

NOT RECOMMENDED FOR NEW DESIGNS

NMPD01 Series

Power Over Ethernet PD Module

	RES

- RoHS Compliant
- IEEE802.3af full functional compliance
- Short circuit protection
- Isolated DC out
- 3.3V, 5V, 12V & 15V output options
- On board UL recognised DC/DC converter
- Thermal shutdown
- Output voltage present LED
- UL 94V-0 flammability

PRODUCT OVERVIEW

The NMPD01 series of power extraction modules has full functional compliance with IEEE802.3af. They are designed to extract power from CAT5 Ethernet cable when sourced by a Power Sourcing Equipment (PSE) also conforming to IEEE802.3af. The NMPD01 series removes the need for localised equipment power source, significantly reducing installation costs. The IEEE802.3af standard allows for two power options, one on the data lines, the other on the spare pair (see figures 1 and 2). The NMPD01 series can have voltage input on the data lines or spare pairs.

The NMPD01 series provides full signature and control as required by the PSE.

SELECTION GUIDE				
Order Code	Nominal Input Voltage	Output Voltage	Efficiency ¹ (Min.)	Power (Max.)
	V	V	%	W
NMPD0103C	48	3.4	74	9.50
NMPD0105C	48	5.1	77	9.75
NMPD0112C	48	12.1	80	10.00
NMPD0115C	48	15.1	79	10.00

INPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Specified operating range		36		57	
Turn on threshold	Voltage rising	36	40	42	V
Turn off threshold	Voltage falling	30	31	33	
Input reflected ripple				50	mV p-p
802.3af Power classification	Class 0				
Signature resistance		23.75		26.25	kΩ
Signature capacitance		50	100	120	nF
Classification current				4	mA

OUTPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Voltage set point accuracy	100% load after 30 mins at nominal supply voltage			1.6	%
Overall voltage error	Case temperature -40°C to 110°C Load 0% - 100% Input specified range		1	2.5	%
Temperature coefficient of output voltage (slope)	Over any 10°C span within the specified temperature range		50	250	ppm⁰C
Deviation of output voltage	Specified over temperature MIN- MAX		0.5	1	%
Line regulation	Operating voltage range, 50% load		0.05	0.1	%
Load Regulation	0% - 100% rated load			0.5	%
Ripple	rms		70		mV
Switching frequency		330	350	395	kHz

COUPLING CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Insertion loss	1-100MHz			-1.2	
	1-30MHz, at 100Ω	-16			
Return Loss	40MHz, at 100Ω	-14			
Return Loss	50MHz, at 100Ω	-13			
	60-80MHz, at 100Ω	-12			
Differential to account of	30MHz	-43			dB
Differential to common mode rejection	60MHz	-37			
rejection	100MHz	-33			
	30MHz	-45			
Cross talk	60MHz	-40			
	100MHz	-35			
DC resistance balance		≤3.5%			

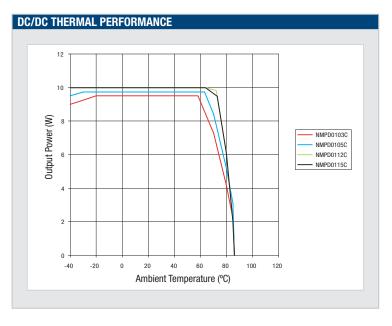
ABSOLUTE MAXIMUM RATINGS	
Input voltage	±60V
Output voltage	-0.3V to controlled output voltage (operating or non-operating)

All specifications typical at T_A=25°C, nominal input voltage and rated output current unless otherwise specified.

1. Nominal V_{IN}, full load.

www.murata-ps.com

Technical enquiries email: mk@murata-ps.com, tel: +44 (0)1908 615232


NMPD01 Series

Power Over Ethernet PD Module

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Isolation test voltage	Flash tested for 60 seconds	1500			VAC rms

TEMPERATURE CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Ambient temperature		0		70		
DC/DC case temperature	Full load	-40		110	°C	
Storage	Absolute Max. internal temperature	-40		125		
Relative humidity	Non condensing 85°C			85	%	
Thermal protection	Operates at case temperature	110			°C	

THERMAL CHARACTERISTICS						
Max. power rating with case temperature maintained by external means (e.g. forced air cooling).						
Port Number		Case Temperature		Units		
Part Number	100°C	105°C	110°C	Offics		
NMPD0103C	9.5	7.0	1.0			
NMPD0105C	9.75	4.7	1.0	W		
NMPD0112C	10	8.0	0	VV		
NMPD0115C	10	7.5	0			

NMPD01 Series

Power Over Ethernet PD Module

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NMPD01 series of power over ethernet modules are all 100% production tested at their stated isolation voltage. This is 1500VAC for 60 seconds.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

The NMPD01 series has an on-board DC/DC converter, that has been recognized by Underwriters Laboratory. Both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. While manufactured parts can withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

APPLICATION NOTES

The NMPD01 series are ideal modular system blocks for integration into numerous ethernet products to be powered from the data lines. These modules eliminate the need for localised powering saving considerable installation costs and time. These modules are ideal for applications where powering from the PSE at an SELV level is highly desirable such as in harsh industrial environments (chemicals and moisture).

Offering a module solution, incorporating ethernet isolation transformers, full compatibility signature to the PSE and isolated on-board DC/DC converter the NMPD01 series offers simple and guicker product development, maximising return on investment. PoE is the emerging standard in what is in effect the widest form of distributed power architecture.

Power-Up Sequence

A PSE applies two separate input voltages of <10V and calculates the signature resistance and signature capacitance of the POE device. If it is in the valid range, the PSE then applies a voltage between 14.5V and 20.5V and measures the classification current. If the classification current is between 0-4mA it is classification 0.

PSE applies full operating voltage 42-57V, detection circuitry within NMPD01 senses correct voltage and turns on on-board DC/DC converter. If input voltage falls outside specified operating range, the on-board DC/DC converter is disabled.

Maximum Power

If the maximum output power is exceeded, the NMPD01 will operate in over current mode and will auto recover when the over load condition is removed.

Application Sectors

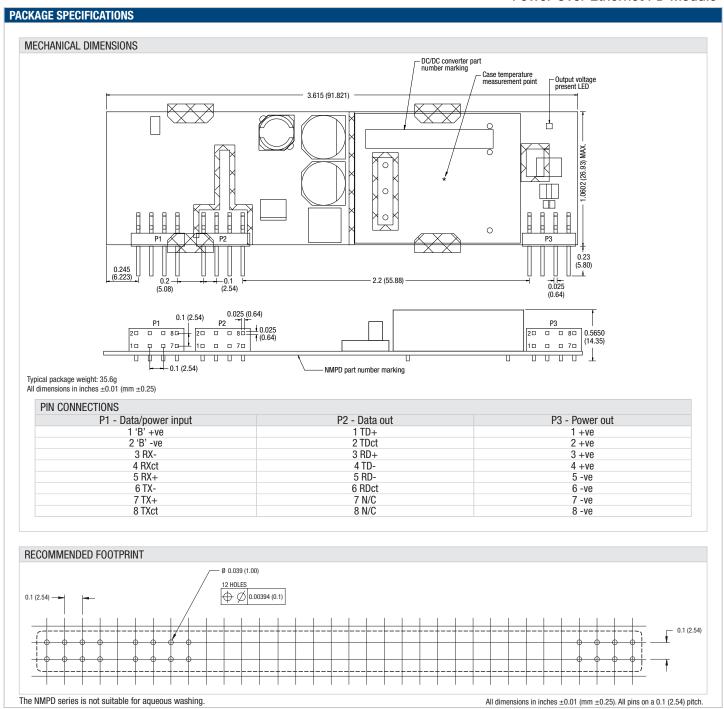
- Security system, door access, cameras, alarms
- Displays
- Public address systems
- Wireless access point
- Environmental control
- Telemetry
- Remote environmental monitoring

Rohs Compliance Information

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 300° C for 10 seconds. The pin termination finish is Tin. They are backward compatible with Sn/Pb soldering systems.

For further information, please visit www.murata-ps.com/rohs

www.murata-ps.com


Technical enquiries email: mk@murata-ps.com, tel: +44 (0)1908 615232

Power Over Ethernet PD Module

TYPICAL CONFIGURATIONS Figure 1 - IEEE802.3af Power Configurations Figure 2 - IEEE802.3af Power Configurations POWER SOURCING EQUIPMENT (PSE) RJ45 NMPD01 NMPD01 SPARE PAIR P1-8-L SIGNAL PAIR DC/DC DC/DC SIGNAL PAIR P1-2 Signal lines carry both data and power. Spare pairs carry power, data lines carry data only. Polarity of power is not important ... for both Figure 3 - Typical non-powered coupling between CAT5 and Physical Layer Interface (PHY) 4 SP1+ 5 SP1-RX-6 RX-RX¢T RCT Physical 3 RX+ Layer w Interface RJ45 2 TX-RX+ TX-1 TX+ $\overline{}$ TXCT TCT 7 SP2+ 8 SP2-TX+ Figure 4 - Typical power coupling using the NMPD01 NMPD01 4 SP1+ P3, 1-4 +DC/DC P3, 5-8 P2 IRX Physical RXCT RJ45 Layer Interface 5 RX+ 8 TXCT 7 SP2+ TX+

NMPD01 Series

Power Over Ethernet PD Module

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infinge upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subtract to change without notice.

www.murata-ps.com/locations

Technical enquiries email: mk@murata-ps.com, tel: +44 (0)1908 615232