

Vishay Semiconductors

Optocoupler, Phototransistor Output, Dual Channel, AC Input

DESCRIPTION

The ILD256T is a dual channel optocoupler. Each channel consists of two infrared emitters coupled to a silicon NPN phototransistor detector.

These circuit elements are constructed with a standard SOIC-8A footprint.

The product is well suited for telecom applications such as ring detection or off/on hook status, given its bidirectional LED input and guaranteed current transfer ratio (CTR) of 20 % at $I_F = 10$ mA.

FEATURES

- Each Channel: Guaranteed CTR Symmetry, 2:1 Maximum
- Bidirectional AC Input
- SOIC-8 Surface Mountable Package
- Isolation Test Voltage, 4000 V_{RMS}
- Standard Lead Spacing, 0.05
- Available only on Tape and Reel Option (Conforms to EIA Standard 481-2)
- Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

AGENCY APPROVALS

- UL1577, File No. E52744 System Code Y
- DIN EN 60747-5-2 (VDE0884) Available with Option 1

APPLICATIONS

Telecom applications ring detection off/on hook status

ORDER INFORMATION					
PART	REMARKS				
ILD256T	CTR > 20 %, SOIC-8				

Note:

For additional information on the available options refer to Option Information.

ABSOLUTE MAXIMUM RATINGS ¹⁾									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
INPUT									
Forward continuous current		١ _F	30	mA					
Power dissipation		P _{diss}	50	mW					
Derate linearly from 25 °C			0.66	mW/°C					
OUTPUT									
Collector-emitter breakdown voltage		BV _{CEO}	70	V					
Emitter-collector breakdown voltage		BV _{ECO}	7.0	V					
Power dissipation		P _{diss}	125	mW					
Derate linearly from 25 °C			1.67	mW/°C					

Vishay Semiconductors

ABSOLUTE MAXIMUM BATINGS¹

ABSOLUTE MAXIMUM RATINGS''									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
COUPLER									
Isolation voltage, input to output	t = 1.0 s	V _{ISO}	4000	V _{RMS}					
Total package dissipation (LED + detector)		P _{tot}	300	mW					
Derate linearly from 25 °C			4.0	mW/°C					
Storage temperature		T _{stg}	- 55 to + 150	°C					
Operating temperature		T _{amb}	- 55 to + 100	°C					
Soldering temperature at 260 °C		T _{sld}	10	Sec.					

Note:

 $^{1)}$ T_{amb} = 25 °C, unless otherwise specified.

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

ELECTRICAL CHARACTERISTICS ¹⁾								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN	TYP.	MAX	UNIT	
INPUT								
Forward voltage	$I_F = \pm 10 \text{ mA}$		V _F		1.2	1.55	V	
Reverse current	V _R = 6.0 V		I _R		0.1	100	mA	
OUTPUT					•	•	•	
Collector-emitter breakdown voltage	I _C = 10 μA		BV _{CEO}	70			V	
Emitter-collector breakdown voltage	I _E = 10 μA		BV _{ECO}	7.0			V	
Collector-emitter leakage current	V _{CE} = 10 V		I _{CEO}		5.0	50	nA	
COUPLER								
Symmetry (CTR at + 10 mA)/(CTR at -10 mA)				0.5	1.0	2.0		
Saturation voltage, collector-emitter	$I_{\rm F} = \pm 16 \text{ mA}, I_{\rm C} = 2.0 \text{ mA}$		V _{CEsat}			0.4	V	

Note:

 $^{1)}$ T_{amb} = 25 °C, unless otherwise specified.

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN	TYP.	MAX	UNIT	
DC Current Transfer Ratio	$I_{F} = \pm 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$		CTR _{DC}	20			%	

SAFETY AND INSULATION RATINGS ¹⁾							
PARAMETER	TEST CONDITION	SYMBOL	MIN	TYP.	MAX	UNIT	
Climatic classification (according to IEC 68 part 1)				55/100/21			
Comparative tracking index		CTI	175		399		
V _{IOTM}			6000			V	
V _{IORM}			560			V	
P _{SO}					350	mW	
I _{SI}					150	mA	
T _{SI}					165	°C	
Creepage			4			mm	
Clearance			4			mm	
Insulation thickness, reinforced rated	per IEC60950 2.10.5.1		0.2			mm	

Note:

¹⁾ As per IEC60747-5-2, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of prodective circuits.

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

Figure 1. LED Forward Current vs.Forward Voltage

Figure 2. Forward Voltage vs. Forward Current

Figure 3. Peak LED Current vs. Duty Factor, Tau

Figure 4. Normalized CTR vs. $\rm I_{F}$ and $\rm T_{amb}$

Figure 5. Normalized Saturated CTR

Figure 6. Normalized CTR_{cb}

Document Number 83649 Rev. 1.6, 20-Apr-07

ILD256T

Vishay Semiconductors

Figure 7. Photocurrent vs. LED Current

Figure 8. Base Current vs. I_F and HFE

Figure 10. Normalized Saturated HFE vs. Base Current

Figure 11. Base Emitter Voltage vs. Base Current

Figure 12. Collector-Emitter Leakage Current vs. Temp.

ILD256T Vishay Semiconductors

PACKAGE DIMENSIONS in inches (millimeters)

i178020

Vishay Semiconductors

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.