Single-Channel: 6N138, 6N139 Dual-Channel: HCPL2730, HCPL2731 Low Input Current High Gain Split Darlington Optocouplers

Features

■ Low current - 0.5mA
■ Superior CTR-2000\%
■ Superior CMR-10kV/ $\mu \mathrm{s}$
■ CTR guaranteed $0-70^{\circ} \mathrm{C}$
■ U.L. recognized (File \# E90700)
■ VDE recognized (File \# 120915) Ordering option V, e.g., 6N138V

■ Dual Channel - HCPL2730, HCPL2731

Applications

- Digital logic ground isolation

■ Telephone ring detector

- EIA-RS-232C line receiver

■ High common mode noise line receiver
■ $\mu \mathrm{P}$ bus isolation
■ Current loop receiver

Description

The 6N138/9 and HCPL2730/HCPL2731 optocouplers consist of an AIGaAs LED optically coupled to a high gain split darlington photodetector.
The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler. In the dual channel devices, HCPL2730/HCPL2731, an integrated emitter-base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5 mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements. An internal noise shield provides exceptional common mode rejection of $10 \mathrm{kV} / \mu \mathrm{s}$.

Schematic

6N138 / 6N139

Package Outlines

HCPL2730 / HCPL2731

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-55 to +125	${ }^{\circ} \mathrm{C}$
ToPR	Operating Temperature		-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature (Wave solder only. See recommended reflow profile graph for SMD mounting)		260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER				
I_{F} (avg)	DC/Average Forward Input Current	Each Channel	20	mA
I_{F} (pk)	Peak Forward Input Current (50\% duty cycle, $1 \mathrm{~ms} \mathrm{P.W)}$.	Each Channel	40	mA
I_{F} (trans)	Peak Transient Input Current - ($\leq 1 \mu \mathrm{~s}$ P.W., 300 pps)		1.0	A
V_{R}	Reverse Input Voltage	Each Channel	5	V
P_{D}	Input Power Dissipation	Each Channel	35	mW
DETECTOR				
$\mathrm{l} \mathrm{l}_{\text {(avg) }}$	Average Output Current	Each Channel	60	mA
V_{ER}	Emitter-Base Reverse Voltage	6N138 and 6N139	0.5	V
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{O}}$	Supply Voltage, Output Voltage	6N138, HCPL2730	-0.5 to 7	V
		6N139, HCPL2731	-0.5 to 18	
P_{O}	Output Power Dissipation	Each Channel	100	mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
EMITTER							
V_{F}	Input Forward Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	All		1.30	1.7	V
		Each channel ($\left.\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}\right)$				1.75	
$B V_{R}$	Input Reverse Breakdown Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	All	5.0	20		V
$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	Temperature Coefficient of Forward Voltage	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	All		-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
DETECTOR							
IOH	Logic HIGH Output Current	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	6N139		0.01	100	$\mu \mathrm{A}$
		Each Channel	HCPL2731				
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$	6N138		0.01	250	
		Each Channel	HCPL2730				
$\mathrm{I}_{\text {CCL }}$	Logic LOW supply	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	6N138, 6N139		0.4	1.5	mA
		$\mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V}$	HCPL2731		1.3	3	
		$\mathrm{V}_{\mathrm{O} 1}-\mathrm{V}_{\mathrm{O} 2}=$ Open, $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$	HCPL2730				
$\mathrm{I}_{\mathrm{CCH}}$	Logic HIGH Supply	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	6N138, 6N139		0.05	10	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V}$	HCPL2731		0.10	20	
		$\mathrm{V}_{\mathrm{O} 1}-\mathrm{V}_{\mathrm{O} 2}=$ Open, $\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$	HCPL2730				

Transfer Characteristics

${ }^{*}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Electrical Characteristics (Continued) ($T_{A}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Switching Characteristics ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$)

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
$\mathrm{T}_{\text {PHL }}$	Propagation Delay Time to Logic LOW ${ }^{(2)}$ (Fig. 24)	$\mathrm{R}_{\mathrm{L}}=4.7 \Omega, \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$	6N139			30	$\mu \mathrm{s}$
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			4	25	
		$\mathrm{R}_{\mathrm{L}}=4.7 \Omega, \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$ Each Channel	HCPL2731			120	
					3	100	
		$R_{L}=270 \Omega, I_{F}=12 \mathrm{~mA}$	6N139			2	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.2	1	
		$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$, Each Channel	HCPL2730			3	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	HCPL2731		0.3	2	
		$\mathrm{R}_{\mathrm{L}}=2.2 \Omega, \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	6N138			15	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.5	10	
		$\mathrm{R}_{\mathrm{L}}=2.2 \Omega, \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$, Each Channel	$\begin{aligned} & \text { HCPL2731 } \\ & \text { HCPL2730 } \end{aligned}$			25	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1	20	
$\mathrm{T}_{\text {PLH }}$	Propagation Delay Time to Logic $\mathrm{HIGH}^{(2)}$ (Fig. 24)	$\mathrm{R}_{\mathrm{L}}=4.7 \Omega, \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$	6N139			90	$\mu \mathrm{s}$
		Each Channel	HCPL2731				
		$\mathrm{R}_{\mathrm{L}}=4.7 \Omega, \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6N139		12	60	
		Each Channel	HCPL2731		22		
		$R_{L}=270 \Omega, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$	6N139			10	
		$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$			1.3	7	
		$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$, Each Channel	HCPL2730HCPL2731			15	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5	10	
		$\mathrm{R}_{\mathrm{L}}=2.2 \Omega, \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	6N138			50	
		Each Channel	HCPL2730/1				
		$\mathrm{R}_{\mathrm{L}}=2.2 \Omega, \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6N138		7	35	
		Each Channel	HCPL2730/1		16		
$\mathrm{ICM}_{\mathrm{H}}{ }^{\text {l }}$	Common Mode Transient Immunity at Logic $\mathrm{HIGH}^{(3)}$ (Fig. 25)	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, I \mathrm{~V}_{\mathrm{CM}} \mathrm{I}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=2.2 \Omega \end{aligned}$	6N138 6N139 HCPL2730 HCPL2731	1,000	10,000		V/ $/ \mathrm{s}$
ICM ${ }_{\text {L }}$	Common Mode Transient Immunity at Logic LOW ${ }^{(3)}$ (Fig. 25)	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mid \mathrm{V}_{\mathrm{CM}} \mathrm{I}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{R}_{\mathrm{L}}=2.2 \Omega\right) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ Each Channel	6N138 6N139 HCPL2730 HCPL2731	1,000	10,000		V/ $/ \mathrm{s}$

${ }^{* *}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Electrical Characteristics (Continued) ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)

Isolation Characteristics

Symbol	Characteristics	Test Conditions	Min.	Typ.*	Max.	Unit
$\mathrm{I}_{\text {I-O }}$	Input-Output Insulation Leakage Current ${ }^{(4)}$	$\begin{aligned} & \text { Relative humidity }=45 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{t}=5 \mathrm{~s}, \mathrm{~V}_{\mathrm{l}-\mathrm{O}}=3000 \mathrm{VDC} \end{aligned}$			1.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {ISO }}$	Withstand Insulation Test Voltage ${ }^{(4)}$	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 2 \mu \mathrm{~A}, \\ & \mathrm{t}=1 \mathrm{~min} . \end{aligned}$	2500			$\mathrm{V}_{\text {RMS }}$
$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$	Resistance (Input to Output) ${ }^{(4)}$	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}$		10^{12}		Ω
$\mathrm{C}_{\text {I-O }}$	Capacitance (Input to Output) ${ }^{(4)(5)}$	$\mathrm{f}=1 \mathrm{MHz}$		0.6		pF
$I_{\text {I-I }}$	Input-Input Insulation Leakage Current ${ }^{(6)}$	$\mathrm{RH} \leq 45 \%, \mathrm{~V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{VDC}, \mathrm{t}=5 \mathrm{~s}$, HCPL2730/2731 only		0.005		$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{I}-\mathrm{I}}$	Input-Input Resistance ${ }^{(6)}$	$\mathrm{V}_{\text {I-I }}=500 \mathrm{VDC}$, HCPL2730/2731 only		10^{11}		Ω
C_{-1}	Input-Input Capacitance ${ }^{(6)}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{HCPL} 2730 / 2731$ only		0.03		pF

*All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes:

1. Current Transfer Ratio is defined as a ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100\%.
2. Pin 7 open. (6N138 and 6N139 only)
3. Common mode transient immunity in logic HIGH level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic HIGH state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in logic LOW level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic LOW state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
4. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
5. For dual channel devices, $\mathrm{C}_{\mathrm{I}-\mathrm{O}}$ is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

Electrical Characteristics (Continued) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Current Limiting Resistor Calculations
R_{1} (Non-Invert) $=\frac{V_{D D 1}-V_{D F}-V_{O L 1}}{I_{F}}$
R_{1} (Invert) $=\frac{\mathrm{V}_{\mathrm{DD} 1}-\mathrm{V}_{\mathrm{OH} 1}-\mathrm{V}_{\mathrm{DF}}}{\mathrm{I}_{\mathrm{F}}}$
$R_{2}=\frac{V_{\text {DD2 }}=V_{O L X}\left(@ I_{L}-I_{2}\right)}{I_{L}}$

Where:
$\mathrm{V}_{\mathrm{DD1}}=$ Input Supply Voltage
$\mathrm{V}_{\mathrm{DD} 2}=$ Output Supply Voltage
$V_{D F}=$ Diode Forward Voltage
$\mathrm{V}_{\mathrm{OL} 1}=$ Logic "0" Voltage of Driver
$\mathrm{V}_{\mathrm{OH} 1}=$ Logic "1" Voltage of Driver $I_{F}=$ Diode Forward Current
$\mathrm{V}_{\text {OLX }}=$ Saturation Voltage of Output Transistor
$\mathrm{L}_{\mathrm{L}}=$ Load Current Through
Resistor R2
$\mathrm{I}_{2}=$ Input Current of Output Gate

INPUT		R1 (V)	OUTPUT							
		$\begin{aligned} & \text { CMOS } \\ & \text { @ 5V } \end{aligned}$	CMOS @ 10V	74XX	74LXX	74SXX	74LSXX	74HXX		
			R2 (V)							
CMOS @ 5V	NON-INV.		2000	1000	2200	750	1000	1000	1000	560
	INV.	510								
CMOS @ 10V	NON-INV.	5100								
	INV.	4700								
74XX	NON-INV.	2200								
	INV.	180								
74LXX	NON-INV.	1800								
	INV.	100								
74SXX	NON-INV.	2000								
	INV.	360								
74LSXX	NON-INV.	2000								
	INV.	180								
74HXX	NON-INV.	2000								
	INV.	180								

Fig. 1 Resistor Values for Logic Interface

Fig. 2 Non-Inverting Logic Interface

Fig. 3 Inverting Logic Interface

Typical Performance Curves

Fig. 4 LED Forward Current vs. Forward Voltage

Fig. 6 Non-saturated Rise and Fall Times vs. Load Resistance (6N138 / 6N139 Only)

RL-LOAD RESISTANCE (k Ω)

Fig. 8 Propagation Delay To Logic Low vs. Base-Emitter Resistance (HCPL2730 / HCPL2731 Only)

RBE - BASE-EMITTER RESISTANCE - M Ω

Fig. 5 LED Forward Voltage vs. Temperature

Fig. 7 Non-saturated Rise and Fall Times vs. Load Resistance (HCPL2730 / HCPL2731 Only)

RL-LOAD RESISTANCE ($k \Omega$)

Fig. 9 Current Transfer Ratio vs. Forward Current (6N138 / 6N139 Only)

I_{F} - FORWARD CURRENT - mA

Fig. 10 Current Transfer Ratio vs. Base-Emitter Resistance (6N138 / 6N139 Only)

$R_{\text {BE }}$ - BASE RESISTANCE (k Ω)

Fig. 12 Output Current vs Output Voltage (6N138 / 6N139 Only)

Fig. 14 Output Current vs. Input Diode Forward Current (6N138 / 6N139 Only)

IF - INPUT DIODE FORWARD CURRENT -mA

Fig. 11 Current Transfer Ratio vs. Forward Current (HCPL2730 / HCPL2731 Only)

I_{F} - FORWARD CURRENT -mA

Fig. 13 Output Current vs Output Voltage (HCPL2730 / HCPL2731 Only)

Fig. 15 Output Current vs Input Diode Forward Current (HCPL2730 / HCPL2731 Only)

IF - INPUT DIODE FORWARD CURRENT -mA

Typical Performance Curves (Continued)

Fig. 18 Propagation Delay vs. Input Diode Forward Current (6N138 / 6N139 Only)

Fig. 20 Propagation Delay to Logic Low vs. Pulse Period (6N138 / 6N139 Only)

Fig. 19 Propagation Delay vs. Input Diode Forward Current HCPL2730 / HCPL2731 Only)

Fig. 21 Propagation Delay to Logic Low vs. Pulse Period (HCPL2730 / HCPL2731 Only)

Test Circuits

Fig. 24 Switching Time Test Circuit

Test Circuit for 6N138 and 6N139

Test Circuit for HCPL2730 and HCPL2731

Fig. 25 Common Mode Immunity Test Circuit

Ordering Information

Option	Example Part Number	Description
No Suffix	6 N 138	Standard Through Hole Device, 50 pcs per tube
S	6 N 138 S	Surface Mount Lead Bend
SD	6 N 138 SD	Surface Mount; Tape and reel
W	6 N 138 W	0.4 " Lead Spacing
V	6 N 138 V	VDE0884
WV	6 N 138 WV	VDE0884; 0.4" lead spacing
SV	6 N 138 SV	VDE0884; surface mount
SDV	$6 N 138 S D V$	VDE0884; surface mount; tape and reel

Marking Information

Definitions	
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option - See order entry table)
4	Two digit year code, e.g., '07'
5	Two digit work week ranging from '01' to ‘53'
6	Assembly package code

* EZSWITCH ${ }^{\top}$ and FlashWriter ${ }^{\oplus}$ are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILTTY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, waw.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

