

LXM1644-12-61

www.*Microsemi*.com

12V Quad 6W CCFL Programmable Inverter Module

PRELIMINARY DATASHEET

DESCRIPTION

The LXM1644-12-61 is a Quad 6W Output Direct DriveTM CCFL (Cold range dimming, amplitude control results Cathode Fluorescent Lamp) Inverter in lower ripple on the input supply and Module specifically designed for driving reduced LCD backlight lamps. It is ideal for generation. Many STN type panels are driving typical 12.1" to 18.1" TFT panels.

The modules are available with a amplitude dimming. dimming input that permits brightness control from either a DC voltage source or the system battery or AC adapter directly a PWM signal or external Potentiometer. to high frequency, high-voltage waves The maximum output current is externally programmable over a range of 10 to 16mA lamps. in 1mA steps to allow the inverter to properly match to a wide array of LCD tended for panel assemblies where lamp panel lamp current specifications.

LXM1644 modules unlike LXM1643 series does not provide wide wire. range 'burst' mode dimming, rather dimming is provided by amplitude control are stable fixed-frequency operation, of the output current waveform, this limits the potential dim range to typically less and both open/shorted lamp protection than 5:1.

For applications not requiring wide potential transient noise particularly well suited for current

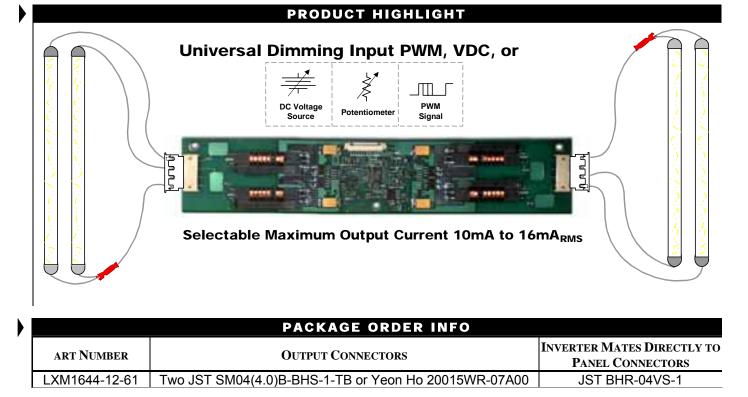
The modules convert DC voltage from required to ignite and operate CCFL

The LXM1644-12-61 inverter is inpairs share close proximity with one the another and a common return (low side)

Other benefits of this new topology secondary-side strike-voltage regulation with fault timeout.

IMPORTANT: For the most current data and a panel to inverter cross reference, consult MICROSEMI's website: http://www.microsemi.com

KEY FEATURES


- Externally Programmable Maximum Output Current
- Easy to Use Brightness Control
- Analog Current Amplitude **Dimming Method**
- Output Open/Short-Circuit Protection and Timeout
- **Fixed Frequency Operation**
- Rated From -20 to 70°C
- UL 60950 E175910

APPLICATIONS

- High Brightness Displays
- **Desktop Displays**
- Industrial Display Controls

BENEFITS

- Compact, Low Profile Design
- Programmable output current allows inverter to mate with a wide variety of LCD panel's specifications

Copyright © 2002 Rev. 0.5b, 2004-11-03

Microsemi Integrated Products

Page 1

XM1644-12-61

LXM1644-12-61

12V Quad 6W CCFL Programmable Inverter Module

PRELIMINARY DATASHEET

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Input Signal Voltage (V _{IN1}) Input Power	
Output Voltage, no load	
Output Current (each output)	
Output Power (each output)	
Input Signal Voltage (SLEEP Input)	-0.3V to V _{IN1}
Input Signal Voltage (BRITE)	
Ambient Operating Temperature, zero airflow	
Operating Relative Humidity, non-condensing	
Storage Temperature Range	

Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal

RECOMMENDED OPERATING CONDITIONS (R.C.)

This module has been designed to operate over a wide range of input and output conditions. However, best efficiency and performance will be obtained if the module is operated under the condition listed in the 'R.C.' column. Min. and Max. columns indicate values beyond which the inverter, although operational, will not function optimally.

Parameter	Symbol	Recommended Operating Conditions			Units	
raiameter	Symbol	Min	Min R.C.		Units	
Input Supply Voltage Range (Fully Regulated Lamp Current)	V _{IN1}	10.8	12	13.2	V	
Input Supply Voltage Range (Functional)		10.2	12	13.8		
Output Power (each lamp)	Po		5.0	6.0*	W	
Linear BRITE Control Input Voltage Range ¹	VBRT_ADJ	0.65 to 0.9		2.0	V	
Lamp Operating Voltage	VLAMP	530	625	720	V _{RMS}	
Lamp Current (Each pair, Full Brightness)	IOLAMP	10		16	mA _{RMS}	
Operating Ambient Temperature Range	T _A	-20		70	С°	

*Total output power must not exceed 12W per lamp pair. Higher voltage lamps may require the maximum output current to be set lower 16mA

¹ The minimum V_{BRT ADJ} voltage depends on the panel characteristics, depending on the panel it can vary from 0.65V to 0.9V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the recommended operating condition and ambient temperature of 25°C except where otherwise noted.

Baramatar	Symbol	Test Conditions	LXM1644-12-61			Units
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
OUTPUT PIN CHARACTERISTICS						
Full Bright Lamp Current (two lamps)	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}, \overline{SLEEP} \ge 2.0V, V_{IN1} = 12V_{DC}$ I _{SET1} = Ground, I _{SET2} = Ground	9	10	11	mA _{RMS}
Full Bright Lamp Current (two lamps)	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 12V_{DC}$ $I_{SET1} = Ground$, $I_{SET2} = Open$	10.8	12	13	mA _{RMS}
Full Bright Lamp Current (two lamps)	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 12V_{DC}$ $I_{SET1} = Open$, $I_{SET2} = Ground$	12.8	14	15	mA _{RMS}
Full Bright Lamp Current (two lamps)	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 12V_{DC}$ $I_{SET1} = Open$, $I_{SET2} = Open$	14.7	16	17	mA _{RMS}
Output Current pair of Lamps to pair of Lamps Deviation	I _{LL%DEV}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN1} = 12V_{DC}$ $I_{SET1} = Open$, $I_{SET2} = Open$		3	10	%
Min. Average Lamp Current (each output)	I _{L(MIN)}	$V_{BRT_{ADJ}} \le 0.5V_{DC}$, SLEEP $\ge 2.0V$, $V_{IN1} = 12V_{DC}$ $I_{SET1} = I_{SET2} = Ground$		5.5²		mA _{RMS}
Lamp Start Voltage	V _{LS}	-20°C < T _A < 70°C, V _{IN1} > 10.8V _{DC}	1500	1650		V_{RMS}
Operating Frequency	f _o	$V_{BRT_{ADJ}}$ = 2.5 V_{DC} , SLEEP \geq 2.0V, V_{IN1} = 12V	69	72	75	kHz

² The inverter is capable of a lower output current than may be recommended by the panel manufacturer. It is the user's responsibility to set the minimum brightness (BRITE) input at or above the panel specification for minimum current

Copyright © 2002 Rev. 0.5b, 2004-11-03

Microsemi Integrated Products 11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570

ELECTRICALS

LXM1644-12-61

12V Quad 6W CCFL Programmable Inverter Module

PRELIMINARY DATASHEET

Parameter		Cumhal	Test Conditions	LXM1644-12-61				
		Symbol		Min	Тур	Max	Unit	
BRITE INF	PUT						1	
Input Curr	ent		I _{BRT}	V _{BRT_ADJ} = 0V _{DC} V _{BRT_ADJ} = 3V _{DC}		-300 50		μΑ _{DC} μΑ _{DC}
Minimum Input for Max. Lamp Current		V _{BRT_ADJ}	I _{O(LAMP)} = Maximum Lamp Current		2.0	2.05		
Minimum Input for Min. Lamp Current		V _{BRT ADJ}	I _{O(LAMP)} = Minimum Lamp Current	0.65*			V _{DC}	
SLEEP IN	PUT			· · ·			I	
RUN Mode		V		2.0		V _{IN1}	V _{DC}	
SLEEP Mo	SLEEP Mode		V		-0.3		0.8	V _{DC}
SET _{1,2} INF	TUT			1	I		1	
SET _{1,2} Lov	w Threshold		VL				0.4	V
Input Curr	ent		I _{SET}	V _{SET} ≤ 0.4V		-300		μA
POWER C	HARACTERIST	TICS	1	1	I		1	
Sleep Cur	rent		I _{IN(MIN)}	$V_{IN1} = 12V_{DC}, \overline{SLEEP} \le 0.8V$	0.0	10	30	μA _{DO}
Run Curre	Run Current		I _{RUN}	$V_{IN1} = 12V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $I_{SET1} = Open$ $I_{SET2} = Ground$, $V_{LAMP} = 625V_{RMS}$		1750		mA _D
Efficiency			η	$V_{IN1} = 12V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $I_{SET1} = Open$ $I_{SET2} = Ground$, $V_{LAMP} = 625V_{RMS}$		85		%
	er is canable of a lo							1
(BRITE) inpl			tion for minim	y be recommended by the panel manufacturer. It is the us num current. This is likely greater than the 0.65V minimum TIONAL PIN DESCRIPTION		bility to set	the minim	um brigł
(BRITE) inpr			tion for minim	ay be recommended by the panel manufacturer. It is the us num current. This is likely greater than the 0.65V minimum		bility to set	the minim	um brigh
CONN	ut at or above the p PIN	oanel specifica	tion for minim	by be recommended by the panel manufacturer. It is the us num current. This is likely greater than the 0.65V minimum TIONAL PIN DESCRIPTION	input.			um brigh
CONN	ut at or above the p PIN	Mates with	tion for minim FUNC	by be recommended by the panel manufacturer. It is the us num current. This is likely greater than the 0.65V minimum TIONAL PIN DESCRIPTION DESCRIPTION	input.			um brigh
CONN CN1 (Molex CN1-1,2,3	PIN 53261-1290)	Mates with	tion for minim FUNC	by be recommended by the panel manufacturer. It is the us num current. This is likely greater than the 0.65V minimum TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LXS upply ($10.8V \le V_{IN1} \le 13.2V$)	input.			um brigh
CONN CN1 (Molex CN1-1,2,3	PIN (53261-1290) V _{IN1}	Mates with Main Inpu Power Su	tion for minim FUNC 51021-120 It Power S	by be recommended by the panel manufacturer. It is the us num current. This is likely greater than the 0.65V minimum TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LXS upply ($10.8V \le V_{IN1} \le 13.2V$) rn	input.			um brigh
CONN CN1 (Mole× CN1-1,2,3 CN1-4,5,6	PIN (53261-1290) V _{IN1} GND	Mates with Main Inpu Power Su	51021-12 The Power S Supply Return Supply Return	by be recommended by the panel manufacturer. It is the us num current. This is likely greater than the 0.65V minimum TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LXS upply ($10.8V \le V_{IN1} \le 13.2V$) rn	input.			um brigh
Conn CN1 (Molex CN1-1,2,3 CN1-4,5,6 CN1-7	PIN 53261-1290) V _{IN1} GND AGND	Mates with Main Inpu Power Su Analog Si No Conne	51021-120 titon for minim FUNC 51021-120 tit Power S pply Retur gnal Groun ect	by be recommended by the panel manufacturer. It is the us num current. This is likely greater than the 0.65V minimum TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LXS upply ($10.8V \le V_{IN1} \le 13.2V$) rn	9508 input			um brigh
CONN CN1 (Mole× CN1-1,2,3 CN1-4,5,6 CN1-7 CN1-8	PIN 53261-1290) V _{IN1} GND AGND NC	Mates with Main Inpu Power Su Analog Si No Conne ON/OFF (51021-120 tion for minim FUNC 51021-120 tit Power S pply Retur gnal Groun ect Control. (0	TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LXS upply (10.8V \leq V _{IN1} \leq 13.2V) m	9508 input			um brigh
Conn CN1 (Molex CN1-1,2,3 CN1-4,5,6 CN1-7 CN1-8 CN1-9	VIN1 GND AGND SLEEP	Mates with Main Inpu Power Su Analog Si No Conne ON/OFF (Brightnes	51021-120 it Power S pply Retur gnal Groun ect Control. (0 s Control (TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LX9 upply ($10.8V \le V_{IN1} \le 13.2V$) rn nd $V < \overline{SLEEP} < 0.8 = OFF, \overline{SLEEP} >= 2.0V =$	9508 input 9508 current.	cable as	ssembly	um brigh
Conn CN1 (Molex CN1-1,2,3 CN1-4,5,6 CN1-7 CN1-8 CN1-9 CN1-9 CN1-10 CN1-11 CN1-12	VIN1 GND AGND AGND AGND NC SLEEP BRITE SET1 SET2	Mates with Main Inpu Power Su Analog Si No Conne ON/OFF (Brightnes SET ₁ MSE SET ₂ LSE	51021-120 51021-120 it Power S ipply Retur gnal Groun ect Control. (0 s Control (3 Connecti 3 Connect	TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LX9 upply ($10.8V \le V_{IN1} \le 13.2V$) rn nd $V < \overline{SLEEP} < 0.8 = OFF, \overline{SLEEP} >= 2.0V =$ ($0.65V$ to $2.0V$). $2.0V_{DC}$ gives maximum lamp ing this pin to ground decreases the output cu	9508 input 9508 input ON current. urrent (see	cable as Table 1)	ssembly	um brigh
Conn CN1 (Molex CN1-1,2,3 CN1-4,5,6 CN1-7 CN1-8 CN1-9 CN1-9 CN1-10 CN1-11 CN1-12	VIN1 GND AGND AGND AGND NC SLEEP BRITE SET1 SET2	Mates with Main Inpu Power Su Analog Si No Conne ON/OFF (Brightnes SET ₁ MSE SET ₂ LSE)B-BHS-1-1	51021-120 it Power S ipply Retur gnal Groun ect Control. (0 s Control. (0 3 Connect B Connect TB or Yeor	TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LX9 upply (10.8V \leq V _{IN1} \leq 13.2V) rn nd V $< \overline{\text{SLEEP}} < 0.8 = \text{OFF}, \overline{\text{SLEEP}} >= 2.0V =$ (0.65V to 2.0V). 2.0V _{DC} gives maximum lamp ing this pin to ground decreases the output cut ing	9508 input 9508 input ON current. urrent (see urrent (see	cable as Table 1) Table 1)	ssembly	
Conn CN1 (Molex CN1-1,2,3 CN1-4,5,6 CN1-7 CN1-8 CN1-9 CN1-9 CN1-10 CN1-11 CN1-12	VIN1 GND AGND AGND AGND NC SLEEP BRITE SET1 SET2	Mates with Main Inpu Power Su Analog Si No Conne ON/OFF (Brightnes SET ₁ MSE SET ₂ LSE)B-BHS-1-1 High volta	51021-120 it Power S ipply Retur gnal Groun ect Control. (0 s Control. (0 3 Connect B Connect TB or Yeor	TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LX9 upply (10.8V \leq V _{IN1} \leq 13.2V) rn nd V \leq SLEEP $<$ 0.8 $=$ OFF, SLEEP $>=$ 2.0V $=$ (0.65V to 2.0V). 2.0V _{DC} gives maximum lamp ing this pin to ground decreases the output cut ing this p	9508 input 9508 input ON current. urrent (see urrent (see	cable as Table 1) Table 1)	ssembly	
Conn CN1 (Molex CN1-1,2,3 CN1-4,5,6 CN1-7 CN1-8 CN1-9 CN1-9 CN1-10 CN1-11 CN1-11 CN1-12 CN2, CN3 (PIN \$53261-1290) VIN1 GND AGND NC SLEEP BRITE SET1 SET2 JST SM04(4.0)	Mates with Main Inpu Power Su Analog Si No Conne ON/OFF (Brightnes SET ₁ MSE SET ₂ LSE)B-BHS-1-1 High volta DO NOT (High volta	51021-120 51021-120 tr Power S pply Retur gnal Groun ect Control. (0 s Control (3 Connect TB or Yeor age connect to	TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LXS upply (10.8V \leq V _{IN1} \leq 13.2V) rn nd V $< \overline{\text{SLEEP}} < 0.8 = \text{OFF}, \overline{\text{SLEEP}} >= 2.0V =$ (0.65V to 2.0V). 2.0V _{DC} gives maximum lamp ing this pin to ground decreases the output cu ing this pin to ground decreases the output cu	9508 input 9508 input ON current. urrent (see urrent (see	cable as Table 1) Table 1) h shortes	ssembly	ength.
Conn CN1 (Molex CN1-1,2,3 CN1-4,5,6 CN1-7 CN1-8 CN1-9 CN1-10 CN1-10 CN1-11 CN1-12 CN2, CN3 (CN2,3-1	PIN \$53261-1290) VIN1 GND AGND NC SLEEP BRITE SET1 SET2 JST SM04(4.0 VHI1	Mates with Main Inpu Power Su Analog Si No Conne ON/OFF (Brightnes SET ₁ MSE SET ₂ LSE)B-BHS-1-1 High volta DO NOT (High volta	51021-12 51021-12 the Power S pply Return gnal Groun ect Control. (0 s Connect Control (3 Connect B or Yeor age connect connect to age connect to	TIONAL PIN DESCRIPTION DESCRIPTION 00 housing, 50079-8100 pins. Mates with LXS upply (10.8V \leq V _{IN1} \leq 13.2V) rn nd V $< \overline{\text{SLEEP}} < 0.8 = \text{OFF}, \overline{\text{SLEEP}} >= 2.0V =$ (0.65V to 2.0V). 2.0V _{DC} gives maximum lamp ing this pin to ground decreases the output cu ing this pin to ground decreases the output cu	9508 input 9508 input ON current. urrent (see urrent (see	cable as Table 1) Table 1) h shortes	ssembly	ength.

Copyright © 2002 Rev. 0.5b, 2004-11-03 ELECTRICALS

TABLE 1

LXM1644-12-61

12V Quad 6W CCFL Programmable Inverter Module

PRELIMINARY DATASHEET

OUTPUT CURRENT SETTINGS (TWO LAMPS) SET₁ SET₂ **Nominal Output Current** (Pin 12) (Pin 11) 16.0mA Open* Open* Open* Ground 14.0mA 12.0mA Ground Open* Ground Ground 10.0mA * If driven by a logic signal it should be open collector or open drain only, not a voltage source. ΡН **YSICAL DIMENSIONS** 188mm 7.40in 182mm 6mm 7.16in 0.23in 88mm 3.465ir \oplus П Ò 4mm 0.16in 4mm 4 0.16i 36mm 1.41in ⊕ 94mm 3.70in 4mm 0.16in **GROUNDED MOUNTING HOLES** 3.18MM ±.08 DIA. Warning High Voltage Present at high side of both Transformers and Output Connectors 8.0mm Max 0.315in PCB tolerances ± 0.5mm Weight: 44g typ 1.52mm 0.060in SIMPLIFIED BLOCK DIAGRAM +3V High Voltage Transformers ≤10K VBRITE Controller and Transformer -3V LAMP Driver z Ζ ≥10ĸ OC LAMP SET₁ OV +3V Ş ≥10ĸ SET₂ V_{lo} I_{sense}

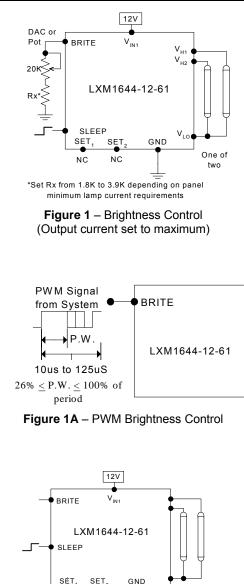
Copyright © 2002 Rev. 0.5b, 2004-11-03

Downloaded from Elcodis.com electronic components distributor

Microsemi Integrated Products 11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570

One of two

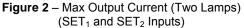
PACKAGE DATA



LXM1644-12-61

12V Quad 6W CCFL Programmable Inverter Module

PRELIMINARY DATASHEET


TYPICAL APPLICATION

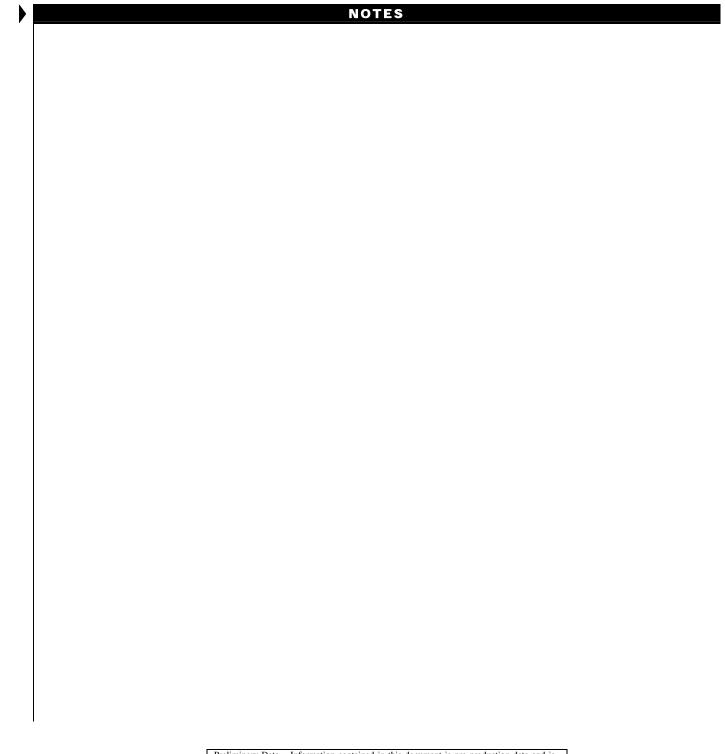
			<u>+</u>				
	L	L	10.0mA _{RMS}				
	L	Н	12.0mA _{RMS}				
	Н	L	14.0mA _{RMS}				
	Н	Н	16.0mA _{RMS}				
L=GND; H=Open							
A Marco Alexandro Commente (Truce I							

One

of two

- The brightness control may be a voltage output DAC or other voltage source, a digital pot or 20K manual pot. The inverter contains an internal 10K pull-up to 3V to bias the pot, add a 1.8K to 3.9K resistor to set the lower threshold voltage. A 3.3V Logic Level PWM signal from a microcontroller may also be used as shown in Figure 1A.
- If you need to turn the inverter ON/OFF remotely, connect to TTL logic signal to the SLEEP input.
- Connect V_{HI} to high voltage wire from the lamp. Connect V_{LO} to the low voltage wire (wire with thinner insulation). Never connect V_{LO} to circuit ground as this will defeat lamp current regulation. If both lamp wires have heavy high voltage insulation, connect the longest wire to V_{LO}. This wire is typically white.
- Use the SET₁ and SET₂ (see Figure 2) inputs to select the desired maximum output current. Using these two pins in combination allows the inverter to match a wide variety of panels from different manufactures. Generally the best lamp lifetime correlates with driving the CCFL at the manufactures nominal current setting. However the SET₁ and SET₂ inputs allow the user the flexibility to adjust the current to the maximum allowable output current to increase panel brightness at the expense of some reduced lamp life.
- Although the SET pins are designed such that just leaving them open or grounding them is all that is needed to set the output current, they can also be actively set. Using a open collector or open drain logic signal will allow you to reduce the lamp current for situations where greater dim range is required, as an example in nighttime situations. In conjunction with a light sensor or other timer the panel could be set to higher brightness (maximum output current) for daytime illumination and lower brightness (minimum or typical output current) at nighttime. Since the dim ratio is a factor of both the burst duty cycle and the peak output current, using this technique the effective dim ratio can be increased greater than the burst duty cycle alone. Conversely the SET inputs could be used to overdrive the lamp temporarily to facilitate faster lamp warm up at initial lamp turn on. Of course any possible degradation on lamp life from such practices is the users responsibility since not all lamps are designed to be overdriven.
- The inverter has a built in fault timeout function. If the output return is open (lamp disconnected or broken) or shorted the inverter will attempt to strike the lamp for several seconds. After about a second without success the inverter will shutdown. In order to restart the inverter it is necessary to toggle the sleep input or cycle the V_{IN1} input supply. In the timeout shutdown mode input drain current will be about 8mA.

rosemi


APPLICATION

LXM1644-12-61

12V Quad 6W CCFL Programmable Inverter Module

PRELIMINARY DATASHEET

Preliminary Data – Information contained in this document is pre-production data and is proprietary to Microsemi. It may not be modified in any way without the express written consent of Microsemi. Product referred to herein is offered in sample form only and Microsemi reserves the right to change or discontinue this proposed product at any time.

Page 6

NOTES

www.Microsemi.com