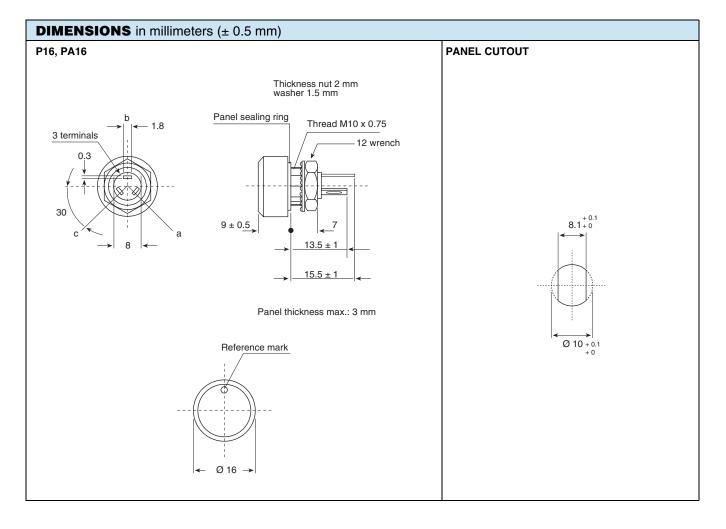


P16, PA16

Vishay Sfernice

Knob Potentiometer


The P16 is a revolutionary concept in panel mounted potentiometers. This unique design consists of a knob driving and incorporating a cermet potentiometer. Only the mounting hardware and terminals are situated on the back side of the panel reducing to a minimum the required clearance.

FEATURES

- Test according to CECC 41000 or IEC 60393-1
- P16 Version for professional and industrial applications (cermet) COMPLIANT 1 W at 40 °C

- PA16 Version for professional audio applications (conductive plastic) 0.5 W at 40 °C
- Compact (integrated)
- Safety in use due to good insulation: > $10^4 M\Omega 500 V_{DC}$
- High dielectric strength: 2500 V_{BMS}
- · Fully sealed and panel sealed
- · Metallic or plastic knob options
- Custom knob on request
- Compliant to RoHS Directive 2002/95/EC

Document Number: 51036 For technical questions, contact: sfer@vishay.com Revision: 09-Feb-11 See also Application Note: www.vishay.com/doc?51001 and www.vishay.com/doc?52029 Vishay Sfernice

Knob Potentiometer

ELECTRICAL SPE	CIFICATIONS					
		P16	PA16			
Resistive Element		Cermet	Conductive plastic			
Electrical Travel		270° ± 10°	270° ± 10°			
Power Rating Chart		1.25 P16 LIN. TAPER "A" 1.00 0.75 0.50 P16 LOG. TAPER "L & F" 0.50 P16 LOG. TAPER "L & F" 1.00 P16 LOG. TAPER "L & F" 1.00 0.50 P16 LOG. TAPER "L & F" 1.00 0.50				
Circuit Diagram						
Taper			A L L L L L L L L L L L L L L L L L L L			
Resistance Range	Linear Taper	22 Ω to 10 M Ω	1 k Ω to 1 M Ω			
nesistance hange	Logarithmic Taper	100 Ω to 2.2 M Ω	470 Ω to 500 k Ω			
Standard Series E3		1 - 2.2 - 4.7 and on request 1 - 2 - 5	1 - 2.2 - 4.7			
Toloranoo	Standard	± 20 %	± 20 %			
Tolerance	On Request	± 10 %	± 10 % (1 kΩ to 100 kΩ)			
Power Pating	Linear	1 W at + 40 °C	0.5 W at + 40 °C			
Power Rating	Logarithmic	0.5 W at + 40 °C	0.25 W at + 40 °C			
Temperature Coefficient (Typical)	± 150 ppm/°C	± 1000 ppm/°C			
Dielectric Strength (RMS)		2500 V	2500 V			
Limiting Element Voltage	(Linear Law)	350 V	350 V			
Insulation Resistance (50	0 V _{DC})	$\geq 10^4 M\Omega$	$\geq 10^4 \text{M}\Omega$			
Contact Resistance Varia		3 % Rn or 3 Ω	2 % Rn or 3 Ω			
End Resistance (Typical)		1 Ω	1 Ω			
Insulation Resistance (50		$10^6 \ { m M}\Omega$	10 ⁶ MΩ			

www.vishay.com 128 For technical questions, contact: <u>sfer@vishay.com</u> See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u> Document Number: 51036 Revision: 09-Feb-11

Vishay Sfernice

MECHANICAL SPECIFICATION	ECIFICATIONS					
Mechanical Travel	$300^{\circ} \pm 5^{\circ}$					
Operating Torque	2 Ncm typical					
End Stop Torque	25 Ncm maximum					
Max. Tightening Torque of Mounting Nut	250 Ncm maximum					
Unit Weight	4.5 g typical					

ENVIRONMENTAL SPECIFICATIONS							
	Metallic Knob	Plastic Knob					
Temperature Range	- 40 °C to 125 °C	- 40 °C to 85 °C					
Climatic Category	40/100/56	40/85/56					
Sealing	Sealed container and panel sealed						
Protection Grades	IP67						

MARKING

- Ohmic value, tolerance, taper
- Manufacturing date

PACKAGING

• Carton box of 20 pieces

CONTROL KNOB

Black metallic knob (NM).

Black plastic knob (NP).

For white and blue color see ordering information.

Other dimensions, shapes, colors of control knobs are manufactured on request - please consult Vishay.

Other reference marks (shapes, colors) and legends can be printed on plastic knob on request - please consult Vishay.

P16 S	P16 STANDARD RESISTANCE ELEMENT DATA									
STAN-	LI	NEAR TAPI	ER	LOG TAPER						
DARD RESIS- TANCE VALUES	MAX. POWER AT 40 °C	MAX. VOLTAGE	MAX. CUR. THROUG H WIPER	MAX. POWER AT 40 °C	MAX. VOLTAGE	MAX. CUR. THROUG H WIPER				
Ω	W	v	mA	W	v	mA				
22 47 100 220 470 1K 2.2K 4.7K 10K 22K 47K 100K 220K 470K 1M 2.2M 4.7M 10M	1 1 1 1 1 1 1 1 1 0.56 0.26 0.12 0.05 0.02 0.01	$\begin{array}{c} 4.69\\ 6.85\\ 10\\ 14.8\\ 21.7\\ 31.6\\ 46.9\\ 68.5\\ 100\\ 148\\ 217\\ 316\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350$	$\begin{array}{c} 213\\ 146\\ 100\\ 67.4\\ 31.6\\ 21.3\\ 14.6\\ 10\\ 6.74\\ 4.61\\ 3.16\\ 1.59\\ 0.75\\ 0.35\\ 0.75\\ 0.35\\ 0.07\\ 0.012\end{array}$	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	7.1 10.5 15.3 22.4 33.2 48.5 70.7 105 153 224 332 350 350 350	71 48 32.6 22.4 15.1 10.3 7.07 4.77 3.26 2.24 1.51 0.74 0.35 0.16				

PA16 STANDARD RESISTANCE ELEMENT DATA									
STAN-	L	LINEAR TAPER			LOG TAPER				
DARD RESIS- TANCE VALUES 40 °C		MAX. VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT 70 °C	MAX. VOLTAGE	MAX. CUR. THROUGH WIPER			
Ω	W	V	mA	W	V	mA			
470 1K 2.2K 4.7K 10K 22K 47K 100K 220K 470K 1M	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.26 0.12	22.4 33.2 48.5 79.7 105 153 224 332 350 350	22.4 15.1 10.3 7.07 4.77 3.26 2.24 1.51 0.74 0.35	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	10.8 15.8 23.5 34.3 50.0 74 108 158 235 343	23.1 16 11 7 5.0 3.4 2.3 1.6 1.1 0.7			

Document Number: 51036 Revision: 09-Feb-11 For technical questions, contact: <u>sfer@vishay.com</u> See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u>

Vishay Sfernice

Knob Potentiometer

PERFORMANCE								
TESTS	CONDITIONS	TYPICAL VALUES AND DRIFTS						
12515	CONDITIONS	∆ R_T/R_T (%)	∆ R₁₋₂/R₁₋₂ (%)	OTHER				
Electrical Endurance	1000 h at rated power 90'/30' cycle at + 40 °C	± 5 %	-	Insulation resistance: > $10^4 M\Omega$ Contact res. variation: < 2 % Rn				
Damp Heat, Steady State	56 days 40 °C, 93 % HR	±2%	± 1 %	Insulation resistance: > $10^4 M\Omega$				
Mechanical Endurance	50 000 cycles	± 5 %	-	Contact res. variation: < 2 % Rn				
Shock	50 g's at 11 ms 3 successive shocks in 3 directions	± 0.2 %	± 0.5 %	-				
Vibration	10 Hz to 55 Hz 0.75 mm or 10 <i>g</i> 's during 6 h	± 0.2 %	-	$\Delta V_{1\text{-}2} / \Delta V_{1\text{-}3} \leq \pm \ 0.5 \ \%$				

ORDERIN	IG INFORMATIO	N							
Р	P 1 6 N P 2 2 3 M A B 1 5								
MODEL	STYLE	OHMIC VALUE	TOLERANCE	TAPER	PACKAGING CODE	SPECIAL NUMBER			
P16 = Cermet PA16 =	NM: Metallic black NP: Plastic black WM: Metallic white WP: Plastic white	$223 = 22 \text{ k}\Omega$ for ohmic value range see electrical	M = ± 20 % On request: K = ± 10 %	A: Linear L: Clockwise logarithmic F: Inverse clockwise logarithmic	B15 = Box of 20 pieces	(If applicable) Given by Vishay for custom			
Conductive plastic	BP : Plastic blue	specification				design			

PART NUMBER DESCRIPTION (for information only)								
P16	NP	22 k Ω	20 %	Α		во		e3
MODEL	STYLE	VALUE	TOLERANCE	TAPER	SPECIAL	PACKAGING	SPECIAL	LEAD (Pb)-FREE

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.