

MESSRS :

CUSTOMER'S PRODUCT NAME:

TDK PRODUCT NAME: DC/AC INVERTER UNIT CXA- 0538

*Notice

Product Drawing is not contract. This is only technical data.

This technical data may change internal description without any notice.

When you design final product please request us specification through our sales or distributors.

After you receive the specification, the contract is effective on signature of the specification.

TDK-Lambda Corporation

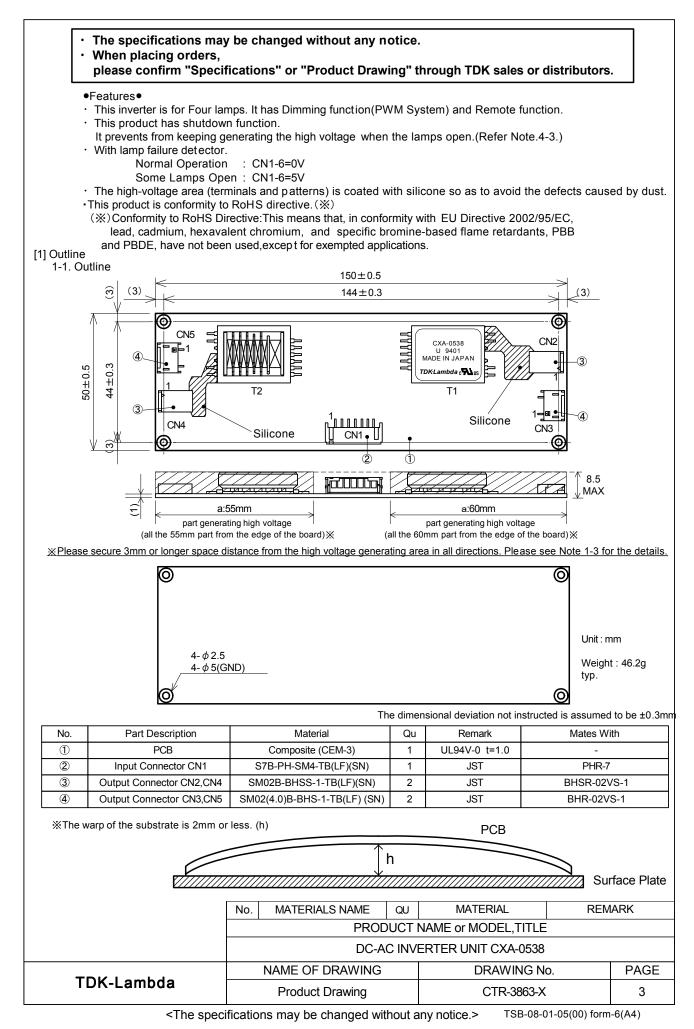
PREPARED BY	APPROVED BY	AUTHORIZED BY		
April 21, 2010	April 21, 2010	April 21, 2010		
N.Suzuki	K.Yamaishi	H.Masuoka		

1. Part Name

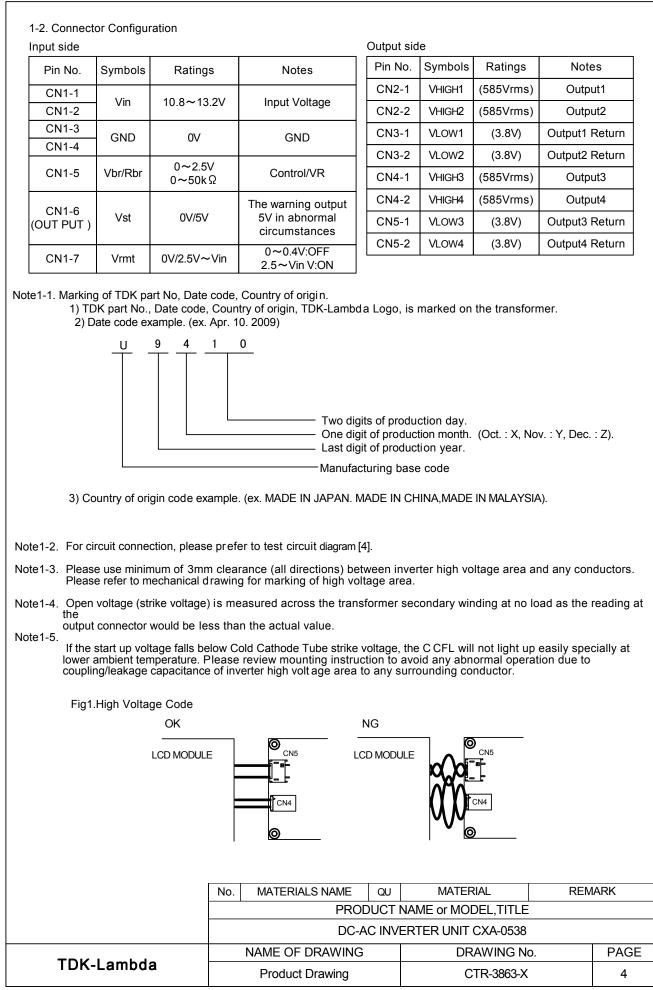
The part name is CXA-0538.

2. Contents

Item	Attched view	Page
1.Appearance,Structure and Dimensions		
Outline	refer to [1]	3
Pin configration	refer to [1]	4
2.Characteristics		
Absolute Maximum Ratings	refer to [2]	5
3.Electrical Characteristics	refer to [3]	5
4.Test circuit	refer to [4]	6
5.Reliability Test	refer to [5]	7
6.Packing and Marking	refer to [6]	8
7.Others		
Test Cond Std Warranty Others	refer to [7]	8


	No.	MATERIALS NAME	QU	MATERIAL	REM	ARK
	PRODUCT NAME or MODEL, TITLE					
		DC-A	C INVI	ERTER UNIT CXA-0538		
	NAME OF DRAWING		DRAWING No.		PAGE	
TDK-Lambda	Product Drawing		CTR-3863-X		1	
<the any="" be="" changed="" may="" notice.="" specifications="" without=""> TSB-08-01-05(00) form-6(A4)</the>						

Downloaded from <u>Elcodis.com</u> electronic components distributor


Precautionary Notes Regarding the Use of This Inverter

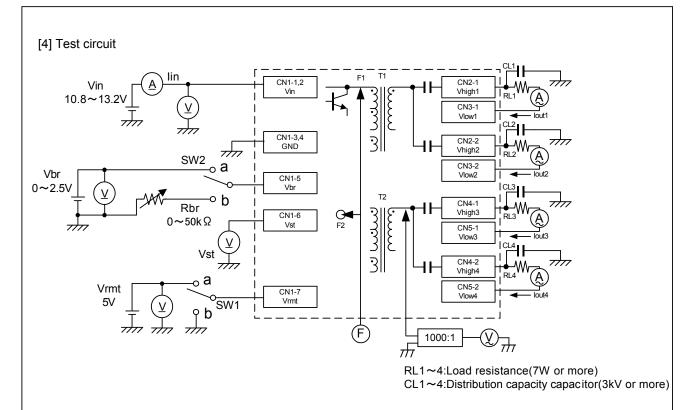
When using this product, give due consideration to the precautionary notes described below and ensure a safe design. Inappropriate use may result in electric shock, injury or fire.

	Warning							
	voltage. Do not touch it while the po	wer is on.						
Failing to do so may result in electric shock.								
<u> </u>								
 This product is designed for lighting Cold Cathode Fluorescent Lamps. Do not use it with any other load. Store this product under the conditions defined in the specification document. Do not store this product in an environment where dust, dirt or corrosive gas(salt,acid,base, etc.) is present. This product is subject to high voltage. If there is a possibility that the user may touch the product, provide a proper warning indication in order to draw the user's attention. This product is designed for use with general electronic equipment. If it is to be used with medical equipment that directly affects human life or for the control of transportation equipment to which passengers entrust their lives, provide thorough fail-safe measures. Consult us before using if this product is to be installed in a habitual vibration environment (vehicle, etc.). Avoid using this product under high temperatures or high humidity or in an environment in which dust, dirt or any corrosive gas (salt,acid,base, etc.) is present. Also,be careful not to allow the formation of dew condensation. It may result in damage or electric shock. If the product does not have a built-in protective circuit (circuit breaker, fuse, etc.), it is recommended that a fuse be used at the input stage to prevent the generation of smoke or fire in the event of a malfunction. Even when the product has a built-in protective circuit (circuit breaker, fuse, etc.), the circuit may not function properly due to inappropriate operating conditions or power-supply capacity. It is recommended that an appropriate protective circuit (circuit breaker, fuse, etc.) De provided separately from the built-in circuit. Use the product only within the specified input voltage, output power, output voltage and operating temperature ranges. Exceeding these values may result in damage, etc. Provide a measure for the prevention of surge voltage due to lightning, etc. Abnor								
	Handling Precaution							
 This product uses thin wires. Observe the following precautions and handle it with care so as not to cause wire breakage. Broken wire may result in damage, etc. Do not stack multiple products on top of one another. Do not allow the product to come in contact with tools, etc. Do not apply excessive stress during installation. It may cause chipping and cracking, resulting in damage, etc. Provide clearance between the high-voltage section of this product and the frame body on which the product is installed and also the conductor section as on page 2, [1] "Outline". Do not use the product after it has been dropped because there is the possibility that components have been damaged. 								
	No. MATERIALS NAME QU	MATERIAL	REMARK					
	PRODUCT	NAME or MODEL, TITLE						
	DC-AC INV	ERTER UNIT CXA-0538						
TDK-Lambda	NAME OF DRAWING	DRAWING No.	PAGE					
	Product Drawing	CTR-3863-X	2					
<the spec<="" th=""><th>fications may be changed without a</th><th>any notice.> TSB-08-01-05(0</th><th>0) form-6(A4)</th></the>	fications may be changed without a	any notice.> TSB-08-01-05(0	0) form-6(A4)					

Downloaded from Elcodis.com electronic components distributor

Note1-6. Please check your lamp characteristic for minimum operational current and set the limit point in your design to avoid flickering and/or abnormal operation.

- Note1-7. For proper operation of circuit protection (fuse or IC PROTECTOR), Please use minimum of 6.3A capacity for input power supply.
- Note1-8. Impedence from the wire connection can cause a ripple in the input. The product has an internal fuse of 3.15A. Please check that input current peak wave form does not exceed 3.15A.


Items	Symbols	Specification	Unit	Notes
	Vin	0~15		
Input Voltage	Vrmt	0~Vin	VDC	
	Vbr	0~16		
Load Resistance	RL1~4//CL1~4	100//6	kΩ//pF	
Operating Temp. range	Та	-30~80	°C	
Storage Temp. range	Ts	-30~85	°C	
Humidity range	RH	95	%RH	A maximum wet ball temperature is 38°C No dew.

[2] Absolute maximum ratings

[3] Electrical specifications

		Conditions			Specifications							
Symbol	Vin(V)	Vrmt(V)	Vbr(V) ∕ Rbr(kΩ)	Ta(°C)	RL1~4(kΩ) //CL1~4(pF)	MIN.	TYP.	MAX.	Unit			
lout1~4			0 / 0	-20~70		6.0	6.5	7.0				
lout1~4		5 + 0 25	2.5 / 50			2.2	3.0	3.8	mArms			
lout1~4		5±0.25	0 / 0			5.9	6.5	7.1				
lin1			0 / 0		90 // 6	_	1.7	2.5	A			
lin2	12 + 1 2	0	0~2.5 / 0~50			-	-	1	mA			
F1	12±1.2	12 - 1.2		0 / 0	-30~80		45	50	55	kHz		
F2								2.5 / 50			125	155
Vopen		5±0.25	0 / 0		8 8	1.7	2.0	2.3	kVrms			
Vot		0~2.5 / 0~50		90 // 6 (Note4-3)涨1	4.5	5.0	5.5	v				
VSL			0~2.5 / 0~50		90 // 6	-	0	0.5				
	lout 1 ~ 4 lout 1 ~ 4 lin 1 lin 2 F 1 F 2	Vin(V) lout1~4 lout1~4 lin1 lin2 F1 F2 Vopen	$ \begin{array}{ c c c c c } \hline Vin(V) & Vrmt(V) \\ \hline Vin(V) & Vrmt(V) \\ \hline lout1~4 \\ \hline lout1~4 \\ \hline lin1 \\ \hline lin2 \\ \hline F1 \\ \hline F2 \\ \hline Vopen \\ \hline 5\pm0.25 \\ \hline 5\pm0.25 \\ \hline 5\pm0.25 \\ \hline 5\pm0.25 \\ \hline \hline$	Vin(V) Vrmt(V) Rbr(k Ω) lout1~4 $0 / 0$ lout1~4 5 ± 0.25 $0 / 0$ lin1 $0 / 0$ lin2 12 ± 1.2 0 F1 $0 / 0$ F2 $0 / 0$ Vopen 5 ± 0.25 $0 / 0$ Vst $0 / 0$	$\begin{array}{ c c c c c c } \hline Vin(V) & Vrmt(V) & Rbr(k\Omega) & Ta(^{\circ}C) \\ \hline \\ \hline lout1 \sim 4 \\ \hline lin1 \\ \hline lin2 \\ \hline lin2 \\ \hline I2 \pm 1.2 & 0 & 0 \\ 12 \pm 1.2 & 0 & 0 \\ \hline 0 & 0 & -25 \neq 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & -20 \sim 70 \\ \hline 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol Vin(V) Vrmt(V) Vbr(V) / Rbr(k Ω) Ta(°C) RL1~4(k Ω) //CL1~4(pF) MIN. lout1~4	Symbol Vin(V) Vrmt(V) Vbr(V) / Rbr(k \Omega) Ta(°C) RL1~4(k \Omega) //CL1~4(pF) MIN. TYP. lout1~4 $0 / 0$ $-20 \sim 70$ 6.0 6.5 lout1~4 5 ± 0.25 $0 / 0$ $-20 \sim 70$ 2.2 3.0 lout1~4 5 ± 0.25 $0 / 0$ $-0 \sim 70$ 2.2 3.0 lin1 5 ± 0.25 $0 / 0$ $90 / / 6$ -1 1.7 lin2 12 ± 1.2 0 $0 - 2.5 / 0 \sim 50$ $90 / / 6$ -1 -1.7 F1 5 ± 0.25 $0 / 0$ $-30 \sim 80$ $90 / / 6$ -1.7 -1.7 Vopen 5 ± 0.25 $0 / 0$ $-30 \sim 80$ $90 / / 6$ -1.7 -1.7 Vst 5 ± 0.25 $0 / 0$ $-30 \sim 80$ $90 / / 6$ -1.7 -1.7 Vopen 5 ± 0.25 $0 / 0$ $-0 / 0$ $-0 / 0$ $-0 / 0$ $-0 / 0$ $-0 / 0$ Vst $0 / 0 / 0$ $0 / 0 / 0$ $0 / 0 / 0$ $-0 / 0$	Symbol Vin(V) Vrmt(V) Vbr(V) / Rbr(k \Omega) Ta(°C) RL1~4(k \Omega) //CL1~4(pF) MIN. TYP. MAX. lout1~4 $0 / 0$ $-20 \sim 70$ 6.0 6.5 7.0 lout1~4 5 ± 0.25 $0 / 0$ $-20 \sim 70$ 2.2 3.0 3.8 lout1~4 5 ± 0.25 $0 / 0$ $-20 \sim 70$ $90 / / 6$ $ 1.7$ 2.5 lin1 12 ± 1.2 0 $0 \sim 2.5 / 0 \sim 50$ $90 / / 6$ $ 1.7$ 2.5 F1 12 ± 1.2 $0 / 0$ $-25 / 50$ $-30 \sim 80$ $90 / / 6$ $ 1.7$ 2.5 F2 5 ± 0.25 $0 / 0$ $ 1.7$ 2.5 Vopen 5 ± 0.25 $0 / 0$ $ 0 / 6$ 1.7 2.0 2.3 Vst $0 - 2.5 / 0 \sim 50$ $0 - 0 / 6$ 4.5 5.0 5.5			

	No.	MATERIALS NAME	QU	MATERIAL	REM	ARK
	PRODUCT NAME or MODEL, TITLE					
	DC-AC INVERTER UNIT CXA-0538					
		NAME OF DRAWING		DRAWING NO	0.	PAGE
TDK-Lambda		Product Drawing		CTR-3863-X		5

Note.4-1.SW1(ON/OFF) Operation is as following;

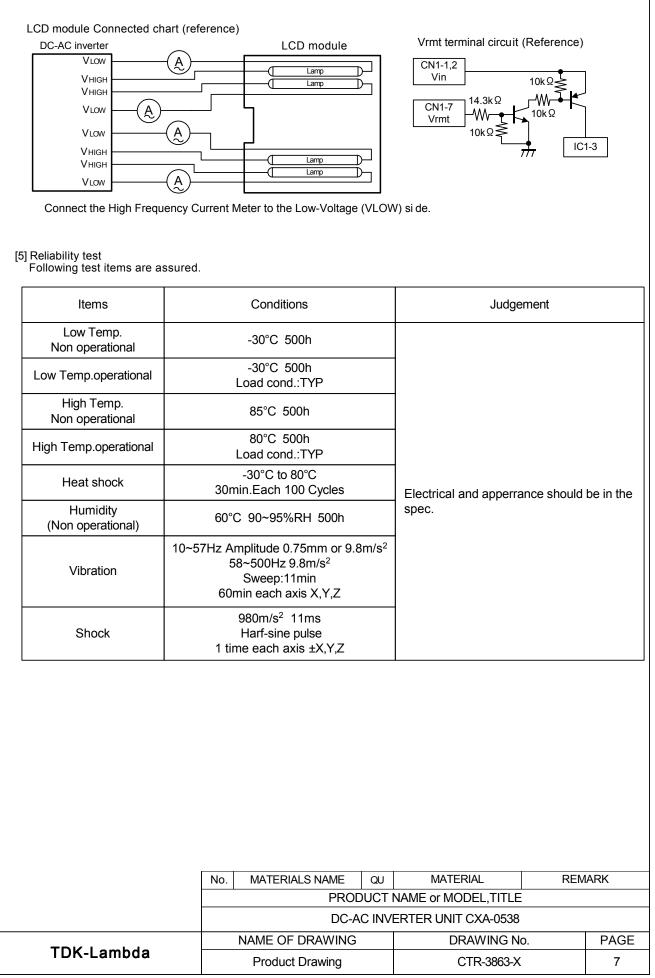
SW1	Operation of unit	
а	Operation	
b	Non operation	
Open	Non operation	

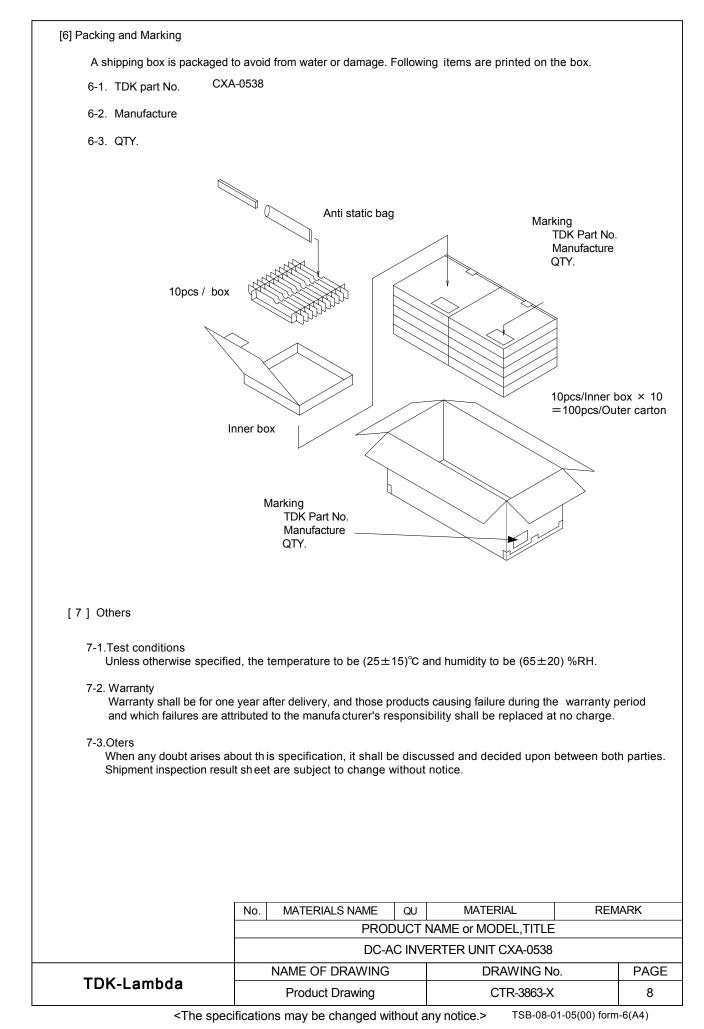
Note4-3.Safety Function

	Conditions	Alarm Signal Function (CN1-6) ^{※1}	Shutdown Function ^{%2}	
	Normality	0.5V max.	No shutdown (Operation)	
	Load (Lamp) one open	4.5~5.5V	Shutdown	
	Load (Lamp) Two open	4.5~5.5V	Shutdown	
	Load (Lamp) Three open	4.5~5.5V	Shutdown	[
ſ	Load (Lamp) Four open	4.5~5.5V	Shutdown	

Note.4-2.SW2(ON/OFF) Operation is as following;

SW2	Operation of unit
а	*Voltage dimming Vbr=0~2.5V
b	*Variable resistance dimming VR=0~50kΩ


Note4-4.Safety Function


- U Digital Multiple Meter(ADVA NTEST R6451A or equivalent)
- (<u>A</u>) DC Current Meter(ADVANTEST R6451A or equivalent)
- (F) Frequency Countor(ADVANTE ST R6452A or equivalent)
- (V) True RMS Meter(KEITHLEY 2001 or equivalent.)
- (A) High Frequency Current Mete r(KEITHLEY 2001 or equivalent)

1000:1 High Voltage Probe (Tektronix P3000 or equivalent)

※1.When any of the load is opened, the al arm output becomes 5V.※2.When all of the load is opened, inverter will shut down about 3 seconds.

	No. MATERIALS NAME Q	U MATERIAL	REMARK		
	PRODUCT NAME or MODEL, TITLE				
	DC-AC INVERTER UNIT CXA-0538				
	NAME OF DRAWING	DRAWING N	o. PAGE		
TDK-Lambda	Product Drawing	CTR-3863-X	6		

