BRIGHT RED MDA6110C, MDA6140C
YELLOW MDA6310C, MDA6340C GREEN MDA6410C, MDA6440C
HIGH EFF. RED MDA6910C, MDA6940C

PACKAGE DIMENSIONS

NOTES: Dimensions are in mm (inch).
All pins are 0.5 (0.02) diameter
Tolerances are ± 0.25 (0.1) unless otherwise noted.

MODEL NUMBERS

Part number
MDA6110C
MDA6140C
MDA6310C
MDA6340C
MDA6410C
MDA6440C
MDA6910C
MDA6940C

Color

Bright Red
Bright Red
Yellow
Yellow
Green
Green
High Eff. Red
High Eff. Red

FEATURES

Easy to read digits.
2 digit common anode or cathode. Low power consumption.
Bold segments that are highly visible.
High brightness with high contrast
White segments on a grey face.
Directly compatible with integrated circuits.
Rugged plastic/epoxy construction.

APPLICATIONS
Digital readout displays. Instrument panels.
(For other colour options, contact your local area Sales Office)

FAIRCHILD SEMICONDUCTOR ${ }^{\text {TM }}$

0.54 INCH (13.7MM) 14 SEGMENT,DUAL DIGIT ALPHA - NUMERIC STICK DISPLAY

ABSOLUTE MAXIMUM RATING ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

	B.Red MDA 6110C	Yellow MDA 6310C	Green MDA 6410C	High Eff. Red MDA 6910C	
Part number	6140C	6340C	6440C	6940C	Unit
Continuous forward current $\left(I_{f}\right)$ Per Segment.	15	20	30	30	mA
Peak forward current per die ($\left(\mathrm{l}_{\mathrm{f}}\right)$. (at $\mathrm{f}=1.0 \mathrm{KHz}$, Duty factor $=1 / 10$)	50	80	90	160	mA
Power dissipation (P_{D})...............	40*	70*	70*	90*	mW
*Derate Linearly From $25^{\circ} \mathrm{C}$.........	0.17	0.25	0.33	0.33	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Reverse voltage per dice. \qquad Operating and Storage temperatur				- - •	$0^{\circ} \mathrm{C} \text { to }$ nds @

ELECTRO - OPTICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

FAIRCHILD

0.54 INCH (13.7MM) 14 SEGMENT,DUAL DIGIT ALPHA - NUMERIC STICK DISPLAY

PINOUT

MDA6X10C - Common Anode; Pin 3 - no connection

MDA6X40C - Common Cathode; Pin 3 - no connection

GRAPHICAL DETAIL: Bright Red $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Fig. 1 FORWARD CURRENT VS. FORWARD VOLTAGE.

FIg. 3 RELATIVE LUMINOUS INTENSITY V8. FORWARD CURRENT

IDCMAX-MAXMMM DC CURRENT-mA

TA AMBIENT TEMPERATURE C
FIg. 4 MAXIMUM ALLOWABLE DC CURRENT PER SEGMENT VS. A FUNCTION OF AMBIENT TEMPERATURE.

DUTY CYCLE \% PER SEGMENT
(AVERAGE IF $=10 \mathrm{~mA}$)
Fig. 5 LUMINOUS INTENSITY VS. DUTY CYCLE

DUTY CYCLE \%
FIg. 6 MAX PEAK CURRENT VS. DUTY CYCLE \% (REFRESH RATE $\mathbf{f}=1 \mathbf{K H z}$)
0.54 INCH (13.7MM) 14 SEGMENT,DUAL DIGIT ALPHA - NUMERIC STICK DISPLAY

GRAPHICAL DETAIL: Green ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

FORWARD VOLTAGE (VF)-VOLTS Fig. 1 FORWARD CURRENT VS. FORWARD VOLTAGE.

If-FORWARD CURRENT-TAA Fig. 3 Relative luminous intensity vS. FORWARD CURRENT

IDCMAX-MAXIMUM DC CURRENT-TA

TA AMBIENT TEMPERATURE C
Fig. 4 MaXimum allowable dC Current per segment cs. a function of ambient temperature.

Wavelengit (λ)-nm Fig. 2 SPECTRAL RESPONSE

DUTY CYCLE \% PER SEGMENT (AVERACE $\mathrm{if}=10 \mathrm{~mA}$)
Fig. 5 LUMINOUS INTENSITY VS. DUTY CYCLE

DUTY CYCLE \%
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE \% (REFRESH RATE $\mathcal{I}=1 \mathbf{K H z}$)

GRAPHICAL DETAIL: High Efficiency Red $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

FORWARD VOLTAGE (VF)-VOLTS
FIg. 1 FORWARD CURRENT VS. FORWARD VOLTAGE.

FIg. 3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT

TA AMBIENT TEMPERATURE C
FIg. 4 MAXIMUM ALLOWABLE OC CURRENT PER SEGMENT VS. A FUNCTION OF AMBIENT TEMPERATURE.

DUTY CYCLE \%
FIg. 6 MAX PEAK CURRENT Vs. DUTY CYCLE \% (REFRESH RATE $t=1 \mathrm{KHz}$)

0.54 INCH (13.7MM) 14 SEGMENT,DUAL DIGIT ALPHA - NUMERIC STICK DISPLAY

GRAPHICAL DETAIL: Yellow $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

FIg. 1 FORWARD CURRENT VB. FORWARD VOLTAGE.

IDCMAX-MAXMUM DC CURRENT-mA

TA MBIENT TEMPERATURE C
Fig. M MAXIMUM ALLOWABLE DC CURRENT PER SEGMENT VB. A FÜNCTION OF AMBIENT TEMPERATURE.

DUTY CYCLE $\%$
FIg. 6 MAX PEAK CURRENT V8. DUTY CYCLE \% (REFRESH RATE f=1 KHz)

0.54 INCH (13.7MM) 14 SEGMENT, DUAL DIGIT ALPHA - NUMERIC STICK DISPLAY

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
