Plastic Fiber Optic 50 Mbps Photologic Detector

5/2/06

APPLICATIONS

- ► PC-to-Peripheral Data Links
- ► Motor Controller Triggering
- Local Area Networks
- Medical Instruments
- ► Automotive Electronics
- ► Digitized Video
- ► Electronic Games
- ► Robotics Communications
- Reduction of Lightning and Voltage Transient Susceptibility

DESCRIPTION

The IF-D97 is a high-speed photologic detector housed in a "connector-less" style plastic fiber optic package. The detector contains an IC with a photodiode, linear amplifier and Schmitt trigger featuring an ACT logic compatible totem pole output. Optical response of the IF-D97 extends from 400 to 1050 nm, making it compatible with a wide range of visible and IR LED and laser diode sources. The detector package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 μ m core plastic fiber cable.

APPLICATION HIGHLIGHTS

The fast transition times of the IF-D97 make it suitable for medium-speed digital data links. Link distances in excess of 75 meters at data rates of 50 Mbps are possible using standard 1000 μ m core plastic fiber and an IF-E98 LED. The integrated design of the IF-D97 provides simple, cost-effective implementation in a wide variety of digital applications.

FEATURES

- ◆ No Optical Design Required
- ◆ Mates with Standard 1000 µm Core Jacketed Plastic Fiber Cable
- Internal Micro-Lens for Efficient Coupling
- Inexpensive Plastic Connector Housing
- Connector-Less Fiber Termination and Connection
- Interference-Free Transmission from Light-Tight Housing
- ◆ Totem-Pole Output
- ◆ Totally Integrated Solution
- Low Current Stand-by Model Available as Special Order
- RoHS Compliant

Maximum Ratings $(T_A = 25^{\circ}C)$

Operating Temperature Range (T _{OP})10° to 70°C
Storage Temperature Range (T_{STG})
Soldering Temperature (2 mm from case bottom) (T _S) t≤5s240°C
Supply Voltage, (V_S) 5 to 7 V
Power Dissipation $(P_{TOT}) T_A = 25^{\circ}C \dots 100 \text{ mW}$
De-rate Above 25°C1.7 mW/°C

CHARACTERISTICS (T_A=25°C)

Parameter	Symbol	Min	Тур	Max	Unit
Peak Sensitivity	λ _{PEAK}	-	800	-	nm
Spectral Sensitivity (S=10% of S _{MAX})	Δλ	400	-	1050	nm
Operating Voltage	V _{CC}	4.75	5	5.25	V
Supply Current	I _{CC}	-	-	40	mA
Light Required to Trigger ¹ (V _{CC} =5 V,	Er (+)	17	-	-	μW
λ=660 nm)		-17	-		dBm
High Level Output Voltage (I _{OH} = -2.0 μA)	V _{OH}	2	-	-	V
Low Level Output Voltage (I _{OL} = .6 mA)	V _{OL}	-	-	1	V
Output Rise and Fall Times					
$(f= 10.0 \text{ kHz}, R_L= 10 \text{ TTL Loads})$	t _r , t _f	-	-	7	ns
Propagation delay time	tp	-	12	-	ns

NOTES:

1. Output is the "L" level (inverted logic) when light is input.

IF-D97

Plastic Fiber Optic 50 Mbps Photologic Detector

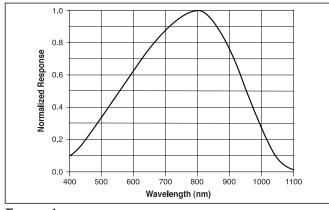
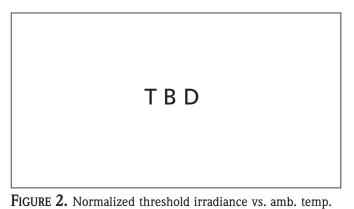



FIGURE 1. Typical detector response versus wavelength.

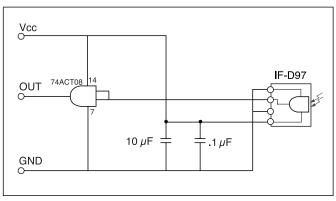


FIGURE 3. Typical interface circuit.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

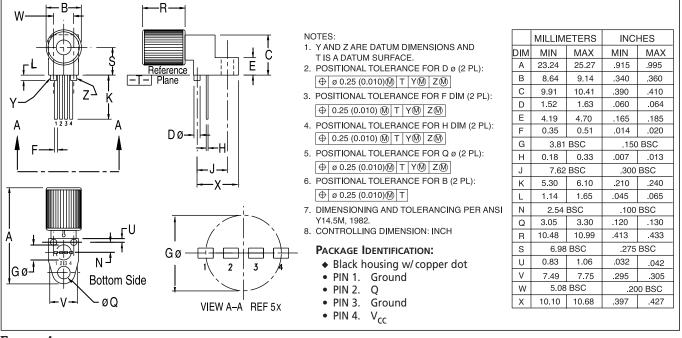


FIGURE 4. Case outline.