Optically Coupled Isolator / High-Speed Optically Coupled Isolator OPI150, OPI153, OPI155

Features:

- 50 kV electrical isolation
- Choice of phototransistor or photodarlington output
- High speed >5 MBd (OPI155)
- Hermetically sealed LED and photosensor
- Base contact lead for conventional transistor biasing
- TX and TXV process available (see Hi-Rel section)

Description:

Each **OPI150** and **OPI153** is an optically coupled isolator that contains an infrared emitting diode and a NPN silicon phototransistor (OPI150) or photodarlington (OPI153), each sealed in an individual hermetically sealed package. The diode and phototransistor or diode and photodarlington are then optically coupled by means of a light pipe and mounted in a high dielectric plastic housing. These devices are designed for applications that require very high isolation between input and output.

The **OPI155** is a high-speed optical coupled isolator that contains a high speed monolithic photo-IC comprised of a photodiode and a DC amplifier that drives an open collector output Schottky transistor. It is optically coupled by means of an internal light pipe. The LED and sensor are both in separate hermetically sealed packages that are then mounted in a high dielectric plastic housing. This device is designed for applications that require high speed *and* high voltage isolation between the input and output.

TX and TXV devices are available. Please contact your local representative or OPTEK for more information.

OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006 Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 sensors@optekinc.com www.optekinc.com Issue C 10/2010 Page 1 of 3

Optically Coupled Isolator / High-Speed Optically Coupled Isolator OPI150, OPI153, OPI155

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)	
Operating Temperature Range	-40° C to +85° C
Storage Temperature Range	-40° C to +85° C
Input-to-Output Isolation Voltage ⁽¹⁾⁽²⁾	±50 kVDC
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 seconds with soldering iron ^{](3)}	260° C
Input Diode	
Continuous Forward Current	50 mA
Reverse Voltage	3 V
Power Dissipation ⁽⁴⁾	200 mW
Output Phototransistor or Photodarlington (OPI150, OPI153)	
Collector-Base Voltage OPI150 OPI153	30 V 20 V
Collector-Emitter Voltage OPI150 OPI153	30 V 15 V
Emitter-Collector Voltage	5.0 V
Power Dissipation ⁽⁵⁾	250 mW

Output Photosensor (OPI155)

Supply Voltage	-0.5 to 7 V
Output Voltage	-0.5 to 18 V
Output Current	25 mA
Open-Collector Power Dissipation	40 mW
Power Dissipation ⁽⁵⁾	250 mW

Notes:

(1) For OPI150 and OPI153, measured with input leads and output leads shorted.

(2) For OPI155, measured with input and output leads shorted and relative humidity of less than 50%.

(3) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.

(4) Derate linearly 3.33 mW/° C above 25° C.

(5) Derate linearly 4.17 mW/° C above 25° C.

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS
------------------	-----	-----	-----	-------	-----------------

Input Diode (For OPI150 & OPI153, see OP236 for additional information - for reference only. For OPI155, see OP235W for additional information - for reference only.)

V _F	Forward Voltage OPI150, OPI153 OPI155	-	1.3 1.2	1.6 1.6	V	I _F = 50 mA I _F = 10 mA
I _R	Reverse Current	-	0.1	100	μA	V _R = 3 V

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Optically Coupled Isolator / High-Speed Optically Coupled Isolator OPI150, OPI153, OPI155

SYMBOLPARAMETERMINTYPMAXUNITSTEST CONDITIONSOutput Phototransistor or Photodarlington (For OPI150, see OP805SL for additional information- for OPI153, see OP805SL for additional information- for OPI153, see OP805SL for additional information- for OPI153Vertice OPI153 </th <th colspan="8">Electrical Characteristics (1_A = 25° C unless otherwise noted)</th>	Electrical Characteristics (1 _A = 25° C unless otherwise noted)							
	SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output Phototransistor or Photodarlington (For OPI150, see OP805SL for additional information, for OPI153, see OP830SL for additional information- for reference only.)							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{(BR)C} EO	Collector-Emitter Breakdown Voltage OPI150 OPI153	30 15	-	-	V	I _C = 1 mA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{(BR)ECO}	Emitter-Collector Breakdown Voltage OPI150, OPI153	5	-	-	v	I _F = 100 μA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{(BR)CBO}	Collector-Base Breakdown Voltage OPI150 OPI153	30 20	- -		v	I _C = 100 μA	
$\begin{tabular}{ c c c c c c } \hline Collector-Base Dark Current OP150 & - & - & - & - & - & - & - & - & - & $	I _{CEO}	Collector-Emitter Dark Current OPI150 OPI153		-	100 500	nA	V _{CE} = 10 V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{CBO}	Collector-Base Dark Current OPI150	-	-	-	nA	V _{CB} = 10 V	
$ \begin{array}{ c c c } & DC Current Transfer Ratio \\ OPI150 \\ OPI155 \\ OPI15 \\ OPI15 \\ OPI15 \\ OPI15 \\$	Coupled (OPI150, OPI153)						
$ \begin{array}{ c c c c c } \hline I_{CB(ON)} & \begin{matrix} IbOState Photodiode Current \\ OPI150 & 10 \\ \hline I_{CB}(SAT) \end{matrix} \\ \hline Saturation Voltage \\ OPI150 \\ OPI150 \\ OPI150 \\ OPI153 \\ \hline Princ \\ $	I _{C/} I _F	DC Current Transfer Ratio OPI150 OPI153	10 25	-	-	%	I _F = 10 mA, V _{CE} = 5 V I _F = 20 mA, V _{CE} = 5 V	
$ \begin{array}{ c c c c c } \hline V_{CE(SAT)} & \begin{array}{ c c c c c } Saturation Voltage \\ OPI150 \\ OPI153 \\ \end{array} & \begin{array}{ c c c } \hline Photosensor (OPI155 \\ \hline OPI155 \\ \end{array} & \begin{array}{ c c c } \hline Phich \\ \hline OPI155 \\ \end{array} & \begin{array}{ c c c } \hline Phich \\ \hline OPI155 \\ \hline OPI155 \\ \end{array} & \begin{array}{ c c c } \hline Phich \\ \hline OPI155 \\ \hline OPI155 \\ \end{array} & \begin{array}{ c c c } \hline Phich \\ \hline OPI155 \\ \hline OPI155 \\ \end{array} & \begin{array}{ c c c } \hline Phich \\ \hline OPI155 \\ \hline OPI155 \\ \end{array} & \begin{array}{ c c c } \hline Phich \\ \hline OPI155 \\ \hline OPI155 \\ \end{array} & \begin{array}{ c c } \hline Phich \\ \hline OPI155 \\ \hline OPI155 \\ \hline OPI155 \\ \end{array} & \begin{array}{ c c } \hline Phich \\ \hline OPI155 \\ \hline OPI15 \\ \hline $	I _{CB(ON)}	Ib0State Photodiode Current OPI150	10	-	-	μA	I _F = 20 mA, V _{CB} = 5 V	
Output Photosensor (OPI155) I_{OH} High Level Output Current OPI155250 μ A $V_0 = 18 \text{ V}, I_F = 0, V_{CC} = Open$ I_{CCH} High Level Supply Current OPI1556.5mA $V_{CC} = 5.25 \text{ V}, I_F = 0, V_0 = Open$ I_{CCL} Low Level Supply Current OPI15510mA $V_{CC} = 5.25 \text{ V}, I_F = 10 \text{ mA}, V_0 = 0$ V_{OL} Low Level Output Voltage OPI1550.5V $V_{CC} = 5.25 \text{ V}, I_F = 10 \text{ mA}, I_0 = 8 \text{ mA}$ Switching Characteristics (OPI155) T_{PHL} Propagation Delay, High to Low-120150 100ns $V_{CC} = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 360 \Omega$	V _{CE(SAT)}	Saturation Voltage OPI150 OPI153	-	-	0.5 1.2	v	I _F = 16 mA, I _C = 1 mA I _F = 30 mA, I _C = 2 mA	
$ \begin{array}{ c c c c c c c } \hline I_{OH} & \begin{array}{ c c c c c c } High \ Level \ Output \ Current \\ OPI155 & - & - & 250 \\ \hline I_{CCH} & \begin{array}{ c c c c } High \ Level \ Supply \ Current \\ OPI155 & - & - & 6.5 \\ \hline I_{CCL} & \begin{array}{ c c c } Low \ Level \ Supply \ Current \\ OPI155 & - & - & 10 \\ \hline OPI155 & - & - & 10 \\ \hline V_{OL} & \begin{array}{ c c } Low \ Level \ Supply \ Current \\ OPI155 & - & - & 10 \\ \hline V_{OL} & \begin{array}{ c } Low \ Level \ Output \ Voltage \\ OPI155 & - & - & 0.5 \\ \hline V_{OL} & \begin{array}{ c } Low \ Level \ Output \ Voltage \\ OPI155 & - & - & 0.5 \\ \hline V_{OL} & \begin{array}{ c } Low \ Level \ Output \ Voltage \\ OPI155 & - & - & 0.5 \\ \hline V_{CC} & = 5.25 \ V, \ I_F & = 10 \ mA, \ V_O & = 0 \\ \hline V_{OL} & \begin{array}{ c } Simple \ Characteristics \ (OPI155) \\ \hline T_{PHL} & Propagation \ Delay, \ High \ to \ Low \\ \hline T_{PLH} & Propagation \ Delay, \ Low \ to \ High \\ \hline T_{O} & - & 70 \\ \hline \end{array} \end{array} $	Output Ph	otosensor (OPI155)						
$ \begin{array}{ c c c } \hline I_{CCH} & High Level Supply Current \\ OPI155 & - & - & 6.5 & mA & V_{CC} = 5.25 \text{ V}, I_F = 0, V_O = Open \\ \hline I_{CCL} & Low Level Supply Current \\ OPI155 & - & - & 10 & mA & V_{CC} = 5.25 \text{ V}, I_F = 10 \text{ mA}, V_O = 0 \\ \hline V_{OL} & Low Level Output Voltage & - & - & 0.5 & V & V_{CC} = 5.25 \text{ V}, I_F = 10 \text{ mA}, I_O = 8 \text{ mA} \\ \hline Switching Characteristics (OPI155) & & & & \\ \hline T_{PHL} & Propagation Delay, High to Low & - & 120 & 150 \\ \hline T_{PLH} & Propagation Delay, Low to High & - & 70 & 100 & ns & V_{CC} = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 360 \Omega \\ \hline \end{array} $	I _{ОН}	High Level Output Current OPI155	-	-	250	μA	V_{O} = 18 V, I _F = 0, V_{CC} = Open	
$ \begin{array}{ c c c c c c } I_{CCL} & Low Level Supply Current \\ OPI155 & & & & & & & & & & & & & & & & & & $	I _{CCH}	High Level Supply Current OPI155	-	-	6.5	mA	V_{CC} = 5.25 V, I _F = 0, V _O = Open	
v_{OL} Low Level Output Voltage OPI1550.5V $V_{CC} = 5.25 \text{ V}, I_F = 10 \text{ mA}, I_O = 8 \text{ mA}$ Switching Characteristics (OPI155) T_{PHL} Propagation Delay, High to Low-120150 100ns $V_{CC} = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 360 \Omega$	I _{CCL}	Low Level Supply Current OPI155	-	-	10	mA	V_{CC} = 5.25 V, I _F = 10 mA, V _O = 0	
Switching Characteristics (OPI155) T_{PHL} Propagation Delay, High to Low-120150ns V_{cc} = 5 V, I_F = 10 mA, R_L = 360 Ω T_{PLH} Propagation Delay, Low to High-70100ns V_{cc} = 5 V, I_F = 10 mA, R_L = 360 Ω	V _{OL}	Low Level Output Voltage OPI155	-	-	0.5	V	V_{CC} = 5.25 V, I _F = 10 mA, I _O = 8 mA	
T_{PHL}Propagation Delay, High to Low-120150ns V_{CC} = 5 V, I _F = 10 mA, R _L = 360 ΩT_{PLH}Propagation Delay, Low to High-70100ns V_{CC} = 5 V, I _F = 10 mA, R _L = 360 Ω	Switching	Characteristics (OPI155)						
T_{PLH} Propagation Delay, Low to High - 70 100 IIS $V_{CC} = 5 V$, $I_F = 10 \text{ IIA}$, $R_L = 300 \Omega$	T _{PHL}	Propagation Delay, High to Low	-	120	150		V_{CC} = 5 V, I _F = 10 mA, R _L = 360 Ω	
	T _{PLH}	Propagation Delay, Low to High	-	70	100	115		

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.