Plastic Fiber Optic IR LEDS

APPLICATIONS

- Low-Cost Analog and Digital Data Links
- ► Digitized Audio
- ► Optical Sensors
- ► Medical Instruments
- ► Robotics Communications
- ► Motor Controller Triggering
- ► EMC/EMI signal Isolation
- ► Electronic Games
- Intra-System Links: Board-to-Board, Rack-to-Rack

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Junction Temperature (T_J) 85°C
Soldering Temperature (2 mm from case bottom) $(T_S) t \le 5 s \dots 240^{\circ}C$
Reverse Voltage (V _R)3 V
Power Dissipation $(P_{TOT}) T_A = 25^{\circ}C100 \text{ mW}$
De-rate Above 25°C1.33 mW/°C
Forward Current, DC (I _F) IF-E91A50 mA IF-E91B100 mA
$\begin{array}{l} \text{Surge Current (I}_{FSM}) \ t \leq 10 \ \mu \text{sec} \\ \text{IF-E91A} \dots 2 \ \text{A} \\ \text{IF-E91B} \dots 2 \ \text{A} \end{array}$

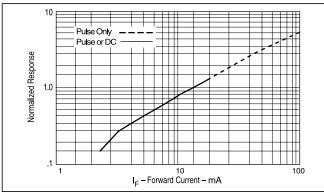
DESCRIPTION

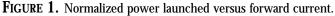
The IF-E91A and IF-E91B are high-output medium-speed infrared LEDs in a "connector-less" style plastic fiber optic package. The output spectrum peaks at 950 nm for the IF-E91A and 880 nm for the IF-E91B. The device package features an internal micro-lens, and a precision-molded PBT housing ensures efficient optical coupling into standard 1000 μ m plastic fiber cable.

APPLICATION HIGHLIGHTS

The high output and fast transition times of the IF-E91A and IF-E91B make them suitable for low-cost analog and digital data links. Used with an IF-D96 photologic detector, the IF-E91A and IF-E91B can achieve data rates of 500 Kbps and 1 Mbps respectively at link distances up to 7 m. The drive circuit design is simpler than required for laser diodes, making the IF-E91A and IF-E91B excellent low-cost alternatives in a variety of analog and digital applications.

FEATURES


- Excellent Linearity
- ◆ No Optical Design Required
- $\blacklozenge\,$ Mates with Standard 1000 μm Core Jacketed Plastic Fiber Cable
- Internal Micro-Lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- Connector-Less Fiber Termination and Connection
- Interference-Free Transmission from Light-Tight Housing


CHARACTERISTICS $(T_A=25^{\circ}C)$

Parameter	Symbol	IF-E91A	IF-E91B*	Unit
Peak Wavelength	λ_{PEAK}	950	880	nm
Spectral Bandwidth (50% of I_{MAX})	Δλ	40	80	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Distance Lens to Fiber ≤ 0.1 mm, 10 cm polished fiber, I _F =20 mA	Φ_{\min}	>100 -10	>75 -11.2	μW dBm
Switching Times (10% to 90% and 90% to 10%) (R_L =47 Ω , I_F =10 mA)	t _r , t _f	1.0	0.5	μs
Capacitance	C ₀	25	25	pF
Forward Voltage (I _F =50 mA)	V _f	1.5 max	1.7 max	V
Temperature Coefficient, λ_{PEAK}	TC _λ	0.3	0.3	nm/K

* IF-E91D recommended for new designs

IF-E91

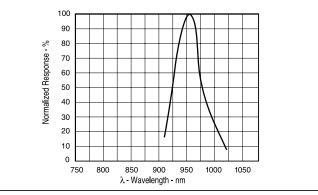


FIGURE 2. Typical spectral output vs. wavelength.

Plastic Fiber Optic IR LEDs

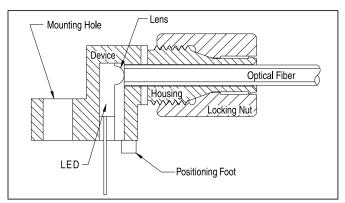


FIGURE 3. Cross-section of fiber optic device.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

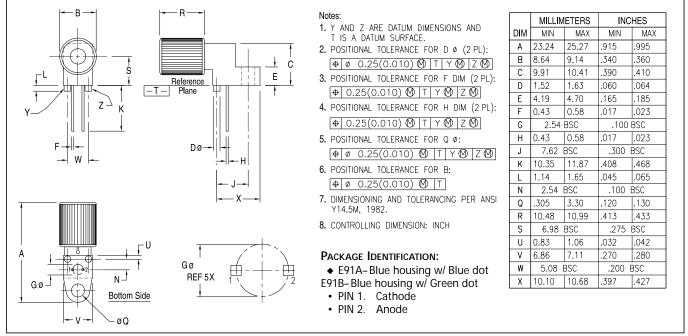


FIGURE 4. Case outline.

42