}=2.4 \mathrm{~V}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			0.2		mA
		On-chip oscillator operation mode, Vcc = 5V (in WIT state), functions except timer 1 disabled, Output transistors "off"			150	450	$\mu \mathrm{A}$
		Increment when A/D conversion is executed $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}, \mathrm{Vcc}=5 \mathrm{~V}$			0.5		mA
		All oscillation stopped (in STP state) Output transistors "off"	Ta $=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			Ta $=125^{\circ} \mathrm{C}$			50	$\mu \mathrm{A}$
	Mask ROM version	High-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ Output transistors "off"			3.5	6.5	mA
		High-speed mode, $\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}, \mathrm{Vcc}=2.4 \mathrm{~V}$ Output transistors "off"			0.4	1.2	mA
		Middle-speed mode, $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$, Output transistors "off"			2.0	5.0	mA
		On-chip oscillator operation mode, Vcc $=5 \mathrm{~V}$ Output transistors "off"			300	900	$\mu \mathrm{A}$
		$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			1.6	3.2	mA
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}, \mathrm{Vcc}=2.4 \mathrm{~V}$ (in WIT state), functions except timer 1 disabled, Output transistors "off"			0.2		mA
		On-chip oscillator operation mode, Vcc = 5V (in WIT state), functions except timer 1 disabled, Output transistors "off"			150	450	$\mu \mathrm{A}$
		Increment when A/D conversion is executed $f(\mathrm{XIN})=8 \mathrm{MHz}, \mathrm{Vcc}=5 \mathrm{~V}$			0.5		mA
		All oscillation stopped (in STP state) Output transistors "off"	Ta $=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			Ta $=125^{\circ} \mathrm{C}$			50	$\mu \mathrm{A}$

A/D Converter Characteristics (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

Table 35 A/D Converter characteristics
(Vcc = 2.7 to 5.5 V , Vss $=\mathbf{0} \mathrm{V}, \mathrm{Ta}=\mathbf{- 4 0}$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Timing Requirements (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

Table 36 Timing requirements (1) (Vcc = 4.0 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	125			ns
twh(XIN)	External clock input "H" pulse width	50			ns
twL(XIN)	External clock input "L" pulse width	50			ns
tc(CNTRo)	CNTRo input cycle time	200			ns
twh(CNTRo)	CNTRo, INT0, INT1, input "H" pulse width	80			ns
twL(CNTR0)	CNTR0, INT0, INT1, input "L" pulse width	80			ns
tc(CNTR1)	CNTR1 input cycle time	2000			ns
twh(CNTR1)	CNTR1 input "H" pulse width	800			ns
twL(CNTR1)	CNTR1 input "L" pulse width	800			ns
tc(ScLK1)	Serial I/O1 clock input cycle time (Note)	800			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
tWL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD1-ScLK1)	Serial I/O1 input set up time	220			ns
th (ScLK1-RxD1)	Serial I/O1 input hold time	100			ns
tc(ScLK2)	Serial I/O2 clock input cycle time	1000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	400			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SDATA2-ScLK2)	Serial I/O2 input set up time	200			ns
th(SCLK2-SDATA2)	Serial I/O2 input hold time	200			ns

Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to "1" (clock synchronous serial I/O1 is selected).
When bit 6 of the serial I/O1 control register is " 0 " (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.

Table 37 Timing requirements (2) (Vcc = 2.4 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	250			ns
twh(XIN)	External clock input "H" pulse width	100			ns
twL(XIN)	External clock input "L" pulse width	100			ns
tc(CNTRo)	CNTRo input cycle time	500			ns
twh(CNTRo)	CNTRo, INT0, INT1, input "H" pulse width	230			ns
twL(CNTRo)	CNTR0, INT0, INT1, input "L" pulse width	230			ns
tc(CNTR1)	CNTR1 input cycle time	4000			ns
twh(CNTR1)	CNTR1 input "H" pulse width	1600			ns
twL(CNTR1)	CNTR1 input "L" pulse width	1600			ns
tc(SCLK1)	Serial I/O1 clock input cycle time (Note)	2000			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	950			ns
tWL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	950			ns
tsu(RxD1-ScLK1)	Serial I/O1 input set up time	400			ns
th (ScLK1-RxD1)	Serial I/O1 input hold time	200			ns
tC(SCLK2)	Serial I/O2 clock input cycle time	2000			ns
twh(ScLK2)	Serial I/O2 clock input "H" pulse width	950			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	950			ns
tsu(SDATA2-SCLK2)	Serial I/O2 input set up time	400			ns
th(SCLK2-SDATA2)	Serial I/O2 input hold time	400			ns

Note: In this time, bit 6 of the serial I/O1 control register (address 001A16) is set to " 1 " (clock synchronous serial I/O1 is selected).
When bit 6 of the serial I/O1 control register is " 0 " (clock asynchronous serial I/O1 is selected), the rating values are divided by 4.

Switching Characteristics (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

Table 38 Switching characteristics (1) (Vcc = 4.0 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(SCLK1)	Serial I/O1 clock output "H" pulse width	tc(SCLK1)/2-30			ns
tWL(SCLK1)	Serial I/O1 clock output "L" pulse width	tC(SCLK1)/2-30			ns
td(SCLK1-TxD1)	Serial I/O1 output delay time			140	ns
tv(SCLK1-TxD1)	Serial I/O1 output valid time	-30			ns
tr(SCLK1)	Serial I/O1 clock output rising time			30	ns
tf(SCLK1)	Serial I/O1 clock output falling time			30	ns
tWH(SCLK2)	Serial I/O2 clock output "H" pulse width	tc(ScLK2)/2-30			ns
twL(SCLK2)	Serial I/O2 clock output "L" pulse width	tc(ScLK2)/2-30			ns
td(SCLK2-SDATA2)	Serial I/O2 output delay time			140	ns
tv(SCLK2-SDATA2)	Serial I/O2 output valid time	0			ns
tr(SCLK2)	Serial I/O2 clock output rising time			30	ns
tf(SCLK2)	Serial I/O2 clock output falling time			30	ns
tr(CMOS)	CMOS output rising time (Note 1)		10	30	ns
tf(CMOS)	CMOS output falling time (Note 1)		10	30	ns

Note 1: Pin Xout is excluded.

Table 39 Switching characteristics (2) (Vcc = 2.4 to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(SCLK1)	Serial I/O1 clock output "H" pulse width	tc(SCLK1)/2-50			ns
twL(SCLK1)	Serial I/O1 clock output "L" pulse width	tc(SCLK1)/2-50			ns
td(SCLK1-TxD1)	Serial I/O1 output delay time			350	ns
tv(SCLK1-TxD1)	Serial I/O1 output valid time	-30			ns
tr(SCLK1)	Serial I/O1 clock output rising time			50	ns
ti(SCLK1)	Serial I/O1 clock output falling time			50	ns
twh(SCLK2)	Serial I/O2 clock output "H" pulse width	tc(ScLK2)/2-50			ns
twL(ScLK2)	Serial I/O2 clock output "L" pulse width	tc(ScLK2)/2-50			ns
td(SclK2-SDATA2)	Serial I/O2 output delay time			350	ns
tv(Sclk2-SdATA2)	Serial I/O2 output valid time	0			ns
tr(SCLK2)	Serial I/O2 clock output rising time			50	ns
tf(SCLK2)	Serial I/O2 clock output falling time			50	ns
tr(CMOS)	CMOS output rising time (Note 1)		20	50	ns
tif(CMOS)	CMOS output falling time (Note 1)		20	50	ns

Note 1: Pin Xout is excluded.

Switching characteristics measurement circuit diagram (General purpose)

Fig. 57 Timing chart (Extended operating temperature $125{ }^{\circ} \mathrm{C}$ version)

PACKAGE OUTLINE
32P6U-A Recommended
Plastic 32pin $7 \times 7 \mathrm{~mm}$ body LQFP

36P2R-A Recommended

EIAJ Package Code	JEDEC Code	Weight(g)	Lead Material
SSOP36-P-450-0.80	-	0.53	Alloy 42

Plastic 36pin 450mil SSOP

Recommended Mount Pad

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	-	-	2.4
A1	0.05	-	-
A2	-	2.0	-
b	0.35	0.4	0.5
c	0.13	0.15	0.2
D	14.8	15.0	15.2
E	8.2	8.4	8.6
e	-	0.8	-
HE	11.63	11.93	12.23
L	0.3	0.5	0.7
L1	-	1.765	-
Z	-	0.7	-
Z1	-	-	0.85
y	-	-	0.15
θ	0°	-	10°
b2	-	0.5	-
e1	-	11.43	-
I2	1.27	-	-

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is herefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
4. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
5. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
6. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and Any diversion or reexport contrary to the expert control laws and regula
ans of Japan and/or the country of destination is prohibited
7. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Rev. No.	Revision Description	Rev. date
1.0	First Edition	991122
2.0	Page 1: FEATURES - The minimum instruction execution time revised; $0.34 \mu \mathrm{~s}$ (at $\underline{\mathrm{MHz}}$ oscillation frequency, double-speed mode for the shortest instruction) - Power source voltage added; XIN oscillation frequency at ceramic oscillation, in high-speed mode At 6 MHz . \qquad .4 .5 to 5.5 V - Power dissipation revised; Mask ROM version....................... 22.5 mW (standard) One Time PROM version. \qquad 30 mW (standard) PIN CONFIGURATION Fig. 1 revised; Package type \rightarrow 32P6U-A, Product name "M37540M4T-XXXGP" added Page 2: Fig. 2 revised; Product name "M37540M4T-XXXFP" added Page 3: Fig. 4 M37540RSS pin configuration (42S1M) added Page 4: Fig. 5 Functional block diagram revised; Package type $\rightarrow 32$ P6U Page 7: PIN DESCRIPTION revised; Notes 1 to 3 added Page 8: Package type revised; \rightarrow 32P6U-A..... 0.8 mm-pitch plastic molded LQFP \rightarrow 36P2R-A..... 0.8 mm-pitch plastic molded SSOP Table 2 revised; Package type \rightarrow 32P6U-A Pages 9 to 11: Structure of CPU added Page 12: Fig. 11 Initial value added, Fig. 12 Description revised Page 16: Table 5 Non-port function of port PO revised, Notes 2 and 3 added Page 17: Fig. 17 Port P0 revised Page 18: Fig. 18 Note added Page 20: Fig. 20 Initial values added, Interrupt enable bit of ICON1; Note added Page 21: Fig. 21 Port P0o key-on wakeup selection bit added	010108

Rev. No.	Revision Description	Rev. date
2.0	(continued) Pages 22 to 30: Description of timers revised all Page 31: Fig. 25 to Fig. 27 Initial values added Page 33: Fig. 29 Reference of Figure revised \rightarrow Fig. 50, 51 Page 36: Description of SIO1STS revised; "All bits" \rightarrow "Bits 0 to 6 " Description of UARTCON revised; "P12/SCLK1" pin eliminated Page 37: Fig. 34 Initial value added Page 38: Fig. 35 Initial value added Page 39: Fig. 37 Note revised Page 40: Fig. 38 Initial value added Page 41: Fig. 42 Initial value added Page 42: Description in the case of 6 MHz added Page 43: Fig. 45 Contents of (7), (8) revised Page 45: Fig. 49 Functions of b1 and b7 revised, Initial value added Page 46: Fig. 50 A resistor of Xout pin eliminated Page 47: Description of oscillation stop detection circuit added, Fig. 52 revised Page 48: Notes on Ports revised Pages 50 to 68: Electrical characteristics revised all Page 69: Package type revised; 32P6U-A	010108
3.0	All pages: The following is eliminated; "PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change." Page 1: • Memory size ROM/RAM size revised, - Operating temperature range $125^{\circ} \mathrm{C}$ version added, and Note revised Page 2: Fig. 1 and Fig. 2 Product name revised Page 3: Fig. 3 Product name revised Page 7: Table 1 Xin, Xout Functional description added, Note $1125^{\circ} \mathrm{C}$ version added Page 8: Memory size ROM/RAM size, Package description, and Fig. 8 revised Page 9: Table 2 revised Page 14: Fig. 13 ROM/RAM area added	020610

$\begin{array}{\|l\|l} \hline \text { Rev. } \\ \text { No. } \end{array}$	Revision Description	Rev. date
3.0	(continued) Page 19: Fig. 18 (9) Port P14 revised Page 20: Note revised Page 23: - Timer 1 "Prescaler 1 counts the signal which is the oscillation frequency divided by 16 ." (1) Timer mode "Timer A counts the oscillation frequency divided by 16." Page 24: Timer X "Timer X can can be selected in one of 4 operating modes by setting the timer X operating mode bits of the timer X mode register." (1) Timer mode "Prescaler X counts the count source selected by the timer X count source selection bits." Page 26: Timer Y "Timer Y can can be selected in one of 4 operating modes by setting the timer Y operating mode bits of the timer Y mode register." (1) Timer mode "Prescaler Y counts the count source selected by the timer Y count source selection bits." Page 27: Note on reading timer added. Page 28: - Timer Z "Timer Z can can be selected in one of 4 operating modes by setting the timer Z operating mode bits of the timer Z mode register." (1) Timer mode "Prescaler Z counts the count source selected by the timer Z count source selection bits." Page 30: Note on reading timer added. Page 36: Note on Serial I/O added. Page 44: Clock generating circuit The following description added. (1) On-chip oscillator operation, (2) Ceramic resonator, (3) RC oscillation, and (4) External clock Fig. 46 Resistor and Note added, Fig. 47 Note added, and Fig. 49 added. Page 45: Oscillation stop detection circuit Note added. Page 46: Fig. 51 and Fig. 52 revised. Page 47: Fig. 53 Note 4 added. Pages 48 to 50: Notes revised Page 51: DATA REQUIRED FOR MASK ORDERS revised DATA REQUIRED FOR ROM PROGRAMMING ORDERS added	020610

Rev. No.	Revision Description date	
3.0	(continued) Page 52: Product name added, Table 8 Note revised. Page 57: Table 13 Ladder resistor value revised, Layout revised. Page 63: Product name added, Table 20 Note revised. Page 67: Table 24 Characteristics for One Time PROM version added. Mask ROM version; "Vcc = 5 V" eliminated from the following Test condition. $\mathrm{f}(\mathrm{XIN})=6 \mathrm{MHz}$ $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$, middle-speed mode Page 68: Table 25 Ladder resistor value revised, Layout revised. Page 72 to 80: Extended operating temperature 125 ${ }^{\circ} \mathrm{C}$ version added.	020610
3.1	Page 57: Table 13, Page 68: Table 25 and Page 77: Table 35 Error of the ladder resistor in A/D converter characteristics corrected. As usual, (Rev.2.0 or before), the value is not changed from Typical 55 k Ω.	
		020701

[^0]: Notes 1: Vcc $=2.4$ to 5.5 V for the extended operating temperature version and the extended operating temperature $125^{\circ} \mathrm{C}$ version.
 2: P26/AN6 and P27/AN7 do not exist for the 32-pin version, so that Port P2 is a 6-bit I/O port.
 3: P35 and P36/INT1 do not exist for the 32-pin version, so that Port P3 is a 6 -bit I/O port.

