Plastic Fiber Optic Photodarlington

5/2/00

APPLICATIONS

- ► Low-Speed Optical Links
- Optical Interrupter/Reflective Sensors
- ► Process Control
- ► Motor Controller Triggering
- ► Medical Instruments
- ► Automotive Electronics
- ► Robotics Control
- ► EMC/EMI Signal Isolation
- ► Electronic Games

DESCRIPTION

The IF-D93 is a very high-sensitivity photodarlington detector housed in a "connector-less" style plastic fiber optic package. Optical response of the IF-D93 extends from 400 to 1100 nm, making it compatible with a wide range of visible and near-infrared LEDs and other optical sources. This includes 650 nm visible red LEDs used for optimum transmission in PMMA plastic optic fiber. The detector package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 μ m core plastic fiber cable.

APPLICATION HIGHLIGHTS

The IF-D93 is suitable for low-speed optical links requiring high sensitivity. Triggering rates up to 1 k are possible using the IF-D93 and a suitable LED source. Photodarlington transistor operation provides very high optical gain, eliminating the need for post amplification in many circuits. The integrated design of the IF-D93 makes it a simple, cost-effective solution in a variety of applications.

FEATURES

- Mates with Standard 1000 μm Core Jacketed Plastic Fiber Optic Cable
- No Optical Design Required
- Inexpensive but Rugged Plastic Connector Housing
- Internal Micro-Lens for Efficient Optical Coupling
- Connector-Less Fiber Termination
- Light-Tight Housing provides Interference Free-Transmission
- Very High Optical Sensitivity
- RoHS Compliant

MAXIMUM RATINGS

 $(T_{A} = 25^{\circ}C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Junction Temperature (T_J) 85°C
Soldering Temperature (2 mm from case bottom) (T _S) $t \le 5$ s240°C
Collector Emitter Voltage (V_{CEO})15 V
Emitter Collector Voltage (V_{ECO})5 V
Collector Current (I_C)50 mA
Collector Peak Current $(I_{CM}) t = 1 ms \dots 100 mA$
Power Dissipation $(P_{TOT}) T_A = 25^{\circ}C \dots 100 \text{ mW}$ De-rate Above 25°C \ldots 1.33 mW/°C

Characteristics $(T_A=25^{\circ}C)$

Parameter	Symbol	Min	Тур	Max	Unit
Wavelength for Maximum Photosensitivity	λ_{PEAK}	-	850	-	nm
Spectral Bandwidth (S=10% of S_{MAX})	Δλ	400	-	1100	nm
Switching Times (10% to 90% and 90% to 10%) (R_L =1 $k\Omega$, V_{CE} =5 V, λ =880 nm) See Figure 2.		_	5, 2.5	_	ms
Responsivity min. @ 880 nm @ 632 nm	R	-	400 200	-	μΑ/μW μΑ/μW
Collector Dark Current (V _{CE} =15 volts)	I _{CEO}	-	-	100	nA
Breakdown Voltage (I _C =1 mA)	BV _{CEO}	15	-	-	V
Breakdown Voltage (I _C =100 μA)	BV _{ECO}	5	-	-	V
Saturation Voltage (I _C =0.4 $\mu\text{A},$ H=10 $\mu\text{W})$	V _{CE sat}	-	1.10	-	V

IF-D93

Plastic Fiber Optic Photodarlington

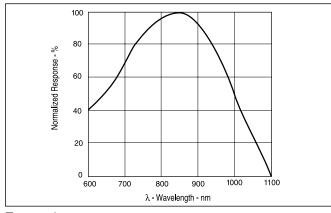
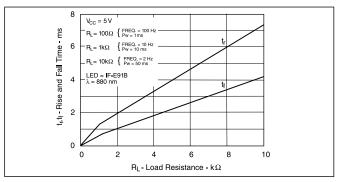



FIGURE 1. Typical detector response versus wavelength.

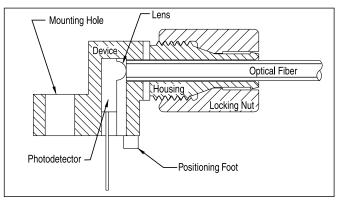


FIGURE 3. Cross-section of fiber optic device.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

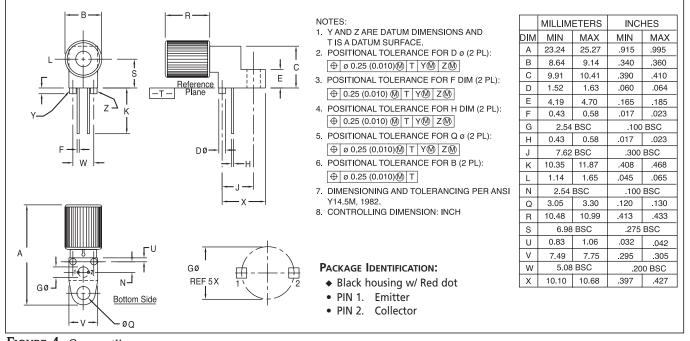


FIGURE 4. Case outline.