GP1F37R/GP1F37R1/GP1F38R

Features

- 1. Uni-directional data transmission using plastic fiber (Applicable to JIS C6560 square connector)
- 2. Signal transmission speed
 - : MAX. 8Mbps (NRZ signal)(GP1F37R/GP1F38R)
 - : MAX. 12.5Mbps (NRZ signal) (GP1F37R1)
- 3. Low voltage drive

Operating voltage : 2.7 to 3.6 V (GP1F38R)

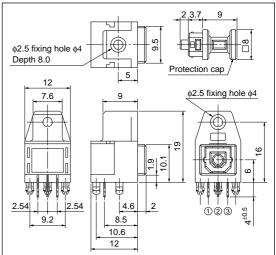
4. Minimum input optical power

: -27dBm (EIAJ) (GP1F37R/GP1F38R)

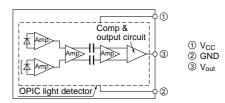
- 5. TTL compatible by OPIC
- GP1F38T2 is recommended for the transmitter side of GP1F37R1.

Applications

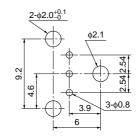
- 1. CD players
- 2. MD players


Absolute Maximum Ratings (Ta=25°C)								
Param	eter	Symbol	Rating	Unit				
Supply voltage	e	Vcc	-0.5 to +7.0	V				
Operating temp	perature	Topr	-20 to +70	°C				
Storage temper	rature	Tstg	-30 to +80	°C				
*1 Soldering temp	perature	Tsol	260	°C				
		Іон	2 (source current)					
Output current	GP1F37R GP1F37R1	Iol	10 (Sink current)	mA				
	GP1F38R		2 (Sink current)					

*1 For 5s (2 times or less)


Uni-directional Fiber Optic Receiver

Outline Dimensions


(Unit : mm)

Internal equivalent circuit

Recommended drilling as viewd from the soldering face (Unspecified tolerance : $\pm 0.1 \text{mm})$

* Unspecified tolerance : ±0.3mm

* "OPIC"(Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a signal chip.

Recommended Operating Conditions

Parameter		Symbol	MIN.	TYP.	MAX.	Unit
Operating supply voltage	GP1F37R		4.75	5.0	5.25	
	GP1F37R1	Vcc	4.75	5.0	5.25	V
	GP1F38R		2.7	3.0	3.6	
Operating transfer rate	GP1F37R	Т	0.1	-	8	Mbps
	GP1F38R					
	GP1F37R1				12.5	
Descionation	GP1F37R		-27	_		
Receiver input optical power level	GP1F38R	Pc			-14.5	dBm
	GP1F37R1		-24.0			

 The above operating transfer rate is the value when NRZ signal, "0101.." continuous signal of duty 50% is transmitted.

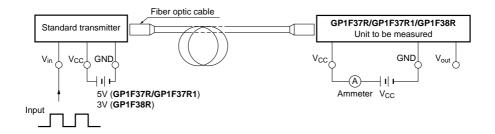
(2) The output (H/L level) of GP1F37R are not fixed constantly when it receivers the modulating light (including DC light, no input light) less than 0.1Mbps.

■ Electro-optical Characteristics 1 (Signal transmission speed 0.1 to 12.5Mb/s) (GP1F37R1)

-					(Ta=25°C,	Vcc=5.0V)
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak sensitivity wavelength	λp		-	700	-	nm
Dissipation current	Icc	Refer to Fig.1	-	15	25	mA
High level output voltage	Vон	Refer to Fig.2	2.7	3.5	-	V
Low level output voltage	Vol	Refer to Fig.2	-	0.2	0.4	V
Rise time	tr	Refer to Fig.2	-	17	23	ns
Fall time	tf	Refer to Fig.2	-	7	15	ns
$Low \rightarrow High delay time$	tpLH	Refer to Fig.2	-	-	180	ns
High \rightarrow Low delay time	tphl	Refer to Fig.2	-	-	180	ns
Pulse width distortion	Δtw	Refer to Fig.2	-20	_	+20	ns
Jitter	A 43	Refer to Fig.3, $Pc = -14.5 dBm$	_	1	15	ns
JILLEI	Δtj	Refer to Fig.3, $Pc = -24dBm$	_	_	15	ns

■ Electro-optical Characteristics 2 (Signal transmission speed 0.1 to 8Mb/s)

(Ta=25°C, Vcc=5.0V (GP1F37R/GP1F37R1), Vcc=3.0V (GP1F38R))


		~					
Parame	ter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak sensitivity	wavelength	λp		-	700	-	nm
Dissipation	GP1F37R/GP1F37R1	I	Refer to Fig.1	_	15	25	mA
current	GP1F38R	Icc	Relef to Fig.1		12	15	
High level	GP1F37R/GP1F37R1	Voн	Bofor to Fig 2	2.7	3.5		v
output voltage	GP1F38R	V OH	Refer to Fig.2	2.1	-	-	v
Low level	GP1F37R/GP1F37R1	V	Bofor to Fig 2		0.2	0.4	v
output voltage	GP1F38R	Vol	Refer to Fig.2	_	-		
Rise time		tr	Refer to Fig.2	-	17	30	ns
Fall time		tf	Refer to Fig.2	-	5	30	ns
$Low \rightarrow High de$	lay time	t _{pLH}	Refer to Fig.2	-	-	180	ns
High \rightarrow Low de	lay time	t _{pHL}	Refer to Fig.2	-	-	180	ns
Pulse width dist	ortion	Δtw	Refer to Fig.2	-30	_	+30	ns
Litton	Jitter $\Delta tj = \frac{Refer \text{ to Fig.3, Pc} = -14.5 \text{dBm}}{Refer \text{ to Fig.3, Pc} = -27 \text{dBm}}$		Refer to Fig.3, $Pc = -14.5$ dBm	-	1	30	ns
Juter			_	_	30	ns	

Mechanical Characteristics

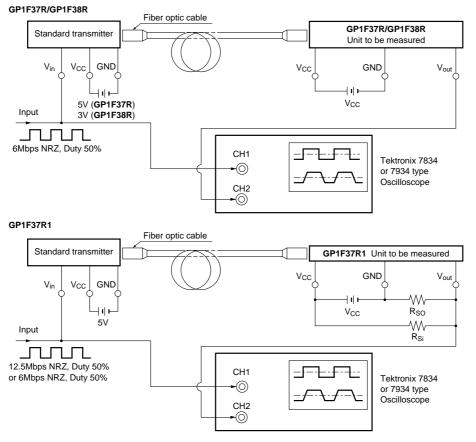

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Conditions	
Insertion force, with drawal force	-	6	_	40	N	Initial value when a GP1C331 is used.	

Fig.1 Dissipation Current

	Measuring method	
Supply voltage	GP1F37R Vcc=5.0±0.05V GP1F37R1 Vcc=5.0V GP1F38R Vcc=3.0±0.05V	
Optical output coupling with fiber	Pc=-14.5dBm	Measured on
Standard transmitter input signal	GP1F37R/38R 6Mbps NRZ, Duty 50% or 3Mbps biphase mark PRBS signal GP1F37R1 12.5Mbps NRZ, Duty 50%, 6Mbps NRZ, Duty 50% or 6.25Mbps biphase mark PRBS signal, 3Mbps biphase mark PRBS signal	an ammeter (DC average amperage)

Fig.2 Measuring Method of Output Voltage and Pulse Response

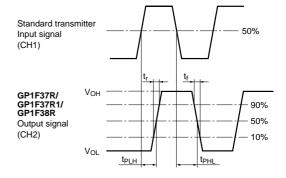
Test item

Test item	Symbol
$Low \rightarrow High$ pulse delay time	t PLH
High \rightarrow Low pulse delay time	t PHL
Rise time	tr
Fall time	tr
Pulse width distortion $\Delta tw = t_{PLL} - t_{PLH}$	Δtw
High level output voltage	Vон
Low level output voltage	Vol

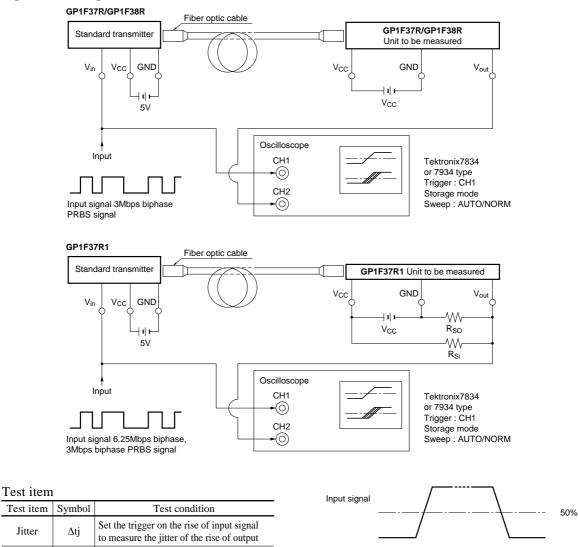
Notes (1) **GP1F37R** Vcc=5.0±0.05V (State of operating)

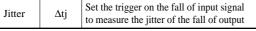
GP1F37R1 Vcc=5.0V (State of operating)

GP1F38R Vcc=3.0±0.05V (State of operating)


(2) The fiber coupling light output set at -14.5dBm/-27.0dBm.

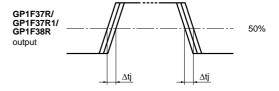
(3) The probe for the oscilloscope must be more than 1M Ω and less than 10pF.


(4) The output (H/L level) of GP1F37R/GP1F37R1/GP1F38R are not fixed constantly


when it receives the modulating light (including DC light, no input light) less than 0.1Mbps.

(5) **GP1F37R1** Rsi, Rso : Standard load resistance (Rsi : $3.3k \Omega$, Rso : $2.2k \Omega$)

Fig.3 Measuring Method of Jitter


Notes (1) The fiber coupling light output set at -14.5dBm/-27.0dBm.

Jitter

(2) The waveform write time shall be 3 seconds. But do not allow the waveform to be distorted by increasing the brightness too much. (3) **GP1F37R/GP1F37R1** Vcc=5.0±0.05V (State of operating)

GP1F38R Vcc=3.0±0.05V (State of operating)

(4) The probe for the oscilloscope must be more than 1M Ω and less than 10pF.

NOTICE

- •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- •Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
 - Telecommunication equipment [terminal]
 - Test and measurement equipment
 - Industrial control
 - Audio visual equipment
 - Consumer electronics

(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- •Contact and consult with a SHARP representative if there are any questions about the contents of this publication.