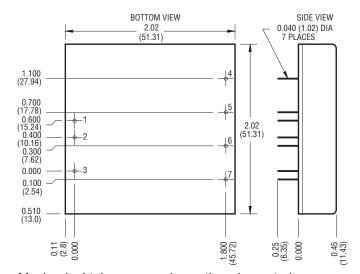


Description

Providing outputs from 5 to 15 volts, the DGP12 series delivers up to 12 watts with power densities up to 7 watts per cubic inch (0.43 watts per cm³). Designed to operate on ultra-wide input voltages from 3.5 to 16 volts, and with remote On/Off capability, the DGP12 supplies power from battery or system sources. The output of the converter is electrically isolated, thereby allowing the output to be configured as a positive or negative output voltage. The fully-isolated, shielded case allows precise operation in sensitive environments.

Selection Chart					
Model	Input Range VDC (6)		Output	Output	
	Min	Max	VDC	mA	
DGP12U5S5	3.5	16	5	2000	
DGP12U5S12	3.5	16	12	1000	
DGP12U5S15	3.5	16	15	800	


Model numbers highlighted in yellow or shaded are not recommended for new designs.

General Specifications (1)							
All Models	Units						
ON/OFF Function (2)							
OFF Logic Level	MAX	<0.4	VDC				
Open Circuit On Level Voltage	TYP	1.4	VDC				
Input Resistance	TYP	2	Kohms				
Converter Idle Current ON/OFF Pin Low	TYP	6	mA				
Isolation (3)							
Breakdown Voltage Input to Output 10 µA Leakage	MIN	700	VDC				
Input to Output Capacitance	TYP	375	pF				
Output Trim Function							
Trim Range	MIN	±10	%				
Input Resistance	MIN	10	Kohms				
Open Circuit Voltage	TYP	2.5	VDC				
Environmental							
Case Functional Range, Tc No Derating	MIN MAX	-40 85	°C				
Case Functional Range (4)	MIN MAX	-50 100	°C				
Storage Range	MIN MAX	-55 105	°C				
Thermal Shutdown Case Temperature	TYP	105	°C				
Thermal Impedance (5)	TYP	9.5	°C /Watt				
General							
MTBF (Calculated)	TYP	800,000	HRS				
Unit Weight	TYP	2.3/65	oz/gm				
Chassis Mounting Kit CM2B2							

Features

- · RoHS lead solder exemption compliant
- · Up to 12 watts output power
- 5-Sided shielded isolated copper case
- Ultra-wide 3.5 to 16V input range
- Efficiencies to 82%
- Fully-isolated and filtered
- 700 V isolation
- Remote On/Off and trim

Mechanical tolerances unless otherwise noted:

X.XX dimensions: ±0.020 inches X.XXX dimensions: ±0.005 inches

Pin	Function
1	+INPUT
2	-INPUT
3	ON/OFF
4	NO PIN
5	+OUT
6	-OUT
7	TRIM

NOTES

- (1) All parameters measured at Tc = 25 °C, nominal input voltage and full-rated load unless otherwise noted.
- (2) See DGP12 application notes for more information regarding the On/Off function.
- (3) The case is tied to the -output pin.
- (4) The functional temperature range is intended to give an additional data point for use in evaluating this power supply. At the low functional temperature the power supply will function with no side effects. However, sustained operation at the high functional temperature will reduce expected operational life. The data sheet specifications are not guaranteed beyond the case operating range.
- (5) The case thermal impedance is specified as the case temperature rise over ambient per package watt dissipated.
- (6) Reduced output power is available at 3.5 V input. Full power is available above 4.6 volts.

Input Parameters (1)						
Model			DGP12U5S5	DGP12U5S12	DGP12U5S15	Units
Voltage Range (1)		MIN MAX		3.5 16	•	VDC
Input Current	Full Load No Load	TYP TYP	2880 10	3500 16	3470 20	mA
Switching Frequency		TYP		60	•	kHz
Maximum Input Overvo	ltage,	MAX		20		VDC
Turn-on Time, 1% Output Error		TYP		10		ms

Output Parameters (1)						
Model		DGP12U5S5	DGP12U5S12	DGP12U5S15	Units	
Output Voltage		5	12	15	VDC	
Output Voltage Accuracy	MIN TYP MAX	4.95 5.00 5.05	11.90 12.00 12.10	14.90 15.00 15.10	VDC	
Rated Load Range (5)	MIN MAX	0.0 2.0	0.0 1.0	0.0 0.8	А	
Load Regulation 25% Max Load - Max Load	TYP MAX	0.3 0.7	0.1 0.5		%	
Line Regulation Vin = Min-Max VDC	TYP MAX		0.1 0.2		%	
Short Term Stability (4)	TYP	< 0.05		%/24Hrs		
Long Term Stability	TYP	< 0.1		%/kHrs		
Noise, Peak - Peak (3)	TYP	50			mV _{PP}	
RMS Noise	TYP	10			mV _{rms}	
Temperature Coefficient	TYP MAX	50 150			ppm/°C	
Short Circuit Protection +OUT to -OUT (6)			Short Term Current	Limit		

NOTES:

- (1) All parameters measured at Tc = 25 °C, nominal input voltage and full-rated load unless otherwise noted.
- (2) Reduced output power available at 3.5 V input. Full output power is available above 4.6 V input.
- (3) Noise measurement bandwidth is 0-20 MHz for peak-to-peak measurements; 10 kHz to 1 MHz for RMS measurements. Output noise is measured with a 0.01 μF ceramic capacitor in parallel with a 1 μF , 35V Tantalum capacitor located 1" away from the converter to simulate your PCB's standard decoupling. Input reflected ripple is measured into a 10V μH source impedance.
- (4) Short-term stability is specified after a 30-minute warmup at full load, constant line, and recording the drift over a 24-hour period.
- (5) No minimum load required for operation. Dynamic regulation may degrade when run with less than 5% load.
- (6) Less than 30 seconds.

DGP12 SERIES APPLICATION NOTES:

External Capacitance Requirements

No external capacitance is required for operation of the DGP12 Series. The use of input capacitors with less than 0.5 Ohms ESR may cause peaking in the input filter and degrade filter performance. External output capacitance is not required for operation. However, it is recommended that 1 $_{\mu}F$ to 10 $_{\mu}F$ of tantalum and 0.001 to 0.1 $_{\mu}F$ ceramic capacitance be selected for reduced system noise. Additional output capacitance may be added for increased filtering, but should not exceed 400 $_{\mu}F$.

Negative Outputs

A negative output voltage may be obtained by connecting the +OUT to circuit ground and connecting -OUT as the negative output.

(Continued on page 3)

DGP12 SERIES APPLICATION NOTES: (Cont.)

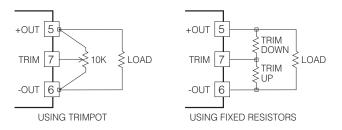
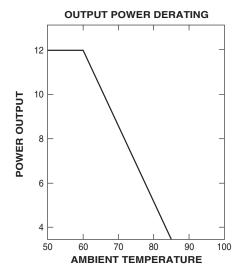
Remote ON/OFF Operation

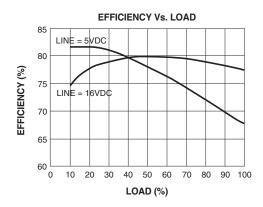
The remote On/Off pin must be left floating if this function is not used. It is recommended to drive this pin with an open collector arrangement or a relay contact. When the On/Off pin is pulled low with respect to the -INPUT, the converter is placed in a low power drain state. The input capacitors are kept fully charged in the Off mode. For proper operation, do not drive this input from a logic gate directly.

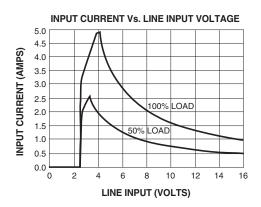
The On/Off pin must be left floating for proper operation. Be aware that this input may be noise sensitive; use proper PCB design guidelines. The On/Off pin should never be pulled more than 0.3 volts below the negative input or have a voltage greater than 2 volts applied.

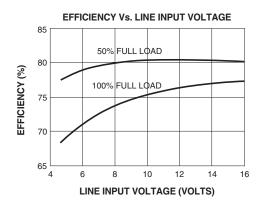
Output Trim

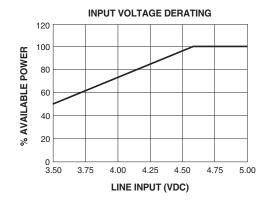
The TRIM pin may be used to adjust the output ±10% from the nominal setting. This function allows adjustment for voltage drops in the system wiring, as well as the 5.2 volt outputs for ECL applications. Figure 1 shows the proper connections to use this function. A trimpot value of 10 kOhms should be used for 5 volt outputs. A trimpot value of 20 kOhms should be used for 12 and 15 volt outputs. If the TRIM function is not required, the pin may be left floating.


Figure 1.




DGP12 SERIES BLOCK DIAGRAM SHIELDED ISOLATION TRANSFORMER 5 + OUTPUT + INPUT 1 6 - OUTPUT CURRENT MODE **PWM** - INPUT 2 7 TRIM ON/OFF 3 ISOIAMP LOW TC BANDGAP FIVE SIDED SHIELDED COPPER CASE REFERENCE



Typical Performance: (Tc=25 °C, Vin=Nom VDC, Rated Load)

NOTES ON USING THE CURVES

- The input currents are for 12 watts of input power. For 5 volt output models the current is approximately 16% less.
- The efficiency curves are for 12 volt output. To use the curves for other models adjust as follows:
 - 5 volt models subtract approximately 2%.
 - 15 volt models subtract approximately 1%.

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.