Data Sheet

RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Description

The ACPL-W611/ACPL-P611 is an optically coupled gate that combines a GaAsP light emitting diode and an integrated high gain photo detector. The output of the detector IC is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of $10,000 \mathrm{~V} / \mu \mathrm{s}$ for the ACPL-W611.

This unique design provides maximum ac and dc circuit isolation while achieving TTL compatibility. The optocoupler ac and dc operational parameters are guaranteed from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ allowing trouble-free system performance.
The ACPL-W611/ACPL-P611 is suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

Functional Diagram

TRUTH TABLE
(POSITIVE LOGIC)

LED	OUTPUT
ON	L
OFF	H

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins V_{cc} and GND.

Features

- $10 \mathrm{kV} / \mu \mathrm{s}$ minimum Common Mode Rejection (CMR) at $\mathrm{VCM}=1000 \mathrm{~V}$
- High speed: 10 MBd typical
- LSTTL/TTL compatible
- Low input current capability: 5 mA
- Guaranteed ac and dc performance over temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stretched SO-6 package
- Safety Approval:
- UL Recognized: 5000 Vrms for 1 minute for ACPL-W611 and ACPL-P611-020E per UL1577
- CSA
- IEC/EN/DIN EN 60747-5-2

Applications

- Isolated line receiver
- Computer-peripheral interfaces
- Microprocessor system interfaces
- Digital isolation for A/D, D/A conversion
- Switching power supply
- Instrument input/output isolation
- Ground loop elimination
- Pulse transformer replacement
- Power transistor isolation in motor drives
- Isolation of high speed logic systems

Schematic Diagram

Ordering Information

ACPL-P611 is UL Recognized with 3750 Vrms for 1 minute and ACPL-W611 is UL recognized with 5000 Vrms for 1 minute per UL1577. They are approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part number	$\begin{gathered} \text { Option } \\ \hline \text { RoHS Compliant } \end{gathered}$	Package	Surface Mount	Tape \& Reel	UL 5000 Vrms/ 1 Minute rating	$\begin{gathered} \text { IEC/EN/DIN EN } \\ 60747-5-2 \end{gathered}$	Quantity
ACPL-P611	-000E	$\begin{aligned} & \text { Stretched } \\ & \text { SO-6 } \end{aligned}$	X				100 per tube
	-020E		X		X		100 per tube
	-060E		X			X	100 per tube
	-500E		X	X			1000 per reel
	-520E		X	X	X		1000 per reel
	-560E		X	X		X	1000 per reel
ACPL-W611	-000E	$\begin{gathered} \text { Stretched } \\ \text { S0-6 } \end{gathered}$	X		X		100 per tube
	-060E		X		X	X	100 per tube
	-500E		X	X	X		1000 per reel
	-560E		X	X	X	X	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Combination of Option 020 and Option 060 is not available.

Example 1:
HCPL-P611-500E to order product of Surface Mount Stretched SO-6 package in Tape and Reel packaging with RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings
ACPL-W611 Stretched SO-6 Package

ACPL-P611 Stretched S0-6 Package

Recommended Solder Reflow Thermal Profile

Note: Use of non chlorine-activated fluxes is highly recommended.

Recommended Pb-Free IR Profile

Regulatory Information

The ACPL-W611 and ACPL-P611 is approved/pending approval by the following organizations:

IEC/EN/DIN EN 60747-5-2 (Option 060 only)
Approval under:
IEC 60747-5-2 :1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01
UL
Approval under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=5000 \mathrm{~V}_{\text {RMS }}$. File E55361.
CSA
Approval under CSA Component Acceptance Notice \#5, File CA 88324.

Note: Use of non chlorine-activated fluxes is highly recommended.

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-P611	ACPL-W611	Units	Conditions
Minimum External Air Gap Clearance)	$\mathrm{L}(101)$	7	8	mm	Measured from input (External terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	$\mathrm{L}(102)$	8	8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative Tracking Index)	CTI	175	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group	IIIa	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)	

IEC/EN/DIN EN 60747-5-2 Insulation Characteristics* (ACPL-W611/ ACPL-P611 Option 060)

Description	Symbol	ACPL-P611 Option 060	ACPL-W611 Option 060	Unit
Installation classification per DIN VDE 0110/1.89, Table 1				
for rated mains voltage $\leq 150 \mathrm{~V}_{\text {rms }}$		I-IV	I-IV	
for rated mains voltage $\leq 300 \mathrm{~V}_{\text {rms }}$		I-IV	I-IV	
for rated mains voltage $\leq 450 \mathrm{~V}_{\text {rms }}$		I- III	I- III	
for rated mains voltage $\leq 600 \mathrm{~V}_{\text {rms }}$		I - III	I- III	
for rated mains voltage $\leq 1000 \mathrm{~V}_{\text {rms }}$			I- III	
Climatic Classification		55/85/21	55/85/21	
Pollution Degree (DIN VDE 0110/1.89)		2	2	
Maximum Working Insulation Voltage	$V_{\text {IORM }}$	891	1140	$V_{\text {peak }}$
Input to Output Test Voltage, Method b* $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR, }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1670	2137	$V_{\text {peak }}$
Input to Output Test Voltage, Method a^{*} $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\text {PR' }}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1425	1824	$V_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\mathrm{ini}}=10 \mathrm{sec}$)	$\mathrm{V}_{\text {IOTM }}$	6000	8000	$\mathrm{V}_{\text {peak }}$
Safety-limiting values - maximum values allowed in the event of a failure				
Case Temperature	T_{5}	175	175	${ }^{\circ} \mathrm{C}$
Input Current**	$\mathrm{I}_{\mathrm{s} \text { IVPUT }}$	230	230	mA
Output Power**	$\mathrm{P}_{\mathrm{S}, \text { OUTPUT }}$	600	600	mW
Insulation Resistance at $\mathrm{T}_{5^{\prime}} \mathrm{V}_{10}=500 \mathrm{~V}$	R_{5}	$>10^{9}$	$>10^{9}$	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.
** Refer to the following figure for dependence of P_{S} and I_{s} on ambient temperature.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Storage Temperature	T_{S}	-55	125	${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Average Input Current	$\mathrm{I}_{\mathrm{FAVG})}$		20	mA
Reverse Input Voltage	V_{R}	5	V	
Input Power Dissipation	P_{C}	45	mW	
Supply Voltage (1 Minute Maximum)	V_{CC}	7	V	
Output Collector Current	I_{O}	50	mA	
Output Collector Voltage	V_{O}	7	V	
Output Collector Power Dissipation	P_{O}	85	mW	
Lead Solder Temperature	T_{LS}	$260^{\circ} \mathrm{C}$ for 10 sec.		
Solder Reflow Temperature Profile	See Package Outline Drawings section			

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	I_{FL}	0	250	$\mu \mathrm{~A}$
Input Current, High Level	I_{FH}	5	15	mA
Power Supply Voltage	V_{CC}	4.5	5.5	V
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Fan Out (at $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$)	N		5	TTL Loads
Output Pull-up Resistor	R_{L}	330	4 k	Ω

Electrical Specifications (DC)

Over recommended operating conditions unless otherwise specified. All typicals at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	I_{OH}		5.5	100	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A}$	1	
Input Threshold Current		I_{TH}		2.0	5.0	mA	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.6 \mathrm{~V}$,	13
						$\mathrm{I}_{\mathrm{OL}}>13 \mathrm{~mA}$		

All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Switching Specifications (AC)

Over recommended operating conditions $T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$ unless otherwise specified.
All typicals at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to High Output Level	$\mathrm{t}_{\text {PLH }}$	20	48	$\frac{75}{\frac{750}{}}$	ns	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		5
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$	25	50	$\begin{array}{\|l\|} \hline 75 \\ \hline 100 \\ \hline \end{array}$	ns	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6
Pulse Width Distortion	$\left\|\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right\|$		3.5	35	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		10
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			40	ns			10,11
Output Rise Time (10\%-90\%)	t_{R}		24		ns			
Output Fall Time (10\%-90\%)	t_{F}		10		ns			
Output High Level Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	10	15		kV/ $/$ s	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}(\mathrm{MIN})}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V} \end{aligned}$	7,9	
Output Low Level Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	10	15		kV/ $/$ s	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}(\mathrm{MAX)}}=0.8 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V} \end{aligned}$		8,9

Package Characteristics

All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Insulation	$\mathrm{V}_{\text {ISO }}$	3750			$\mathrm{V}_{\text {rms }}$	$\mathrm{RH}<50 \%$ for 1 min . $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3,4
Input-Output Resistance	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	$\mathrm{V}_{\text {-0 }}=500 \mathrm{~V}$		3
Input-Output Capacitance	$\mathrm{C}_{1-\mathrm{O}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3

Notes:

1. Bypassing of the power supply line is required with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler. The total lead length between both ends of the capacitor and the isolator pins should not exceed 10 mm .
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 20 mA .
3. Device considered a two terminal device: pins 1,2 and 3 shorted together, and pins 4,5 and 6 shorted together.
4. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}_{\text {RMS }}$ for 1 second (Leakage detection current limit, $\mathrm{I}_{1-0} \leq 5 \mu \mathrm{~A}$).
5. The $t_{\text {PLH }}$ propagation delay is measured from 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
6. The $\mathrm{t}_{\text {PHL }}$ propagation delay is measured from 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
7. $C M_{H}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\text {out }}>2.0 \mathrm{~V}$).
8. $C M_{L}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\text {out }}>0.8 \mathrm{~V}$).
9. For sinusoidal voltages, $\left(\left|\mathrm{dV} \mathrm{CM}_{\mathrm{CM}}\right| / \mathrm{dt}\right)_{\max }=\pi \mathrm{f}_{\mathrm{CM}} \mathrm{V}_{\mathrm{CM}(p-p)}$.
10. See application section; "Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew" for more information.
11. $t_{P S K}$ is equal to the worst case difference in $t_{P H L}$ and/or $t_{P L H}$ that will be seen between units at any given temperature within the worst case operating condition range.

Figure 1. High level output current vs. temperature

Figure 3. Input diode forward characteristic

Figure 5. Low level output current vs. temperature

Figure 2. Low level output voltage vs. temperature

Figure 4. Output voltage vs. forward input current

Figure 6. Test circuit for $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$

Figure 7. Propagation delay vs. temperature

Figure 9. Pulse width distortion vs. temperature

Figure 8. Propagation delay vs. pulse input current

Figure 10. Rise and fall time vs. temperature

Figure 11. Test circuit for common mode transient immunity and typical waveforms

Figure 12. Temperature coefficient for forward voltage vs. input current

Figure 13. Input threshold current vs. temperature

