

Applications

> PC-to-Peripheral Data Links

- Motor Controller Triggering
> Ethernet LANs
> Medical Instruments
> Automotive Electronics
> Digitized Video and HDTV
> Sonet/SDH Transmitters
> Robotics Communications
> Isolation from Lightning and Voltage Transients

Description

The IF-E99 is a very high-speed red LED housed in a "connector-less" style plastic fiber optic package. The output spectrum of the IF-E99 is produced by a GaAIAs die that peaks at a wavelength of 650 nm , one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal micro-lens, and a precision-molded PBT housing ensures efficient optical coupling with standard $1000 \mu \mathrm{~m}$ core plastic fiber cable.

Application Highlights

The fast transition times of the IF-E99 make it suitable for high-speed digital data links. Link distances in excess of 75 meters at data rates of 155 Mbps are possible using standard $1000 \mu \mathrm{~m}$ core plastic fiber and an IF-D98 photologic detector. The wide ana\log bandwidth permits direct modulation at RF frequencies exceeding 100 MHz . Drive circuit design for the IF-E99 requires good RF and digital design techniques, but is much simpler than required for laser diodes, making it a good low-cost solution in a variety of high frequency POF analog and digital applications.

Features

- No Optical Design Required
- Mates with Standard $1000 \mu \mathrm{~m}$ Core Jacketed Plastic Fiber Cable
- Internal Micro-lens for Efficient Coupling
- Inexpensive Plastic Connector Housing
- Connector-Less Fiber Termination and Connection
- Interference-Free Transmission from Light-Tight Housing
- Excellent Linearity
- Visible Light Output
- RoHS compliant

Maximum Ratings

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
Operating Temperature Range
(TOP) 0° to $60^{\circ} \mathrm{C}$

Storage Temperature Range
(TSTG) $\ldots \ldots ~$
-40° to $85^{\circ} \mathrm{C}$

Soldering Temperature
(2 mm from case bottom)
$\left(T_{S}\right) t \leq 5 \mathrm{~s}$ \qquad
Reverse Voltage (V_{R})....................... 5 V
Power Dissipation
$\left(\mathrm{P}_{\mathrm{TOT}}\right) \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ \qquad 100 mW
De-rate Above $25^{\circ} \mathrm{C}$.......... $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Forward Current, DC (I_{F}) 40 mA
Surge Current ($\mathrm{I}_{\mathrm{FSM}}$)
$\mathrm{t} \leq 10 \mu \mathrm{sec}$ \qquad 100 mA

Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Unit
Peak Wavelength	$\lambda_{\text {PEAK }}$	640	650	660	nm
Spectral Bandwidth (50% of $\mathrm{I}_{\text {MAX }}$)	$\Delta \lambda$	-	10	-	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Lens to Fiber distance $\leq .1 \mathrm{~mm}, 1 \mathrm{~m}$ SH4001 fiber, $\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$	Φ	$\begin{aligned} & 875 \\ & -.58 \end{aligned}$	950 -.2	$\begin{gathered} 1050 \\ .21 \end{gathered}$	$\mu \mathrm{W}$ dBm
Switching Times (10% to 90% and 90% to $10 \%)\left(\mathrm{R}_{\mathrm{L}}=47 \Omega, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	-	-	3	ns
Capacitance ($\mathrm{V}_{\mathrm{F}}=0$, $\mathrm{F}=1 \mathrm{MHz}$)	C_{0}	-	10	-	pF
Forward Voltage ($\mathrm{F}_{\mathrm{F}}=30 \mathrm{~mA}$)	V_{f}	-	2.05	2.3	V
Cut off frequency	f_{c}	-	100	-	MHz

Notes:

1. A bypass capacitor ($0.1 \mu \mathrm{~F}$) is connected to the lead at a position within 2 mm from the lead end, and a $4.7 \mu \mathrm{~F}$ capacitor is also connected nearby the power supply line.

Figure 1. Relative intensity versus wavelength.

Figure 2. Optical Power output versus temperature ($\mathrm{I}=20 \mathrm{~mA}$)

Figure 3. Typical interface circuit.

Fiber Termination Instructions

1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90 -degree angle (square).
2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

FIGURE 4. Case outline.

