

Parameter	Rating	Units
LED Operating Range	2 - 10	mA
K3, Transfer Gain	0.668 - 1.179	-
Isolation, Input to Output	3750	V _{rms}

Features

- 0.01% Servo Linearity
- THD -87dB Typical
- Wide Bandwidth (>200kHz)
- · Couples Analog and Digital Signals
- High Gain Stability
- Low Input/Output Capacitance
- Low Power Consumption
- 8-Pin Flatpack or DIP Package (PCMCIA Compatible)
- Machine Insertable, Wave Solderable
- Surface Mount and Tape & Reel Versions Available

Applications

- Modem Transformer Replacement With No Insertion Loss
- Digital Telephone Isolation
- Power Supply Feedback Voltage/Current
- Medical Sensor Isolation
- Audio Signal Interfacing
- Isolation of Process Control Transducers

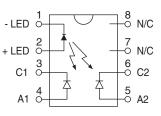
Description

The LOC110 Single Linear Optocoupler features an infrared LED optically coupled with two photodiodes. One feedback (input) photodiode is used to generate a control signal that provides a servomechanism to the LED drive current, thus compensating for the LED's nonlinear time and temperature characteristics. The other (output) photodiode provides an output signal that is linear with respect to the servo LED current. The product features wide bandwidth, high input to output isolation, and excellent servo linearity.

Approvals

- UL Recognized Component: File # E76270
- CSA Certified Component: Certificate # 1175739
- Certified to:
 - IEC 60950-1: 2005 EN 60950-1: 2006

TUV Certificate # B 09 07 49410 004


Ordering Information

Part Number	Description
LOC110	8-Pin DIP (50/Tube)
LOC110P	8-Pin Flatpack (50/Tube)
LOC110PTR	8-Pin Flatpack (1000/Reel)
LOC110S	8-Pin Surface Mount (50/tube)
LOC110STR	8-Pin Surface Mount (1000/Reel)

K3 Sorted Bins
Bin C = 0.668 - 0.732
Bin D = 0.733 - 0.805
Bin E = 0.806 - 0.886
Bin F = 0.887 - 0.974
Bin G = 0.975 - 1.072
Bin H = 1.073 - 1.179

 The LOC110 will be shipped using bins available at date of order. Any bin (C - H) can be shipped. Each tube or reel will contain one K3-sorted bin. Each device will be marked with the designated bin.

Pin Configuration

Downloaded from Elcodis.com electronic components distributor

Absolute Maximum Ratings @ 25°C

Electrical Characteristics @ 25°C

Parameter	Ratings	Units
Reverse LED Voltage	5	V
Input Control Current	100	mA
Peak (10ms)	1	А
Input Power Dissipation ¹	150	mW
Total Package Dissipation ²	500	mW
Isolation Voltage, Input to Output	3750	V _{rms}
Operational Temperature	-40 to +85	°C
Storage Temperature	-40 to +125	°C

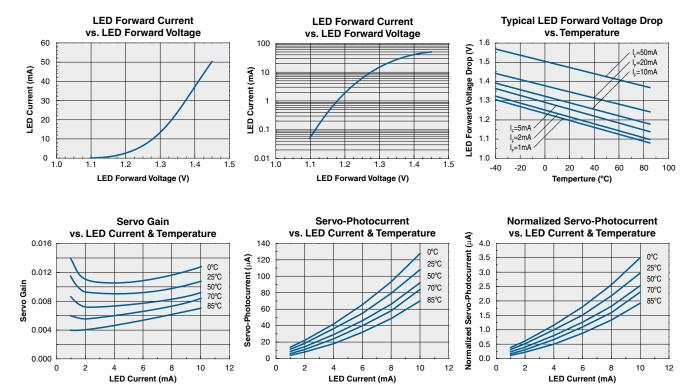
Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

¹ Derate linearly 1.33 mW / °C

² Derate linearly 6.67 mW / °C

Parameter Conditions Symbol Min Typ Max Units

Parameter	Conditions	Symbol	IVIIN	тур	wax	Units
Input Characteristics						
LED Voltage Drop	I _F = 2 - 10mA	V _F	0.9	1.2	1.4	V
Reverse LED Current	V _R = 5V	I _R	-	-	10	μΑ
Coupler/Detector Characteristics	,					
Dark Current	I _F =0mA, V _{C1-A1} =V _{C2-A2} =15V	I _D	-	1	25	nA
K1, Servo Gain (I _{C1} /I _F)		K1	0.004	0.007	0.030	-
K2, Forward Gain (I _{C2} /I _F)	I _F =2 - 10mA, V _{C1-A1} =V _{C2-A2} =15V	K2	0.004	0.007	0.030	-
K3, Transfer Gain (K2/K1=I _{C2} /I _{C1})	-	K3	0.668	1	1.179	-
Δ K3, Transfer Gain Linearity (non-servoed)	I _F =2 - 10mA	Δ K3	-	-	1	%
K3 Temperature Coefficient	I _F =2 - 10mA, V _{C1-A1} =V _{C2-A2} = 5V	Δ K3/ Δ T	-	0.005	-	%/°C
Common-Mode Rejection Ratio	$V=20V_{P-P}$, $R_L=2k\Omega$, f=100Hz	CMRR	-	130	-	dB
Total Harmonic Distortion	f ₀ =350Hz, 0dBm	THD	-96	-87	-80	dB
Frequency Response ¹	Photoconductive Configuration	f		200		kHz
	Photovoltaic Configuration	- f _{-3dB}	-	40	1 -	TALIZ
Input/Output Capacitance	-	C _{I/O}	-	3	-	pF


¹ Refer to Application Note, AN-107, for LOC110 Configurations.

R08

LOC110

PERFORMANCE DATA*

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. Clare classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, **IPC/JEDEC J-STD-020**, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a **Moisture Sensitivity Level (MSL) rating** as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Rating	
LOC110 / LOC110P / LOC110S	MSL 1	

ESD Sensitivity

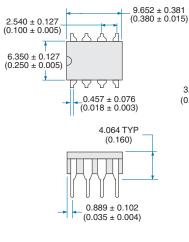
This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

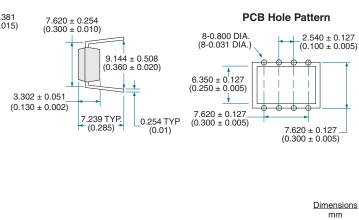
Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of **J-STD-020** must be observed.

Device	Maximum Temperature x Time	
LOC110 / LOC110S	250°C for 30 seconds	
LOC110P	260°C for 30 seconds	

Board Wash


Clare recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since Clare employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.



MECHANICAL DIMENSIONS

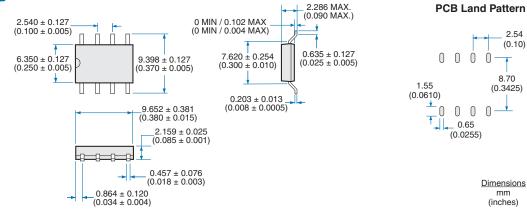
LOC110

(inches)

2.54

(0.10)

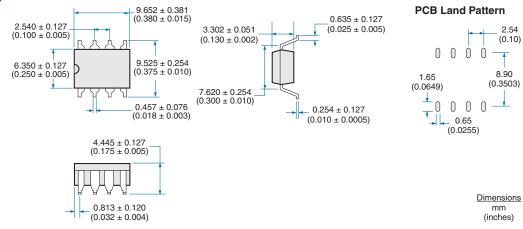
8.70


(0.3425)

Dimensions

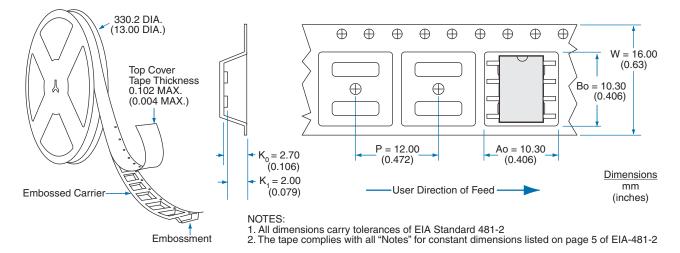
mm (inches)

LOC110P

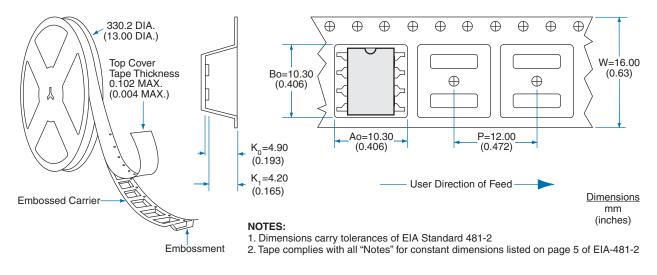


0 0

0.65


(0.0255)

LOC110S



LOC110P Tape & Reel

LOC110S Tape & Reel

For additional information please visit our website at: www.clare.com

Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

Specification: DS-LOC110-R08 ©Copyright 2010, Clare, Inc. All rights reserved. Printed in USA. 11/19/2010