

Fiber Optic GaAlAs High Speed LED Types OPF392A, OPF392B, OPF392C, OPF392D

Features

- Component pre-mounted and ready to use
- Pre-tested with fiber to assure performance
- Popular ST style receptacle
- High Speed
- · Electrically isolated from case

Description

The OPF392 series LED consists of a low cost plastic cap LED, pre-mounted and aligned in an ST receptacle. This configuration is designed for PC board or panel mounting. Includes lock washer and jam nut, two 2-56 screws, and a dust cap.

The LED's are designed to interface with multimode optical fibers from 50/125 to 200/300 microns.

*ST is a registered trademark of AT&T.

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Storage Temperature Range
Operating Temperature Range40° C to +85° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering
iron]
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max when flow soldering.
- (2) Graded index fiber, 50 μm core, N.A. = 0.20.
- (3) To convert radiant power output to dBm, use the following expression dBm = 10 log
- (4) Derate linearly @ 1.0 mA/° C above 25° C.
- (5) Prebias @ 5 mA current.

LED Burn-in

All LED's are subject to 100% burn-in testing. Test conditions are 96 hours at 100 mA continuous current in 25° C ambient.

TYPICAL COUPLED POWER into OPTICAL FIBER

Typical Coupled Power I _F = 100 mA @ 25 ^o C										
Fiber	Refractive Index	N.A.	OPF392D	OPF392C	OPF392B	OPF392A				
50/125 μm	Graded	0.20	7.5 μW	12.5 μW	18 μW	25 μW				
62.5/125 μm	Graded	0.28	27 μW	35 μW	45 μW	75 μW				
100/140 μm	Graded	0.29	58 μW	85 mW	115 μW	170 μW				
200/300 μm*	Step	0.41	290 μW	450 μW	545 μW	650 μW				

*PCS - Plastic Clad Silica

FIBER OPTIC

Types OPF392A, OPF392B, OPF392C, OPF392D

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER			TYP	MAX	UNITS	TEST CONDITIONS	
	Radiant Power Output OF	PF392D	5.0	7.5				
Po	OF	PF392C	10.0	12.5		14/	$I_F = 100 \text{ mA}^{(2)}$	
	OF	PF392B	15.0	18.0		μW	IF = 100 IIIA	
	OF	PF392A	20.0	25.0				
V _F	Forward Voltage			1.5	2.0	V	I _F = 100 mA	
λр	Peak Output Wavelength		830	850	870	nm	I _F = 50 mA	
В	Spectral Bandwidth Between Half Power Points			35		nm	I _F = 50 mA	
t _r	Output Rise Time			4.5	6.0	ns	I _F = 100 mA, 10%-90% ⁽⁵⁾	
t _f	Output Fall Time			4.5	6.0	ns	$I_F = 100 \text{ mA}, 90\%-10\%^{(5)}$	

Typical Performance Curves

Carrollton, Texas 75006