

5.0mm x 5.0mm FULL-COLOR SURFACE MOUNT LED LAMP

ATTENTION

OBSERVE PRECAUTIONS FOR HANDLING **ELECTROSTATIC** DISCHARGE SENSITIVE DEVICES

Part Number: AAAF5051-03

Blue Reddish-Orange Green

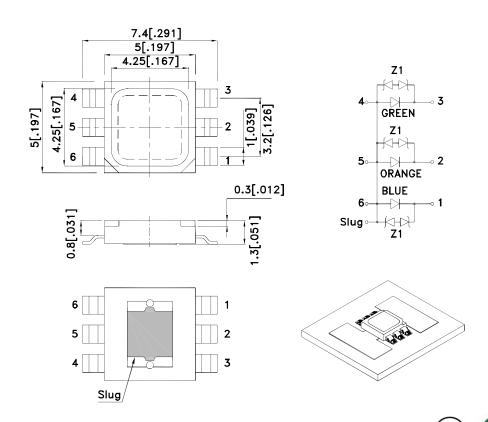
Features

- Chips can be controlled separately.
- Suitable for all SMT assembly and solder process.
- Available on tape and reel.
- White SMD package, silicone resin.
- Package: 500pcs / reel.
- Moisture sensitivity level : level 3.
- RoHS compliant.

Description

The Blue source color devices are made with InGaN on Al₂O₃ substrate Light Emitting Diode.

This devices are made with AlGaInP.


The Green source color devices are made with InGaN on Al₂O₃ substrate Light Emitting Diode.

Static electricity and surge damage the LEDS.

It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs.

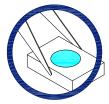
All devices, equipment and machinery must be electrically grounded.

Package Dimensions

- 1. All dimensions are in millimeters (inches)
- 2. Tolerance is ±0.15[±0.006]unless otherwise noted.
- 3. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice 4. The device has a single mounting surface. The device must be mounted according to the specifications.

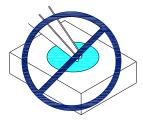
SPEC NO: DSAK2496 **REV NO: V.4** DATE: JUN/05/2010 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: F.F.ZHou

PAGE: 1 OF 9

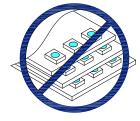

ERP: 1201005942

Handling Precautions

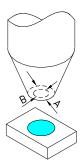
Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force.


As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools.



2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.



Do not stack together assembled PCBs containing exposed LEDs. Impact may scratch the silicone lens or damage the internal circuitry.

- 4. The outer diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks. The inner diameter of the nozzle should be as large as possible.
- 5. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.
- 6. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production.

SPEC NO: DSAK2496 REV NO: V.4 DATE: JUN/05/2010 PAGE: 2 OF 9
APPROVED: WYNEC CHECKED: Allen Liu DRAWN: F.F.ZHou ERP: 1201005942

Selection Guide

Part No.	Dice	Lens Type	Iv (mcd) [2] @ 150mA*120mA		•	lm) [2] A*120mA	Viewing Angle [1]
			Min.	Тур.	Min.	Тур.	201/2
AAAF5051-03	Blue (InGaN)	WATER CLEAR	650	1000	3500	4500	120°
	Reddish-Orange (AlGaInP)		*2500	*4000	*7200	*9000	
	Green (InGaN)		3800	6000	14000	20000	

- 1. 01/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.

 2. Luminous intensity/ luminous Flux: +/-15%. *Luminous intensity with asterisk is measured at 120mA.

Absolute Maximum Ratings at Ta=25°C

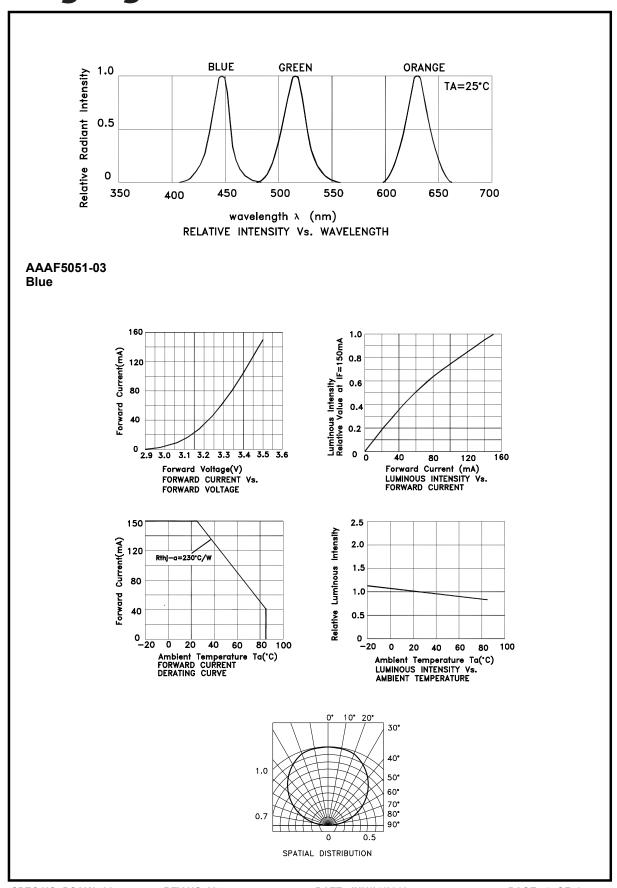
Parameter	Symbol	Device	Value	Unit	Test Conditions	
		Blue	0.6		IF=150mA	
Power dissipation	PD	Reddish-Orange	0.336	W	IF=120mA IF=150mA	
		Green	0.6			
		Blue	140		IF=150mA	
Junction temperature	TJ	Reddish-Orange	140	°C	IF=120mA	
		Green	140		IF=150mA	
		Blue			I==150mA	
Operating Temperature	Тор	Reddish-Orange	-40 To +85	°C	Ir=120mA	
		Green			IF=150mA	
		Blue			IF=150mA	
Storage Temperature	Tstg	Reddish-Orange	-40 To +85	°C	IF=120mA	
		Green			IF=150mA	
		Blue	150		IF=150mA	
DC Forward Current [1]	lF	Reddish-Orange	120	120 mA lF=	IF=120mA	
		Green	150		IF=150mA	
		Blue	300		IF=150mA	
Peak Forward Current [2]	IFM	Reddish-Orange	300	mA	IF=120mA	
		Green	300		IF=150mA	
		Blue	230		IF=150mA	
Thermal resistance	Rth j-a	Reddish-Orange	300	°C/W	IF=120mA	
	Green	Green	220		I=150mA	
		Blue	30		IF=150mA	
Thermal resistance	Rth j-s	Reddish-Orange	50	°C/W	IF=120mA	
		Green	35		IF=150mA	
		Blue	10			
Reverse Current	lr	Reddish-Orange	10	uA	V _R =5V	
. 1515.55 Sunon		Green	10			

- 1. Results from mounting on Aluminum Board.
- 2. 1/10 Duty Cycle, 0.1ms Pulse Width.

REV NO: V.4 SPEC NO: DSAK2496 DATE: JUN/05/2010 PAGE: 3 OF 9 CHECKED: Allen Liu APPROVED: WYNEC DRAWN: F.F.ZHou ERP: 1201005942

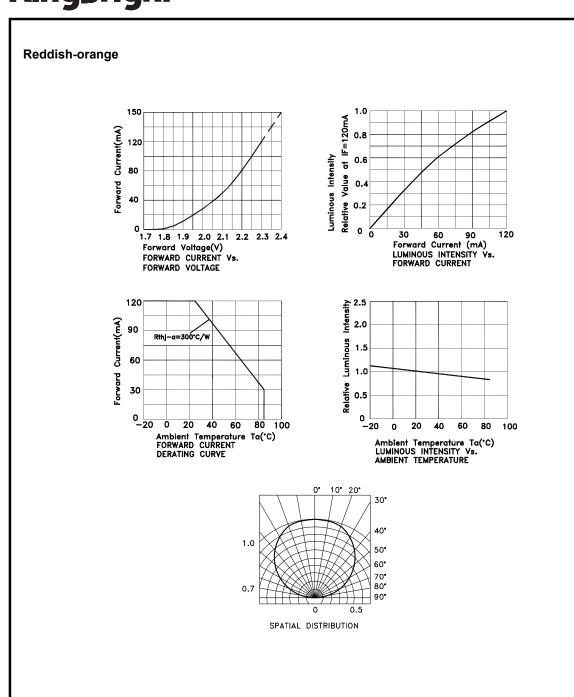
Electrical / Optical Characteristics at Ta=25°C

Parameter	Symbol	Device		Value		Unit
i diamotor	Cybo.	201.00	Min.	Тур.	Max.	O.I.I.
Wavelength at peak emission Ir=150mA		Blue		445		
Wavelength at peak emission IF=120mA	λ peak	Reddish-Orange		633		nm
Wavelength at peak emission IF=150mA		Green		515		
Dominant Wavelength IF=150mA		Blue		450		nm
Dominant Wavelength Ir=120mA	λ dom [1]	Reddish-Orange		624		
Dominant Wavelength Ir=150mA		Green		525		
Spectral Line Half-width IF=150mA		Blue		20		nm
Spectral Line Half-width IF=120mA	Δλ1/2	Reddish-Orange		30		
Spectral Line Half-width IF=150mA		Green		30		
Forward Voltage IF=150mA		Blue	3.0	3.5	4.0	V
Forward Voltage IF=120mA	VF [2]	Reddish-Orange	2.0	2.3	2.8	
Forward Voltage IF=150mA		Green	3.0	3.5	4.0	
		Blue		5		V
Reverse Voltage	VR	Reddish-Orange		5		
		Green		5		
Temperature coefficient of λ peak IF=150mA, -10 $^{\circ}$ C \leq T \leq 100 $^{\circ}$ C		Blue		0.12		nm/° C
Temperature coefficient of λ peak IF=120mA, -10 $^{\circ}$ C \leq T \leq 100 $^{\circ}$ C	TC λ peak	Reddish-Orange		0.09		
Temperature coefficient of λ peak IF=150mA, -10 $^{\circ}$ C \leq T \leq 100 $^{\circ}$ C		Green		0.13		
Temperature coefficient of λ dom IF=150mA, -10 $^{\circ}$ C $^{\leq}$ T $^{\leq}$ 100 $^{\circ}$ C	TC λ dom	Blue		0.1		nm/° C
Temperature coefficient of λ dom IF=120mA, -10 $^{\circ}$ C \leq T \leq 100 $^{\circ}$ C		Reddish-Orange		0.03		
Temperature coefficient of λ dom I _F =150mA, -10 $^{\circ}$ C \leq T \leq 100 $^{\circ}$ C		Green		0.11		
Temperature coefficient of V _F I _F =150mA, -10 ° C≤ T≤100 ° C	TCv	Blue		-2.3		mV/° C
Temperature coefficient of V _F I _F =120mA, -10 ° C≤ T≤100 ° C		Reddish-Orange		-2.7		
Temperature coefficient of V _F I _F =150mA, -10 ° C≤ T≤100 ° C		Green		-3.9		

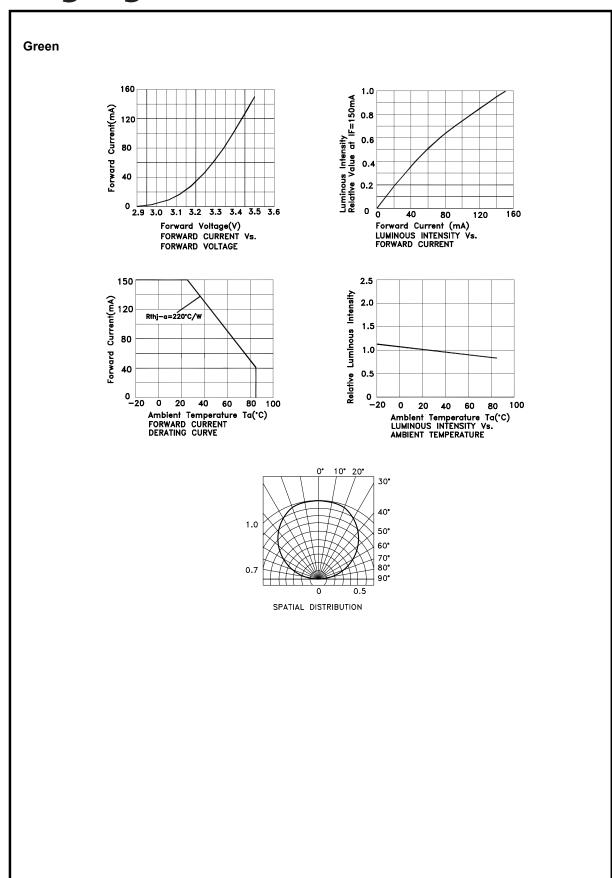

Notes:

SPEC NO: DSAK2496 APPROVED: WYNEC REV NO: V.4 CHECKED: Allen Liu DATE: JUN/05/2010 DRAWN: F.F.ZHou PAGE: 4 OF 9

ERP: 1201005942


^{1.}Wavelength: +/-1nm.

^{2.} Forward Voltage: +/-0.2V.



 SPEC NO: DSAK2496
 REV NO: V.4
 DATE: JUN/05/2010
 PAGE: 5 OF 9

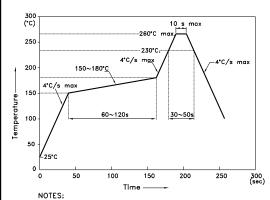
 APPROVED: WYNEC
 CHECKED: Allen Liu
 DRAWN: F.F.ZHou
 ERP: 1201005942

SPEC NO: DSAK2496 REV NO: V.4 DATE: JUN/05/2010 PAGE: 6 OF 9
APPROVED: WYNEC CHECKED: Allen Liu DRAWN: F.F.ZHou ERP: 1201005942

APPROVED: WYNEC CHECKED: Allen Liu DRAWN: F.F.ZHou ERP: 1201005942

DATE: JUN/05/2010

PAGE: 7 OF 9

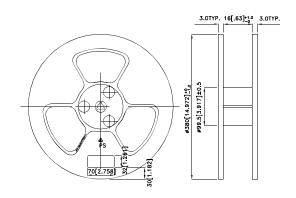

REV NO: V.4

SPEC NO: DSAK2496

AAAF5051-03

Reflow soldering is recommended and the soldering profile is shown below. Other soldering methods are not recommended as they might cause damage to the product.

Reflow Soldering Profile For Lead-free SMT Process.


- IN COLES:

 1. We recommend the reflow temperature 245°C(+/-5°C). The maximum soldering temperature should be limited to 260°C.

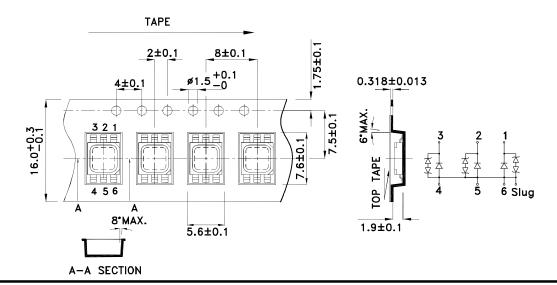
 2. Don't cause stress to the epoxy resin while it is exposed to high temperature.

 3. Number of reflow process shall be 2 times or less.

Reel Dimension

Recommended Soldering Pattern (Units: mm; Tolerance: ± 0.1)

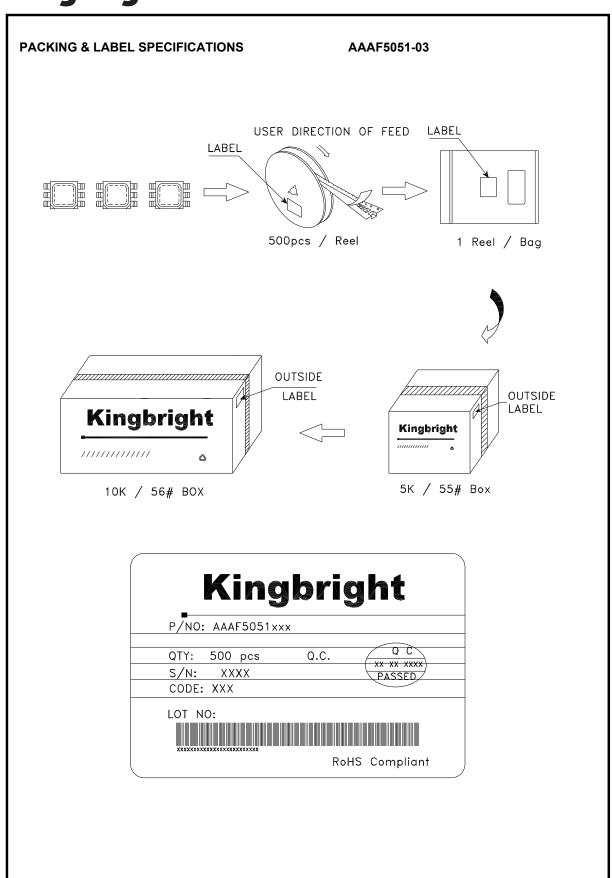
3


10

Solder Mask

Tape Specifications

(Units: mm)



SPEC NO: DSAK2496 APPROVED: WYNEC

REV NO: V.4 CHECKED: Allen Liu DATE: JUN/05/2010 DRAWN: F.F.ZHou

PAGE: 8 OF 9

ERP: 1201005942

SPEC NO: DSAK2496 APPROVED: WYNEC REV NO: V.4 CHECKED: Allen Liu DATE: JUN/05/2010 DRAWN: F.F.ZHou PAGE: 9 OF 9 ERP: 1201005942