Plastic Infrared Emitting Diode OP240 Series OP245 Series

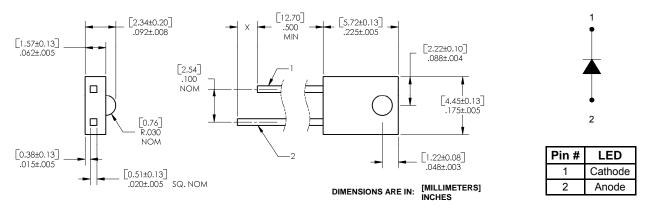
Features:

- · Wide irradiance pattern
- Side-looking package for space-limited applications
- Wavelength matched to silicon's peak response
- Mechanically and spectrally matched to other OPTEK products

Description:

Each device in this series is a high intensity gallium aluminum arsenide infrared emitting diode that is suited for use as a PCBoard mounted slotted switch or an easy mount PCBoard interrupter.

Each dome lens **OP240** and **OP245** device is an 890 nm diode that is molded in an IR-transmissive clear epoxy side-looking package. *OP240* is mechanically and spectrally matched to the *OP550* and *OP560* series of phototransistors. *OP245* is mechanically and spectrally matched to the *OP555* and *OP565* series devices.


Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:

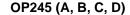
- · Space-limited applications
- · PCBoard mounted slotted switch
- PCBoard interrupter

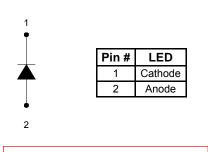
Ordering Information								
Part Number	LED Peak Wavelength	Lens Type	Total Beam Angle	Lead Length				
OP240A		Dome		0.50" minimum				
OP240B								
OP240C		Dome	40°					
OP240D	890 nm							
OP245A	090 11111							
OP245B		Recessed						
OP245C		Recessed						
OP245D								

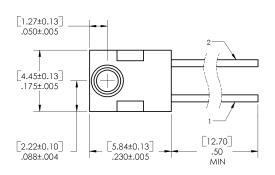
OP240 (A, B, C, D)

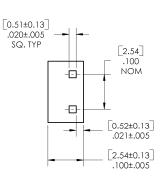
RoHS

CONTAINS POLYSULFONE


To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking. Vibra-Tite evaporates fast without causing structural failure in OPTEK'S molded plastics.


OPTER


OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.


Plastic Infrared Emitting Diode OP240 Series OP245 Series

DIMENSIONS ARE IN:

ARE IN: [MILLIMETERS] INCHES

CONTAINS POLYSULFONE

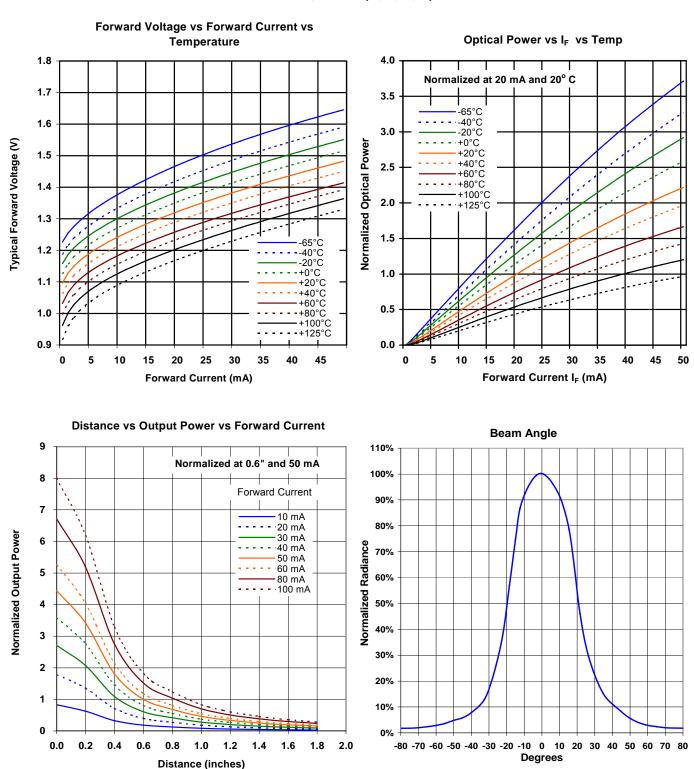
To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking. Vibra-Tite evaporates fast without causing structural failure in OPTEK'S molded plastics.

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Storage and Operating Temperature Range	-40° C to +100° C
Reverse Voltage	2.0 V
Continuous Forward Current	50 mA
Peak Forward Current	3.0 A
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS		
Input Diode								
E _{E (APT)}	Apertured Radiant Incidence OP240A, OP245A OP240B, OP245B OP240C, OP245C OP240D, OP245D	0.60 0.40 0.20 0.05		- 1.20 0.86 -	mW/cm ²	I _F = 20 mA ⁽³⁾		
V _F	Forward Voltage	-	-	1.80	V	I _F = 20 mA		
I _R	Reverse Current	-	-	100	μΑ	V _R = 2.0 V		
λ_{P}	Wavelength at Peak Emission	-	890	-	nm	I _F = 10 mA		
В	Spectral Bandwidth between Half Power Points	-	80	-	nm	I _F = 10 mA		
$\Delta \lambda_P / \Delta T$	Spectral Shift with Temperature	-	±0.18	-	nm/°C	I _F = Constant		
θ_{HP}	Emission Angle at Half Power Points	-	40	-	Degree	I _F = 20 mA		
t _r	Output Rise Time	-	500	-	ns	I _{F(PK)} =100 mA, PW=10 μs, and D.C.=10.0%		
t _f	Output Fall Time	-	250	-	ns			


Notes

- 1. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to the leads when soldering.
- 2. Derate linearly 1.33 mW/° C above 25° C.
- 3. E_{E(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.180" (4.57 mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.653" (6.60 mm) from the lens tip. E_{E(APT)} is not necessarily uniform within the measured area

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OP240, OP245 (A, B, C, D)

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.