

HIGH EFFICIENCY RED HLMP-2300/2600 SERIES YELLOW HLMP-2400/2700 SERIES HIGH EFFICIENCY GREEN HLMP-2500/2800 SERIES

DESCRIPTION

These LED Light Bar series are bright, large emitting area, rectangular devices that are designed for backlighting legend/message annunciators.

These devices are offered in single-in-line and dual-in-line packages that contain single or segmented light-emitting area. Each package style is offered in High Efficiency Red, Yellow, or Green emission color.

FEATURES

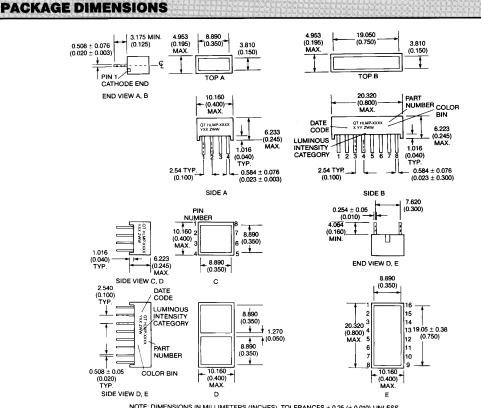
- Large area, uniform, bright light-emitting surfaces
- Select from six package styles
- Choice of three colors
- Categorized for intensity and color
- X-Y stackable
- Easily driven with I.C.s
- Alternate source for popular backlighting components

MODEL NUMBERS

PART NO.	COLOR	DESCRIPTION	PACKAGE	PIN OUT
HLMP-2300 HLMP-2400 HLMP-2500	High Efficiency Red Yellow High Efficiency Green	2 LED Single-in-line 0.35 in.×0.15 in. Area	A	A
HLMP-2350 HLMP-2450 HLMP-2550	High Efficiency Red Yellow High Efficiency Green	4 LED Single-in-line 0.75 in.×0.15 in. Area	В	В
HLMP-2655 HLMP-2755 HLMP-2855	High Efficiency Red Yellow High Efficiency Green	4 LED Dual-in-line 0.35 in.×0.35 in. Area	С	с
HLMP-2670 HLMP-2770 HLMP-2870	High Efficiency Red Yellow High Efficiency Green	Dual 0.35 in.×0.35 in. Area Dual-in-line package	D	D
HLMP-2685 HLMP-2785 HLMP-2885	High Efficiency Red Yellow High Efficiency Green	8 LED 0.35 in. ×0.75 in. Area Dual-in-line package	E	D

SEMICONDUCTOR

	HIGH EFFICIENCY RED HIGH EFFICIENCY GREEN HLMP-2300/-2500 -2600/-2800 SERIES	YELLOW HLMP-2400/ -2700 SERIES
Power dissipation per LED chip (See Note 1)	135 mW	85 mW
Peak forward current per LED chip,		
T _A =50°C (max. pulse width=2 ms) (See Notes 1 and 2)	90 mA	60 mA
Average forward per LED chip pulsed conditions,		
T _A =50°C (See Note 2)	25 mA	20 mA
DC forward current per LED chip,		
T _A =50°C (See Note 3)	30 mA	25 mA
Reverse voltage per LED chip	6V	6V
Storage and operating temperature range	-40°C to +85°C	-40°C to +85°C
Soldering time at 260°C (See Note 4)	260°C for 3 sec.	260°C for 3 sec.


NOTES

1. For HLMP-2300/-2500/-2600/-2800 Series, derate above T_A=25°C at 1.8 mW/°C per LED chip. For HLMP-2400/-2700 Series, derate above T_A=50°C at 1.8 mW/°C per LED chip.

2. See Figure 1/2 to establish pulse operating conditions.

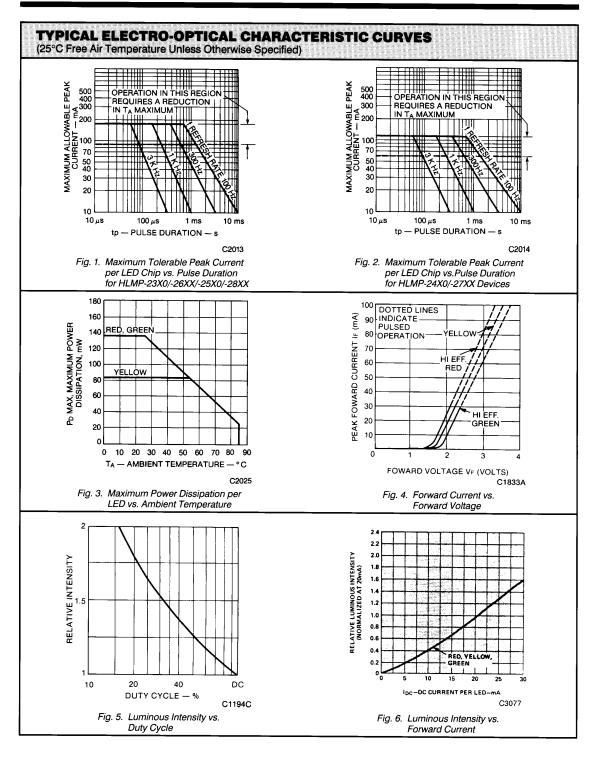
For HLMP-2300/-2500/-2600/-2800 Series, derate above T_A=50°C at 0.5 mA/°C per LED chip. For HLMP-2400/-2700 Series derate above T_A=60°C at 9.5 mA/°C per LED chip.

4. Lead immersed to 1/16 in. from body of the device. Maximum unit surface temperature is 140°C.

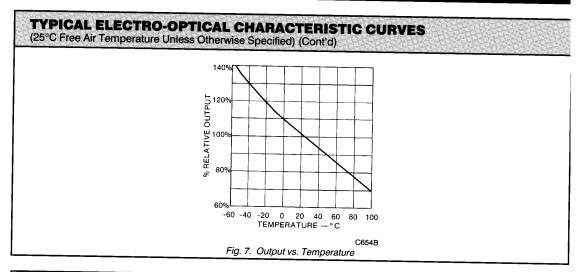
NOTE: DIMENSIONS IN MILLIMETERS (INCHES). TOLERANCES ± 0.25 (± 0.010) UNLESS OTHERWISE INDICATED C2015

SEMICONDUCTOR

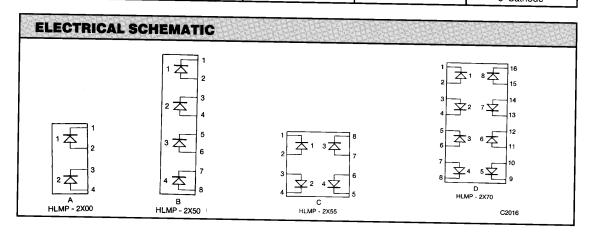
					HLMP				TEST
PARAMETER		SYMBOL	-2300	-2350	-2655	-2670	-2685	UNIT	CONDITIONS
Luminous	min.		6.0	13	13	13	22	mcd	I _F =20 mA
Intensity	typ.	l _v	23	45	43	45	80	mcd	l _⊧ =20 mA
intensity	typ.		30	50	50	50	100	mcd	I _F =60 mA pK, 1:3 D.F
Forward	max.	VF	2.6	2.6	2.6	2.6	2.6	v	l₌=20 mA
voltage	typ.	VF	2.0	2.0	2.0	2.0	2.0	v	1F-20 MA
Peak wavelength	typ.	λ_{p}	630	630	630	630	630	nm	
Dominant wavelength	typ.	λ_{d}	626	626	626	626	626	nm	
Capacitance	typ.	С	45	45	45	45	45	pF	V _F =0, f=1 MHz
Reverse voltage	min.	V _R	6	6	6	6	6	v	I _R =100 μA
Thermal resistance	typ.	θ _{JL}	150	150	150	150	150	°C/W/ LED chip	


ELECTRO-OPTICAL CHARACTERISTICS (T_A=25°C) YELLOW

					HLMP				TEST
PARAMETER		SYMBOL	-2400	-2450	-2755	-2770	-2785	UNIT	CONDITIONS
Luminous	min.		6	13	13	13	26	mcd	I _F =20 mA
	typ.	l _v	20	38	35	35	70	mcd	l₅=20 mA
Intensity	typ.		33	60	60	60	115	mcd	l _F =60 mA pK, 1:3 D.F.
Forward	max.	VF	2.6	2.6	2.6	2.6	2.6	v	l₌=20 mA
voltage	typ.	VF	2.1	2.1	2.1	2.1	2.1	v	I _F ≡20 mA
Peak wavelength	typ.	λ_{p}	585	585	585	585	585	nm	
Dominant wavelength	typ.	λ_{d}	588	588	588	588	588	nm	
Capacitance	typ.	С	35	35	35	35	35	pF	V _F =0, f=1 MHz
Reverse voltage	min.	V _R	6	6	6	6	6	V	I _R =100 μA
Thermal resistance	typ.	θ"	150	150	150	150	150	°C/W/ LED chip	


ELECTR HIGH EFFI			CHARA	CTERIS	STICS (1	ſ₄=25°C)			
		****			HLMP				TEST
PARAMETER		SYMBOL	-2500	-2550	-2855	-2870	-2885	UNIT	CONDITIONS
Luncingues	min.		5	11	11	11	22	mcd	I _F =20 mA
Luminous	tvp.	L.	25	50	50	50	100	mcd	L=20 mA

Intensity	typ.	v	25	50	50	50	100	mcu	$I_F = 20 \text{ mA}$
intensity	typ.		38	75	75	75	150	mcd	I _F =60 mA pK, 1:3 D.F.
Forward	max.	VF	2.6	2.6	2.6	2.6	2.6	v	l₌=20 mA
voltage	typ.	VF	2.2	2.2	2.2	2.2	2.2	v	I _F =20 MA
Peak wavelength	typ.	λ_p	565	565	565	565	565	nm	
Dominant wavelength	typ.	λ_{d}	567	567	567	567	567	nm	
Capacitance	typ.	С	40	40	40	40	40	pF	$V_F = 0$, f=1 MHz
Reverse voltage	min.	V _R	6	6	6	6	6	v	I _B =100 μA
Thermal resistance	typ.	ϴϧϲ	150	150	150	150	150	°C/W/ LED chip	1



PIN	ELECTRICAL CONNECTION									
	HLMP-2X00	HLMP-2X50	HLMP-2X55	HLMP-2X70/-2X85						
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 Cathode 1 Anode 2 Cathode 2 Anode	1 Cathode 1 Anode 2 Cathode 2 Anode 3 Cathode 3 Anode 4 Cathode 4 Anode	1 Cathode 1 Anode 2 Anode 2 Cathode 3 Cathode 3 Anode 4 Anode 4 Cathode	1 Cathode 1 Anode 2 Anode 2 Cathode 3 Cathode 3 Anode 4 Anode 4 Cathode 5 Cathode 5 Anode 6 Anode 6 Cathode 7 Cathode 7 Anode 8 Anode 8 Anode 8 Cathode						

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation