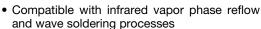
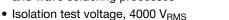


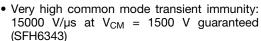
Vishay Semiconductors

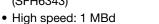
High Speed Optocoupler, 1 MBd, Transistor Output

DESCRIPTION


The SFH6315T, SFH6316T, SFH6343T, high speed optocouplers, each consists of a GaAlAs infrared emitting diode, optically coupled with an integrated photo detector and a high speed transistor. The photo detector is junction isolated from the transistor to reduce miller capacitance effects. The open collector output function allows circuit designers to adjust the load conditions when interfacing with different logic systems such as TTL, CMOS, etc.


Because the SFH6343T has a faraday shield on the detector chip, it can also reject and minimize high input to output common mode transient voltages. There is no base connection, further reducing the potential electrical noise entering the package.


The SFH6315T, SFH6316T, SFH6343T are packaged in industry standard SOIC-8 packages and are suitable for surface mounting.


FEATURES

- Surface mountable
- Industry standard SOIC-8 footprint

- TTL compatible
- Guaranteed AC and DC performance temperature: 0 °C to 70 °C
- Open collector output
- Pin compatible with agilent (HP) optocouplers
- SFH6315T HCPL0500
- SFH6316T HCPL0501
- SFH6343T HCPL0453
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- · Line receivers
- Logic ground isolation
- Analog signal ground isolation
- Replace pulse transformers

AGENCY APPROVALS

- UL1577, file no. E52744 system code Y
- cUL file no. E52744, equivalent to CSA bulletin 5A
- DIN EN 60747-5-5 (VDE 0884) available with option 1

ORDERING INFORMATIO	N		
S F H	6 3	# # T	SIOC-8
	PART NUMBER		6.1 mm
AGENCY CERTIFIED/ PACKAGE		CTR (%)	
UL, cUL	≥ 5	≥ 15	NO BASE CONNECTION
SOIC-8	SFH6315T ⁽¹⁾	SFH6316T ⁽¹⁾	SFH6343T ⁽¹⁾

Note

(1) Also available in tubes; do not add T to end

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
INPUT								
Reverse voltage		V_R	3	V				
DC forward current		I _F	25	mA				
Surge forward current	$t_p \le 1 \mu s$, 300 pulses/s	I _{FSM}	1	Α				
Power dissipation	T _{amb} ≤ 70 °C	P _{diss}	45	mW				

Document Number: 83677 Rev. 2.1, 19-Oct-10 For technical questions, contact: optocoupleranswers@vishay.com

SFH6315T, SFH6316T, SFH6343T

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
OUTPUT							
Supply voltage		Vs	- 0.5 to 30	V			
Output voltage		Vo	- 0.5 to 25	V			
Output current		Ιο	8	mA			
Power dissipation	T _{amb} ≤ 70 °C	P _{diss}	100	mW			
COUPLER							
Isolation test voltage between emitter and detector		V_{ISO}	4000	V_{RMS}			
Pollution degree (DIN VDE 0110)			2				
Creepage distance			≥ 4	mm			
Clearance distance			≥ 4	mm			
Comparative tracking index per DIN IEC 112/VDE 0303 part 1		CTI	175				
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C, R _{ISOL} ⁽¹⁾	R _{IO}	≥ 10 ¹²	Ω			
isolation resistance	$V_{IO} = 500 \text{ V}, T_{amb} = 100 ^{\circ}\text{C}, R_{ISOL}^{(1)}$	R _{IO}	≥ 10 ¹¹	Ω			
Storage temperature range		T _{stg}	- 55 to + 150	°C			
Ambient temperature range		T _{amb}	- 55 to + 100	°C			
Junction temperature		Tj	100	°C			
Soldering temperature (2)	max. 10 s, dip soldering distance to seating plane ≥ 1.5 mm		260	°C			

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability.
- (1) Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
- (2) Refer to reflow profile for soldering conditions for surface mounted devices.

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT							
Forward voltage	I _F = 16 mA, 25 °C		V_{F}		1.6	1.8	V
	IF = 10 IIIA, 23 C		V_{F}		1.6	1.9	V
Reverse current	V _R = 3 V		I _R		0.5	10	μΑ
Capacitance	$f = 1 \text{ MHz}, V_F = 0 \text{ V}$		C _{IN}		75		pF
Temperature coefficient of	I _F = 16 mA		ΔV_F /		- 1.7		mW/°C
OUTPUT							
Logic low supply current	$I_F = 16 \text{ mA}, V_O = \text{open}, V_{CC} = 15 \text{ V}$		I _{CCL}		200		μΑ
Logic high aupply augrent	I_F = 0 mA, V_O = open, V_{CC} = 15 V; 25 °C		I _{CCH}		0.001	1	μA
Logic high supply current			I _{CCH}		0.001	2	μΑ
	$I_F = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}, I_O = 1.1 \text{ mA},$	SFH6315T	V_{OL}		0.15	0.4	V
	$I_F = 16$ mA, $V_{CC} = 4.5$ V, $I_O = 0.8$ mA	SFH6315T	V_{OL}		0.15	0.5	V
Logic low output voltage	$I_F = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}, I_O = 3 \text{ mA},$	SFH6316T	V_{OL}		0.15	0.4	V
Logic low output voltage	$I_F = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}, I_O = 2.4 \text{ mA}$	SFH6343T	V_{OL}		0.15	0.5	V
	$I_F = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}, I_O = 2.4 \text{ mA}$	SFH6316T	V_{OL}		0.15	0.5	V
	$I_F = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}, I_O = 2.4 \text{ mA}$	SFH6343T	V_{OL}		0.15	0.5	V
	$I_F = 0 \text{ mA}, V_O = V_{CC} = 5.5 \text{ V}, 25 \text{ °C}$		I _{OH}		0.003	0.5	μA
Logic high output current	$I_F = 0 \text{ mA}, V_O = V_{CC} = 15 \text{ V}, 25 ^{\circ}\text{C}$		I _{OH}		0.01	1	μΑ
	$I_F = 0 \text{ mA}, V_O = V_{CC} = 15 \text{ V}$		I _{OH}	•		50	μΑ

High Speed Optocoupler, 1 MBd, Vishay Semiconductors Transistor Output

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER TEST CONDITION PART SYMBOL MIN. TYP. MAX. UNIT						UNIT	
COUPLER							
Capacitance (input to output) (1)	f = 1 MHz		C _{IO}		0.4		pF

Notes

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
 evaluation. Typical values are for information only and are not part of the testing requirements.
- (1) A 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Current transfer ratio	$V_O = 0.4 \text{ V}, I_F = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}, 25 \text{ °C}$	SFH6315T	CTR	7	16	50	%
	$V_{O} = 0.5 \text{ V}, I_{F} = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}$	SFH6315T	CTR	5	17		%
	$V_{O} = 0.4 \text{ V}, I_{F} = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}, 25 ^{\circ}\text{C}$	SFH6316T	CTR	19	35	50	%
	$V_{O} = 0.4 \text{ V}, I_{F} = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}, 25 ^{\circ}\text{C}$	SFH6343T	CTR	19	35	50	%
	$V_{O} = 0.5 \text{ V}, I_{F} = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}$	SFH6343T	CTR	15	36		%
	$V_O = 0.5 \text{ V}, I_F = 16 \text{ mA}, V_{CC} = 4.5 \text{ V}$	SFH6316T	CTR	15	36		%

Note

Current transfer ratio in percent equals the ratio of output collector current (I_O) to the forward LED input current (I_F) times 100.
 A 0.1 μF bypass capacitor connected between pins 5 and 8 is recommended.

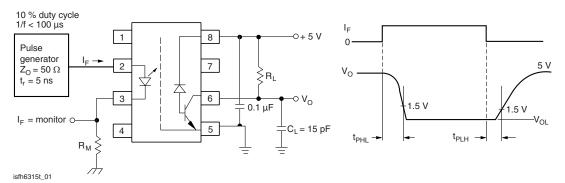


Fig. 1 - Test Circuit for Switching Times

SWITCHING CHARACTE	RISTICS						
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	R_L = 4.1 KΩ R_L = 1.9 KΩ	SFH6315T	t _{PHL} (1)		0.5	1.5	μs
Propagation delay time to logic		SFH6315T	t _{PHL}		0.5	2	μs
low at output (see fig. 1)		SFH6316T	t _{PHL}		0.25	0.8	μs
		SFH6343T	t _{PHL}		0.25	1	μs
	R _L = 4.1 KΩ	SFH6315T	t _{PLH} (1)		0.5	1.5	μs
Propagation delay time to logic high at output (see fig. 1)		SFH6315T	t _{PLH}		0.5	2	μs
	$R_1 = 1.9 \text{ K}\Omega$	SFH6316T	t _{PLH}		0.5	0.8	μs
		SFH6343T	t _{PLH}		0.5	1	μs

Notes

- Over recommended temperature ($T_{amb} = 0$ °C to 70 °C), $V_{CC} = 5$ V, $I_F = 16$ mA unless otherwise specified. The 1.9 kW load represents 1 TTL unit load of 1.6 mA and the 5.6 kW pull-up resistor. The 4.1 kW load represents 1 LSTTL unit load of 0.36 mA and the 6.1 kW pull-up resistor.
- $^{(1)}$ T_{amb} = 25 °C, unless otherwise specified.

SFH6315T, SFH6316T, SFH6343T

Vishay Semiconductors

High Speed Optocoupler, 1 MBd, Transistor Output

COMMON MODE TRANSIENT IMMUNITY							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Common mode transient	$\begin{aligned} R_L = 4.1 \text{ k}\Omega, \text{ I}_F = 0 \text{ mA}, \\ V_{CM} = 10 \text{ V}_{P\text{-}P} \end{aligned}$	SFH6315T	CM _H		1		kV/μs
	$R_L = 1.9 \text{ k}\Omega, I_F = 0 \text{ mA},$	SFH6316T	CM _H		1		kV/μs
	$V_{CM} = 1500 V_{P-P}$	SFH6343T	CM _H	15	30		kV/μs
Common mode transient	$\begin{aligned} R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA}, \\ V_{CM} = 10 \text{ V}_{P\text{-}P} \end{aligned}$	SFH6315T	CM _L		1		kV/μs
	$\begin{aligned} R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA}, \\ V_{CM} = 10 \text{ V}_{P\text{-}P} \end{aligned}$	SFH6316T	CM _L		1		kV/μs
output (666 lig. 2)	$R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA}, \ V_{CM} = 1500 \text{ V}_{P-P}$	SFH6343T	CM _L	15	30		kV/μs

Note

- Common mode transient immunity in a logic high level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode
 pulse (V_{CM}) to assure that the output will remain in a logic high state (i.e., V_O > 2 V). Common mode transient immunity in a logic low level
 the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal (V_{CM} to assure that the output will remain
 in logic low state, i.e., V_O > 0.8 V).
 - The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and the 5.6 k Ω pull-up resistor.
 - The 4.1 k Ω load represents 1 LSTTL unit load of 0.36 mA and the 6.1 k Ω pull-up resistor.

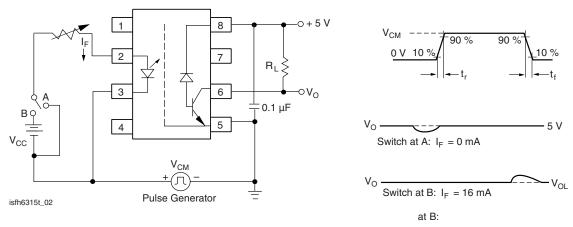


Fig. 2 - Test Circuit for Transient Immunity and Typical Waveforms

SAFETY AND INSULATION RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Climatic Classification (according to IEC 68 part 1)				55/100/21			
Comparative Tracking Index		CTI	175		399		
V _{IOTM}			6000			V	
V _{IORM}			560			V	
P _{SO}					350	mW	
I _{SI}					150	mA	
T _{SI}					165	°C	
Creepage distance			4			mm	
Clearance distance			4			mm	
Insulation thickness			0.2			mm	

Note

As per IEC 60747-5-5, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.

High Speed Optocoupler, 1 MBd, Vishay Semiconductors Transistor Output

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

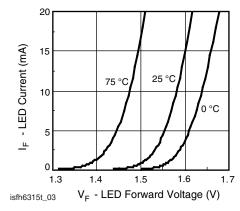


Fig. 3 - LED Forward Current vs. Forward Voltage

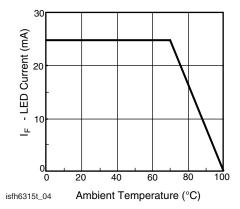


Fig. 4 - Permissible Forward LED Current vs. Temperature

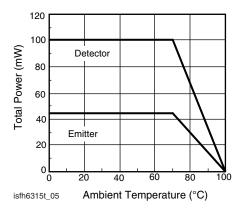


Fig. 5 - Permissible Power Dissipation vs. Temperature

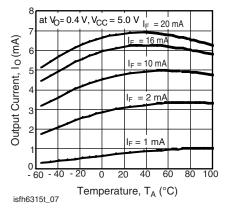


Fig. 6 - Output Current vs. Temperature

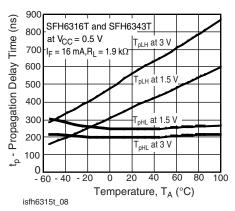


Fig. 7 - Propagation Delay vs. Temperature SFH6316T and SFH6343T

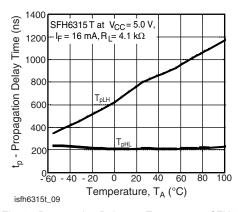


Fig. 8 - Propagation Delay vs. Temperature SFH6315T

SFH6315T, SFH6316T, SFH6343T

Vishay Semiconductors

High Speed Optocoupler, 1 MBd, Transistor Output

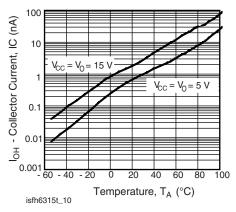


Fig. 9 - Logic High Output Current vs.Temperature

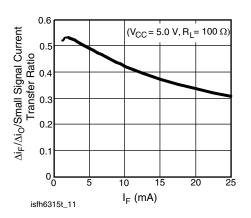
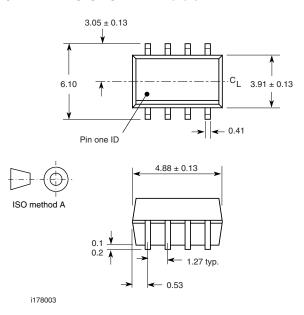
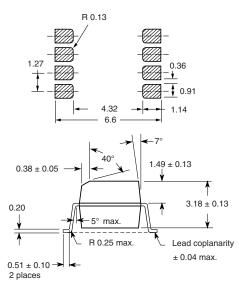




Fig. 10 - Small Signal Current Transfer Ratio vs. Input Current

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1