Plastic Fiber Optic Photologic Detector

APPLICATIONS

- ► Digital Data Links
- ► PC-to-Peripheral Links
- ► Process Control
- ► Digitized Audio
- ► Motor Controller Triggering
- ➤ Intra-System Links: Board-to-Board, Rack-to-Rack
- Medical Instruments
- ► Automotive Electronics
- ► Robotics Communications
- ► EMC/EMI Signal Isolation

DESCRIPTION

The IF-D96F is a medium-speed photologic detector housed in a "connector-less" style plastic fiber optic package. The detector contains an IC with a photodiode, linear amplifier, voltage comparator, and Schmitt trigger logic circuit. The IF-D96F features an inverted open-collector Schottky transistor output (active low). The device can drive up to 5 TTL loads over output (pull-up) voltages ranging from 4.5 to 15 Volts. Optimized for visible wavelengths of 600 to 780 nm. The detector package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 µm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The IF-D96F is suitable for digital data links at rates up to 5 Mbps. A Schmitt trigger improves noise immunity and TTL/CMOS logic compatibility greatly simplifies interfacing with existing digital circuits. An enhanced internal electrical architecture ensures stable operation and wide dynamic range. The integrated design of the IF-D96F provides simple, cost-effective implementation in a variety of digital applications.

FEATURES

- ◆ High Optical Sensitivity
- \blacklozenge Mates with Standard 1000 μm Core Jacketed Plastic Fiber Optic Cable
- ◆ No Optical Design Required
- ◆ Inexpensive Plastic Connector Housing
- ◆ Internal Micro-Lens for Efficient Optical Coupling
- ◆ Connector-Less Fiber Termination
- ◆ Light-Tight Housing Provides Interference-Free Transmission
- ♦ Open Collector Output
- RoHS Compliant

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Soldering Temperature (2 mm from case bottom) (T _S) t≤5s240°C
Supply Voltage, (V_S) 5 to 15 V
Voltage at Output lead
Sinking Current, DC $(\mathrm{I}_{\mathrm{C}})$ 25 mA
Open Collector Power Dissipation (P_O) $T_A=25^{\circ}C$ 80 mW
De-rate Above 25°C1.33 mW/°C
* Lood 620 Obr

* Load = 620 Ohms

CHARACTERISTICS ($T_A=25^{\circ}C$) $V_{CC} = 4.75$ to 5.25 V unless otherwise specified

Parameter	Symbol	Min	Тур	Max	Unit
Peak Sensitivity	λ_{PEAK}	-	700	-	nm
Spectral Sensitivity (S=80% of S _{MAX})	Δλ	600	-	780	nm
Recommended Operating Voltage	V _{CC}	4.25	-	15.0	V
High Level Supply Current V _{CC} =5.25 V *	I _{CCH}	-	3.5	6	mA
Low Level Supply Current V _{CC} =5.25 V *	I _{CCL}	-	12	14.5	mA
Light Level to Trigger	Er (+)	-	7	-	μW
$(R_L=1 k\Omega \lambda=660 nm)$		-	-21.6		dBm
Light Level to Not Trigger	Er (-)	-	0.1	-	μW
(λ=660 nm)			-40		dBm
High Level Output Current V _{OH} = 15 V	I _{OH}	-	5	100	μA
Low Level Output Voltage (I _{OL} = 8 mA)	V _{OL}	-	0.1	0.5	V
Propagation Delay, Low-High (f= 100.0 kHz, R _L = 5 TTL Loads)	t _{PLH}	_	<250	_	ns
Propagation Delay, High-Low (f= 100.0 kHz, R= 5 TTL Loads)	t _{PHL}	_	<100	_	ns

INDUSTRIAL FIBER OPTICS, INC. • www.i-fiberoptics.com

IF-D96F

Plastic Fiber Optic Photologic Detector

FIGURE 1. Normalized threshold irradiance vs. amb. temp.

FIGURE 2. Typical operating circuit.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

FIGURE 3. Case outline.