HFBR-3810Z & HFBR-3810MSZ

650 nm Fiber Optics Link for DC to 10Mbaud

Data Sheet

Description

HFBR-3810Z consists of an optic transmitter and receiver operating at 650nm wavelength. Pin to pin distance of 24.96 mm provides transient voltage suppression of 12kV.

Applications

- Drives/Inverters
- Galvanic isolation on one single PCB

Features

- Data transmission at signal rates of DC to 10MBaud
- DC coupled receiver with CMOS/TTL output for easy designs: no data encoding or digitizing circuitry required
- High noise immunity
- RoHS compliant
- Transient voltage suppression of up to 12kV according IEC 60664-1
- Laser class 1 according to IEC-60825: Amendment 2001

HFBR-3810Z & HFBR-3810MSZ DC to 10MBaud Data Link

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	
Signaling Rate		f _s	DC	10	Mbd	
Storage and Operating Temperature		T _{S,O}	-40	+85	°C	
Receiver supply voltage		V _{CC}	-0.5	+5.5	V	
Receiver Average Output Cur	rrent	I _{O,AVG}	-16	16	mA	
Receiver Output Power Dissipation		P _{OD}		80	mW	
Transmitter Peak Forward Input Current [11]		I _{F,PK}		90	mA	
Transmitter Reverse Input Voltage		V _R		3	V	
Rated impulse voltage [2]		V _T		12	kV	
Lead Soldering Cycle [3, 4]	Temp	T _{SOL}		+260	°C	
	Time			10	Sec	
Nominal Voltage of the supply system [2]		Veff		1000	V	

Notes:

- 1. For $I_{F,Pk} > 60 mA$, the duty cycle factor must maintain $I_{F,AV} \le 60 mA$ and pulse width $\le 1 \mu s$
- 2. Overvoltage category 4; inhomogeneous field; pollution degree 3; material group 2; altitude up to 4000m above sea level
- 3. 1.6mm below seating plane; wave soldering only
- 4. MSL class 3

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	
Ambient Temperature	T _A	-40	85	°C	
Power Supply Voltage [1]	V _C C	4.75	5.25	V	
Transmitter Average Forward Current	I _{F,AV}	40	60	mA	

Note:

All the data in this specification refers to the operating conditions above and over lifetime unless otherwise stated.

ATTENTION: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

^{1. &}lt;100m_{p-p} Noise

Electrical Input Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
Forward Voltage ^[1]	V_{F}	1.8	2.1	2.65	V
Forward Voltage Temperature Coefficient	$\Delta V_F / / \Delta T$		-1.8		mV/°C
Reverse Input Breakdown Voltage [2]	V_{BR}	3.0	13		V
Diode Capacitance [3]	C ₀		60		pF

Notes:

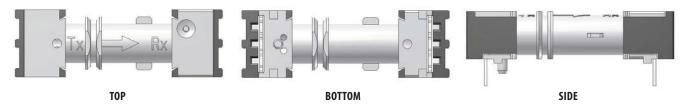
- 1. $I_{F,dc} = 60 \text{mA}$
- 2. $I_{F,dc} = -10\mu A$
- 3. $V_F = 0V$; f = 1MHz

Electrical Output Signal Characteristics

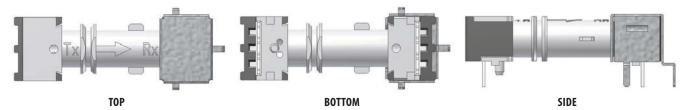
Parameter	Symbol	Min.	Тур.	Max.	Units	
Supply Current (without LED current)	Icc		27	45	mA	
High Level Output Voltage	V _{OH}	4.2	4.7		V	
Low Level Output Voltage	V _{OL}		0.22	0.4	V	
Output Risetime (10-90%) [1, 2]	t _r		10	20	ns	
Output Falltime (90-10%) [1, 2]	t _f		10	20	ns	
Power Supply Noise Immunity	PSNI	0.1	0.4		V _{pp}	

Notes:

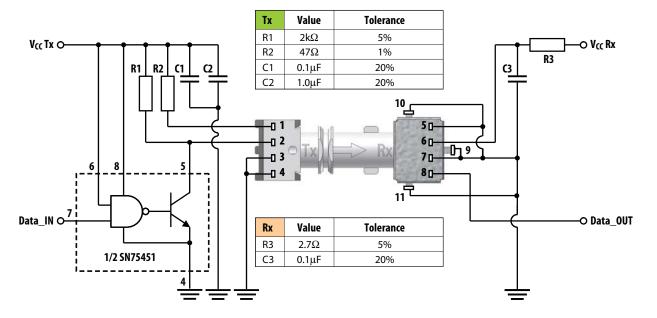
- 1. $C_L = 10pF$
- 2. In the recommended drive circuit
- 3. Typical Value measured from junction to PC board solder joint for horizontal mount package


Specified Link Performance, $T_A = -40^{\circ}$ to $+85^{\circ}$ C, DC to 10MBaud, unless otherwise noted.

Parameter	Symbol	Min.	Тур	Max.	Unit	Condition
Signaling Rate	fs	DC		10	Mb/s	NRZ
Pulse Width Variation [1]	PWV	80		120	ns	10Mbaud
Propagation Delay Time [2]	t _D		95		ns	Assuming a delay of 10ns from the application (already included)
Duty Cycle Distortion [3]	DCD	-10		+10	ns	10Mbaud


Notes

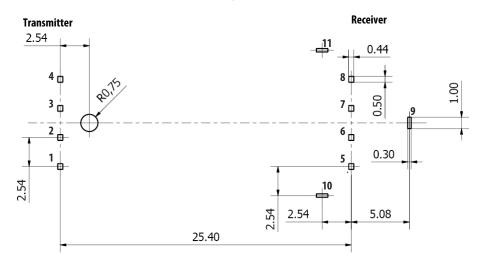
- 1. Minimum/maximum duty cycle distortion +/-10ns
- 2. Determined from 50% of the rising edge of data_in to 50% of the consecutive falling egde of data_out
- 3. +/-10% of the nominal pulse width


HFBR-3810Z View

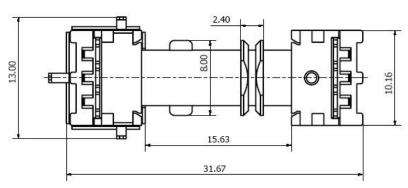
HFBR-3810MSZ View

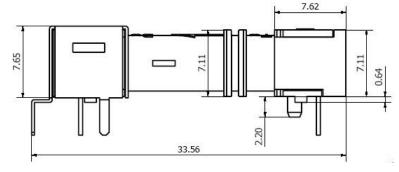
Mandatory Drive circuit – Top view

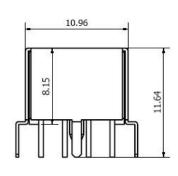
Pin description


Pin No.	Transmitter
1	Anode
2	Cathode
3	GND
4	GND

Pin No.	Receiver				
5	GND				
6	VCC(5V)				
7	GND				
8	Data_OUT				
9, 10, 11 GND (shield option [1]					


Note:


1. Pin 9,10 and 11 are not available if HFBR-3810Z is used and therefore do not need to be considered.


HFBR-3810Z and HFBR-3810MSZ - Footprint bottom view

HFBR-3810Z^[1] and HFBR-3810MSZ – Mechanical Dimensions

Note

1. In case HFBR-3810Z is used: a) the dimensions of both ends are identical; b) the total length is reduced to 31.13mm

HFBR-3810Z and HFBR-3810MSZ - Marking

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. AV02-2510EN - July 7, 2010

