Data Sheet

 -xxxE denotes a lead-free product

Description

The ASSR-V62X Series is specially designed to drive high power MOSFETs. It consists of an AIGaAs infrared lightemitting diode (LED) input stage optically coupled to an output detector circuit. The detector consists of a highspeed photovoltaic diode array and driver circuitry to switch on/off two discrete high voltage MOSFETs externally. The relay driver turns on (contact closes) with a minimum input current of 3 mA through the input LED. The relay driver turns off (contact opens) with an input voltage of 0.8 V or less.

The dual channel configurations, ASSR-V621 and ASSRV622, allow 2 independent MOSFETs to be driven. It has the versatility to double the photovoltaic voltage by connecting the 2 channels in series or to double the short circuit current by connecting the 2 channels in parallel. They are available in 8 -pin DIP and Gull Wing Surface Mount packages.

Features

- Dual Channel Photovoltaic MOSFET Driver
- Open Circuit Voltage: 7VTypical
- Short Circuit Current: 20 2 A Typical
- Low Input Current: CMOS Compatibility
- Fast Switching Speed: 0.3 ms (Ton), 0.03 ms (Toff) Typical
- High Input-to-Output Insulation Voltage (Safety and Regulatory Pending Approvals)
- 3750 Vrms for 1 min per UL1577
- CSA Component Acceptance

Applications

- Solid State Relay Module
- Voltage Supply for electronic circuits

Ordering Information

ASSR-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part numb	Option HS Compliant	Package	Surface Mount	Gull Wing	Tape \& Reel	Quantity
ASSR-V621	-002E	300 mil DIP-8				50 units per tube
	-302E		X	X		50 units per tube
	-502E		X	X	X	1000 units per reel
ASSR-V622	-002E	300 mil DIP-8				50 units per tube
	-302E		X	X		50 units per tube
	-502E		X	X	X	1000 units per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example:
ASSR-V621-002E to order product of 300mil DIP-8 package in tube packaging and RoHS Compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Schematic

Package Outline Drawings

8-Pin DIP Package

8-Pin DIP Package with Gull Wing Surface Mount Option 300

Lead Free IR Profile

Use of non-chlorine-activated fluxes is highly recommended.

Note: Non-Halide flux should be used.

Regulatory Information

The ASSR-V621-002E and ASSR-V622-002E are approved by the following organizations:
UL
Approved under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=3750 \mathrm{~V}_{\text {RMS }}$
Approved under CSA Component Acceptance Notice \#5.

Insulation and Safety Related Specifications

Parameter	Symbol	ASSR-V621-002E ASSR-V622-002E	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)	IIIa	Material Group (DIN VDE 0109)		

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		TS	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	-40	85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temperat			260	${ }^{\circ} \mathrm{C}$	
	Time			10	s	
Input Current	Average	I_{F}		30	mA	
	Surge			300		
	Transient			1000		
Reversed Input Voltage		V_{R}		5	V	
Input Power Dissipation		PIN		100	mW	
Solder Reflow Temperature Profile		See Lead Free IR Profile				

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Input Current (ON)	$\mathrm{I}_{\text {F(ON })}$	3	30	mA	
Input Voltage (OFF)	$\mathrm{V}_{\text {F(OFF) }}$	0	0.8	V	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

Package Characteristics

Unless otherwise specified, operating temperature $T_{A}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage	$\mathrm{V}_{1 S O}$	3750			Vrms	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$	1	
Input-Output Resistance	$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$		10^{12}	Ω	$\mathrm{~V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$			
Input-Output Capacitance	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$		0.6	pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$			

Electrical Specifications (DC)

For operating $T_{A}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Open Circuit Voltage	Voc	6.5	7		V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$		
Short Circuit Current	Isc	15	20		$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$		
Input Reverse Breakdown Voltage	$V_{\text {R }}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Forward Voltage	V_{F}	1.1	1.3	1.7	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		

Switching Specifications (AC)
For operating $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Turn On Time	$T_{O N}$		0.28		ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, C_{L}=1 \mathrm{nF}$		
Turn Off Time	$\mathrm{T}_{\text {OFF }}$		0.03		ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, C_{L}=1 \mathrm{nF}$		

Note:

1. Device is considered as a two terminal device; pin $1,2,3,4$ shorted and pin $5,6,7,8$ shorted.

Figure 1. Short Circuit Output Current vs

Figure 3. Ton vs Temperature

Figure 2. V_{0} c ss Temperature

Figure 4. $\mathrm{T}_{\text {OFF }}$ vs Temperature

