Data Sheet

Description

The HDSP-2131 (yellow), HDSP-2179 (orange), HDSP-2132 (high efficiency red) and the HDSP-2133 (green) are eight-digit, 5×7 dot matrix, alphanumeric displays. The 5.0 mm (0.2 inch) high characters are packaged in a standard 7.64 mm (0.30 inch) 32 pin DIP. The on-board CMOS IC has the ability to decode 128 ASCII characters, which are permanently stored in ROM. In addition, 16 programmable symbols may be stored in an on-board RAM. Seven brightness levels provide versatility in adjusting the display intensity and power consumption. The HDSP-213x and HDSP-2179 are designed for standard microprocessor interface techniques. The display and special features are accessed through a bidirectional eight-bit data bus. These features make the HDSP-213x and HDSP-2179 ideally suited for applications where a hermetic, low power alphanumeric display is required.

Devices

	High Efficiency	High Performance	
Yellow	Red	Green	Orange
HDSP-2131	HDSP-2132	HDSP-2133	HDSP-2179

Features

- Wide operating temperature range $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Smart alphanumeric display
- On-board CM OS IC
- Built-in RAM
- ASCII decoder
- LED drive circuitry
- 128 ASCII character set
- 16 user definable characters
- Programmable features
- Individual character flashing
- Full display blinking
- M ulti-level dimming and blanking
- Self test
- Clear function
- Read/ write capability
- Full TTL compatibility
- HDSP-2131/-2133/-2179 useable in night vision lighting applications
- Categorized for luminous intensity
- HDSP-2131/ 2133 categorized for color
- Excellent ESD protection
- W ave solderable
- X-Y stackable
- RoHS compliant

Package Dimensions

HDSP-213X/2179
NOTES:

PIN \#	FUNCTION	PIN $\#$	FUNCTION
1	CLS	17	GND (SUPPLY)
2	CLK	18	GND (LOGIC)
3	$\overline{\text { WR }}$	19	D4
4	$\overline{\text { CE }}$	20	D5
5	$\overline{\text { RST }}$	21	D6
6	$\overline{\text { RD }}$	22	D7
7	NO PIN	23	NO PIN
8	NO PIN	24	NO PIN
9	NO PIN	25	NO PIN
10	NO PIN	26	NO PIN
11	DO	27	FL
12	D1	28	AO
13	D2	29	A1
14	D3	30	A2
15	NC	31	A3
16	VDD	32	A4

1. ALL DIM ENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE IS $\pm 0.30 \mathrm{~mm}$ (0.015 INCH).
3. FOR GREEN AND YELLOW DEVICES ONLY.
4. LEADS ARE COPPER ALLOY, SOLDER DIPPED.

Absolute M aximum Ratings

Supply Voltage, V_{DD} to Ground ${ }^{[1]}$	-0.3 to 7.0V
Operating Voltage, V_{DD} to Ground ${ }^{[2]}$	5.5 V
Input Voltage, Any Pin to Ground	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Free Air Operating Temperature Range, T_{A}	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, Ts	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
CM OS IC J unction Temperature, $\mathrm{T}_{\text {J (IC) }}$	$+150^{\circ} \mathrm{C}$
Soldering Temperature [1.59 mm (0.063 in .) Below Body]	
Solder Dipping	$260^{\circ} \mathrm{C}$ for 5 secs
W ave Soldering	$250^{\circ} \mathrm{C}$ for 3 secs
ESD Protection @ $1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$	$\mathrm{V}_{\mathrm{z}}=4 \mathrm{kV}$ (each pin)

Notes:

1. M aximum voltage is with no LEDs illuminated.
2. 20 dots ON in all locations at full brightness.

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED WITH THE HDSP-2131, HDSP-2132, HDSP-2133, AND HDSP-2179.

Character Set

Recommended Operating Conditions

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Supply Voltage	$V_{D D}$	4.5	5.0	5.5	V

Electrical Characteristics over Operating Temperature Range

$4.5<V_{D D}<5.5 \mathrm{~V}$ (unless otherwise specified)

Parameter	Symbol	M in.	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Typ. }{ }^{[1]} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Max. }{ }^{[1]} \end{aligned}$	Max.[2]	Units	Test Conditions
Input Leakage (Input without Pullup)	I	-10.0			+10.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{1 N}=0 \text { to } \mathrm{V}_{\mathrm{DD},} \\ & \text { pins } \mathrm{CLK}, \mathrm{D}_{0}-\mathrm{D}_{7}, \\ & \mathrm{~A}_{0}-\mathrm{A}_{4} \end{aligned}$
Input Current (Input with Pullup)	IIP	-30.0	11	18	30	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { to } \mathrm{V}_{\mathrm{DD},} \\ & \text { pins } \overline{\mathrm{RST}}, \mathrm{CLS}, \mathrm{WR}, \\ & \overline{\mathrm{RD}, \overline{\mathrm{CE}}, \overline{\mathrm{FL}}} \end{aligned}$
IDD Blank	IDD (BLK)		0.5	1.5	2.0	mA	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {D }}$
lod 8 digits 12 Dots/Character[3]	IDD(V)		200	255	330	mA	"V" on in all 8 locations
IDD 8 digits 20 Dots/ Character[3]	IDD(\#)		300	370	430	mA	"\#" on in all 8 locations
Input Voltage High	V_{1}	2.0			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}} \\ & +0.3 \end{aligned}$	V	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
Input Voltage Low	VIL	$\begin{aligned} & \text { GND } \\ & -0.3 \mathrm{~V} \end{aligned}$			0.8	V	$V_{D D}=4.5 \mathrm{~V}$
Output Voltage High	VOH	2.4				V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A} \end{aligned}$
Output Voltage Low $D_{0}-D_{7}$	VoL				0.4	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$
Output Voltage Low CLK					0.4	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=40 \mu \mathrm{~A} \end{aligned}$
Thermal Resistance ICJ unction-to-PIN	$R \theta_{\text {J - PIN }}$		11			${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

1. $V_{D D}=5.0 \mathrm{~V}$
2. Maximum IDD occurs at $-55^{\circ} \mathrm{C}$.
3. Average $I_{D D}$ measured at full brightness. See Table 2 in Control W ord Section for $I_{D D}$ at lower brightness levels. Peak $I_{D D}=28 / 15 \times$ Average $I_{D D}(\#)$

Optical Characteristics at $25^{\circ} \mathrm{C}$ [4]
$V_{D D}=5.0 \mathrm{~V}$ at Full Brightness
High Efficiency Red HDSP-2132

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		635	nm
Dominant Wavelength	λ_{d}		626	nm

Orange HDSP-2179

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak W avelength	$\lambda_{\text {PEAK }}$		600	nm
Dominant W avelength	λ_{d}		602	nm

Yellow HDSP-2131

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak W avelength	$\lambda_{\text {PEAK }}$		583	nm
Dominant W avelength	λ_{d}		585	nm

High Performance Green HDSP-2133

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		568	nm
Dominant Wavelength	λ_{d}		574	nm

Note:
4. Refers to the initial case temperature of the device immediately prior to the light measurement.

AC Timing Characteristics over Temperature Range
$V_{D D}=4.5$ to 5.5 V unless otherw ise specified

Reference Number	Symbol	Description	M in. ${ }^{[1]}$	Units
$\overline{1}$	$\mathrm{t}_{\text {ACC }}$	Display Access Time		
		Write	210	
		Read	230	ns
2	$\mathrm{t}_{\text {ACS }}$	Address Setup Time to Chip Enable	10	ns
3	$\mathrm{t}_{\text {CE }}$	Chip Enable Active Time ${ }^{[2,3]}$		
		Write	140	
		Read	160	ns
4	taCH	Address Hold Time to Chip Enable	20	ns
5	$\mathrm{t}_{\text {CER }}$	Chip Enable Recovery Time	60	ns
6	$\mathrm{t}_{\text {CES }}$	Chip Enable Active Prior to Rising Edge of[1,2]		
		Write	140	
		Read	160	ns
7	$\mathrm{t}_{\text {CEH }}$	Chip Enable Hold Time to Rising Edge of Read/W rite Signal $[2,3]$	0	ns
8	$\mathrm{t}_{\text {w }}$	W rite Active Time ${ }^{[2,3]}$	100	ns
9	twD	Data Valid Prior to Rising Edge of W rite Signal	50	ns
10	t_{DH}	Data W rite Hold Time	20	ns
11	t_{R}	Chip Enable Active Prior to Valid Data	160	ns
12	trD	Read Active Prior to Valid Data	75	ns
13	t_{DF}	Read Data Float Delay	10	ns
-	t_{RC}	Reset Active Time ${ }^{[4]}$	300	ns

Notes:

1. W orst case values occur at an IC junction temperature of $150^{\circ} \mathrm{C}$.
2. For designers who do not need to read from the display, the Read line can be tied to $V_{D D}$ and the W rite and Chip Enable lines can be tied together.
3. Changing the logic levels of the Address lines when $\overline{C E}=$ " 0 " may cause erroneous data to be entered into the Character RAM, regardless of the logic levels of the $\overline{W R}$ and $\overline{R D}$ lines.
4. The display must not be accessed until after 3 clock pulses ($110 \mu \mathrm{~s}$ min. using the internal refresh clock) after the rising edge of the reset line.

AC Timing Characteristics Over Temperature Range
$V_{D D}=4.5 \mathrm{~V}$ to 5.5 V unless otherw ise specified.

Symbol	Description	$\mathbf{2 5}^{\circ}$ C Typical	M inimum ${ }^{[1]}$	Units
$\mathrm{F}_{\text {OSC }}$	Oscillator Frequency	57	28	kHz
$\mathrm{F}_{\mathrm{RF}}[5]$	Display Refresh Rate	256	128	Hz
$\mathrm{~F}_{\left[L^{[6]}\right.}$	Character Flash Rate	2	1	Hz
$\mathrm{t}_{\mathrm{ST}^{[7]}}$	Self Test Cycle Time	4.6	9.2	Sec

Notes:

5. $\mathrm{F}_{\mathrm{RF}}=\mathrm{FOSC} / 224$.
6. $\mathrm{F}_{\mathrm{FL}}=\mathrm{Fosc} / 28,672$.
7. $\mathrm{t}_{\mathrm{ST}}=262,144 / \mathrm{FOSC}^{\mathrm{C}}$

Write Cycle Timing Diagram

INPUT PULSE LEVELS: 0.6 V to 2.4 V

INPUT PULSE LEVELS: 0.6 V to 2.4 V
OUTPUT REFERENCE LEVELS: 0.6 V to 2.2 V
OUTPUT LOADING $=1$ TTL LOAD AND 100 pF

Character Font

NOTE: NOT TO SCALE

Relative Luminous Intensity vs. Temperature

Electrical Description

Pin Function
RESET ($\overline{\mathrm{RST}}$, Pin 5)
FLASH ($\overline{\mathrm{FL}}$, Pin 27)

ADDRESS INPUTS
($\mathrm{A}_{0}-\mathrm{A}_{4}$, Pins 28-32)

CLOCK SELECT
(CLS, Pin 1)
CLOCK INPUT/OUTPUT
(CLK, Pin 2)
WRITE (WR, Pin 3)

CHIP ENABLE ($\overline{\mathrm{CE}}$, Pin 4)
$\operatorname{READ}(\overline{\mathrm{RD}}$, Pin 6$)$

DATA Bus $\left(\mathrm{D}_{0}-\mathrm{D}_{7}\right.$,
Pins 11-14, 19-22)
GND $_{\text {(SUPPLY) }}$ (Pin 17)
GND $_{\text {(LOGIC) }}$ (Pin 18)
$\mathrm{V}_{\mathrm{DD}(\text { POWER })}$ (Pin 16)

Description

Reset initializes the display.
$\overline{\mathrm{FL}}$ low indicates an access to the Flash RAM and is unaffected by the state of address lines $\mathrm{A}_{3}-\mathrm{A}_{4}$.

Each location in memory has a distinct address. Address inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{2}\right)$ select a specific location in the Character RAM, the Flash RAM or a particular row in the UDC (User-Defined Character) RAM. $\mathrm{A}_{3}-\mathrm{A}_{4}$ are used to select which section of memory is accessed. Table 1 shows the logic levels needed to access each section of memory.

Table 1. Logic Levels to Access Memory

| $\overline{\mathrm{FL}}$ | $\mathbf{A}_{\mathbf{4}}$ | $\mathbf{A}_{\mathbf{3}}$ | Section of Memory | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{A}_{\mathbf{0}}$

This input is used to select either an internal (CLS $=1$) or external (CLS = 0) clock source.

Outputs the master clock (CLS $=1$) or inputs a clock ($\mathrm{CLS}=0$) for slave displays.

Data is written into the display when the $\overline{\mathrm{WR}}$ input is low and the $\overline{\mathrm{CE}}$ input is low.

This input must be at a logic low to read or write data to the display and must go high between each read and write cycle.

Data is read from the display when the $\overline{\mathrm{RD}}$ input is low and the $\overline{\mathrm{CE}}$ input is low.

The Data bus is used to read from or write to the display.

This is the analog ground for the LED drivers.
This is the digital ground for internal logic.
This is the positive power supply input.

Display Internal Block Diagram
Figure 1 shows the internal block diagram of the HDSP-213x/-2179 display. The CMOS IC consists of an 8 byte Character RAM, an 8
bit Flash RAM, a 128 character

ASCII decoder, a 16 character UDC RAM, a UDC Address Register, a Control Word Register, and the refresh circuitry necessary to synchronize the decoding and driving of
eight 5×7 dot matrix characters. The major user accessible portions of the display are listed below:

Character RAM	This RAM stores either ASCII character data or a UDC RAM address.
Flash RAM	This is a 1×8 RAM which stores Flash data.
User-Defined Character RAM (UDC RAM)	This RAM stores the dot pattern for custom characters.
User-Defined Character This register is used to provide the address to the UDC RAM when the user is writing or Address Register (UDC Address Register) reading a custom character.	
Control W ord Register	This register allows the user to adjust the display brightness, flash individual characters, blink, self test, or clear the display.

Character Ram

Figure 2 shows the logic levels needed to access the HDSP-213x/ -2179 Character RAM. During a normal access the $\overline{\mathrm{CE}}=" 0$ " and either $\overline{\mathrm{RD}}=" 0$ " or $\overline{\mathrm{WR}}=" 0$ ". However, erroneous data may be written into the Character RAM if the Address lines are unstable when $\overline{\mathrm{CE}}=$ " 0 " regardless of the logic levels of the $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ lines. Address lines $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the location in the Character RAM. Two types of data can be stored in each Character RAM location: an ASCII code or a UDC RAM address. Data bit D_{7} is used to differentiate between an ASCII character and a UDC RAM address. $\mathrm{D}_{7}=0$ enables the ASCII decoder and $D_{7}=1$ enables the UDC RAM. $\mathrm{D}_{0}-\mathrm{D}_{6}$ are used to input ASCII data and $\mathrm{D}_{0}-\mathrm{D}_{3}$ are used to input a UDC address.

CONTROL SIGNALS

CHARACTER RAM ADDRESS

CHARACTER RAM DATA FORMAT

Figure 2. Logic levels to access the character RAM.

UDC RAM and UDC Address Register
Figure 3 shows the logic levels needed to access the UDC RAM and the UDC Address Register. The UDC Address Register is eight bits wide. The lower four bits ($\mathrm{D}_{0^{-}}$ D_{3}) are used to select one of the 16 UDC locations. The upper four bits $\left(\mathrm{D}_{4}-\mathrm{D}_{7}\right)$ are not used. Once the UDC address has been stored in the UDC Address Register, the UDC RAM can be accessed.

To completely specify a 5×7 character requires eight write cycles. One cycle is used to store the UDC RAM address in the UDC Address Register. Seven cycles are used to store dot data in the UDC RAM. Data is entered by rows. One cycle is needed to access each row. Figure 4 shows the organization of a UDC character assuming the symbol to be stored is an "F." $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the row to be accessed and $\mathrm{D}_{0}-\mathrm{D}_{4}$ are used to transmit the row dot data. The upper three bits ($\mathrm{D}_{5}-\mathrm{D}_{7}$) are ignored. D_{0} (least significant bit) corresponds to the right most column of the 5×7 matrix and D_{4} (most significant bit) corresponds to the left most column of the 5×7 matrix.

Flash RAM

Figure 5 shows the logic levels needed to access the Flash RAM. The Flash RAM has one bit associated with each location of the Character RAM. The Flash input is used to select the Flash RAM. Address lines $\mathrm{A}_{3}-\mathrm{A}_{4}$ are ignored. Address lines $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the location in the Flash RAM to store the attribute. D_{0} is used to store or remove the flash attribute. $\mathrm{D}_{0}=" 1$ " stores the attribute and $\mathrm{D}_{0}=" 0$ " removes the attribute.

When the attribute is enabled through bit 3 of the Control Word and a " 1 " is stored in the Flash RAM, the corresponding character

UDC ADDRESS REGISTER ADDRESS

UDC ADDRESS REGISTER DATA FORMAT

CONTROL SIGNALS

Figure 3. Logic levels to access a UDC character.

	C	C	C	C			
0	0	0	0	0			
L	L	L	L	L			
1	2	3	4	5			
D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		UDC CHARACTER	HEX CODE
1	1	1	1	1	ROW 1	- • - •	$1 F$
1	0	0	0	0	ROW 2	-	10
1	0	0	0	0	ROW 3	-	10
1	1	1	1	0	ROW 4	- - -	1D
1	0	0	0	0	ROW 5	-	10
1	0	0	0	0	ROW 6	-	10
1		0	0	0	ROW 7	-	10
	NOR						

Figure 4. Data to load "F" into the UDC RAM.
will flash at approximately 2 Hz . The actual rate is dependent on the clock frequency. For an
external clock the flash rate can be calculated by dividing the clock frequency by 28,672 .

CONTROL SIGNALS

FLASH RAM ADDRESS

REM OVE FLASH AT SPECIFIED DIGIT LOCATION STORE FLASH AT SPECIFIED DIGIT LOCATION
FLASH RAM DATA FORMAT
$0=$ LOGIC $0 ; 1=$ LOGIC $1 ; X=$ DO NOT CARE

Figure 5. Logic levels to access the flash RAM.

Control W ord Register

Figure 6 shows how to access the Control Word Register. This is an eight bit register which performs five functions. They are Brightness control, Flash RAM control, Blinking, Self Test and Clear. Each function is independent of the others. However, all bits are updated during each Control Word write cycle.

Brightness (Bits 0-2)

Bits 0-2 of the Control Word adjust the brightness of the display. Bits 0-2 are interpreted as a three bit binary code with code (000) corresponding to maximum brightness and code (111) corresponding to a blanked display. In addition to varying the display brightness, bits 0-2 also vary the average value of $I_{D D} . I_{D D}$ can be calculated at any brightness level by multiplying the percent bright-ness level by the value of I_{DD} at the 100% brightness level. These values of I_{DD} are shown in Table 2.

Flash Function (Bit 3)

Bit 3 determines whether the flashing character attribute is on or off. When bit 3 is a " 1 ," the output of the Flash RAM is checked. If the content of a location in the Flash RAM is a " 1 ," the associated digit will flash at

Figure 6. Logic levels to access the control word register.

Table 2. Current Requirements at Different Brightness Levels

Symbol	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$	\% Brightness	$\mathbf{2 5}^{\circ} \mathbf{C}$ Typ.	Units
$I_{\mathrm{DD}}(\mathrm{V})$	0	0	0	100	200	mA
	0	0	1	80	160	mA
	0	1	0	53	106	mA
	0	1	1	40	80	mA
1	0	0	27	54	mA	
1	0	1	20	40	mA	
	1	1	0	13	26	mA

approximately 2 Hz . For an external clock, the blink rate can be calculated by driving the clock frequency by 28,672 . If the flash enable bit of the Control Word is a " 0 ," the content of the Flash RAM is ignored. To use this function with multiple display systems see the Reset section.

Blink Function (Bit 4)

Bit 4 of the Control Word is used to synchronize blinking of all eight
digits of the display. When this bit is a " 1 " all eight digits of the display will blink at approximately 2 Hz . The actual rate is dependent on the clock frequency. For an external clock, the blink rate can be calculated by dividing the clock frequency by 28,672 . This function will override the Flash function when it is active. To use this function with multiple display systems see the Reset section.

Self Test Function (Bits 5, 6)

Bit 6 of the Control Word Register is used to initiate the self test function. Results of the internal self test are stored in bit 5 of the Control Word. Bit 5 is a read only bit where bit $5=$ " 1 " indicates a passed self test and bit $5=" 0$ " indicates a failed self test.

Setting bit 6 to a logic 1 will start the self test function. The built-in self test function of the IC consists of two internal routines which exercises major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a checksum on the output. If the checksum agrees with the correct value, bit 5 is set to "1." The second routine provides a visual test of the LEDs using the drive circuitry. This is accomplished by writing checkered and inverse checkered patterns to the display. Each pattern is displayed for approximately 2 seconds.

During the self test function the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock period by 262,144 . For example, assume a clock frequency of 58 KHz , then the time to execute the self test function frequency is equal to $(262,144 / 58,000)=4.5$ second duration.

At the end of the self test function, the Character RAM is loaded with blanks, the Control Word Register is set to zeros except for bit 5, and the Flash RAM is cleared and the UDC Address Register is set to all ones.

Clear Function (Bit 7)

Bit 7 of the Control Word will clear the Character RAM and the Flash RAM. Setting bit 7 to a "1" will start the clear function. Three
clock cycles ($110 \mu \mathrm{~s}$ min. using the internal refresh clock) are required to complete the clear function. The display must not be accessed while the display is being cleared. When the clear function has been completed, bit 7 will be reset to a " 0 ." The ASCII character code for a space $(20 \mathrm{H})$ will be loaded into the Character RAM to blank the display and the Flash RAM will be loaded with " 0 "s. The UDC RAM, UDC Address Register, and the remainder of the Control Word are unaffected.

Display Reset

Figure 7 shows the logic levels needed to Reset the display. The display should be Reset on Powerup. The external Reset clears the Character RAM, Flash RAM, Control Word and resets the internal counters. After the rising edge of the Reset signal, three clock cycles ($110 \mu \mathrm{~s}$ min. using the internal refresh clock) are required to complete the reset sequence. The display must not be accessed while the display is being reset. The ASCII Character code for a space $(20 \mathrm{H})$ will be loaded into the Character RAM to blank the display. The Flash RAM and Control Word Register are loaded with all " 0 "s. The UDC RAM and UDC Address Register are unaffected. All displays which operate with the same clock source must be simultaneously reset to synchronize the Flashing and Blinking functions.

Figure 7. Logic levels to reset the display.

Mechanical and Electrical Considerations

The HDSP-213x/-2179 is a 32 pin dual-in-line package with 24 external pins, which can be stacked horizontally and vertically to create arrays of any size. The HDSP-213x/-2179 is designed to operate continuously from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with a maximum of 20 dots ON per character. Illuminating all thirty-five dots at full brightness is not recommended.

The HDSP-213x/-2179 is assembled by die attaching and wire bonding 280 LED chips and a CMOS IC to a ceramic sub-strate. A glass window is placed over the ceramic substrate creating an air gap over the LED wire bonds. A second glass window creates an air gap over the CMOS IC. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering and visual inspection of the IC.

The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HDSP-213X should be stored in

Figure 8. M aximum power dissipation vs. ambient temperature derating based on $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=125^{\circ} \mathrm{C}$.
antistatic packages or conductive material. During assembly, a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static charge buildup. Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground ($\mathrm{V}_{\mathrm{IN}}<$ ground) or to a voltage higher than $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{DD}}\right)$ and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to $V_{D D}$. Voltages should not be applied to the inputs until $V_{D D}$ has been applied to the display. Transient input voltages should be eliminated.

Thermal Considerations

The HDSP-213x/-2179 has been designed to provide a low thermal resistance path from the CMOS IC to the 24 package pins. This heat is then typically conducted through the traces of the user's printed circuit board to free air. For most applications no additional heatsinking is required.

The maximum operating IC junction temperature is $150^{\circ} \mathrm{C}$. The maximum IC junction temperature can be calculated using the following equation:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}(\mathrm{IC}) \mathrm{MAX}=\mathrm{T}_{\mathrm{A}} \\
& \quad+\left(\mathrm{P}_{\mathrm{D}} \mathrm{MAX}\right)\left(\mathrm{R} \theta_{\mathrm{J}-\mathrm{PIN}}+\mathrm{R} \theta_{\mathrm{PIN}-\mathrm{A}}\right)
\end{aligned}
$$

Where

$$
\mathrm{P}_{\mathrm{D}} \mathrm{MAX}=\left(\mathrm{V}_{\mathrm{DD}} \mathrm{MAX}\right)\left(\mathrm{I}_{\mathrm{DD}} \mathrm{MAX}\right)
$$

$\mathrm{I}_{\mathrm{DD}} \mathrm{MAX}=370 \mathrm{~mA}$ with 20 dots ON in eight character locations at $25^{\circ} \mathrm{C}$ ambient. This value is from the Electrical Characteristics table.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}} \mathrm{MAX} & =(5.5 \mathrm{~V})(0.370 \mathrm{~A}) \\
& =2.04 \mathrm{~W}
\end{aligned}
$$

Ground Connections

Two ground pins are provided to keep the internal IC logic ground clean. The designer can, when necessary, route the analog ground for the LED drivers separately from the logic ground until an appropriate ground plane is available. On long interconnects between the display and the host system, the designer can keep voltage drops on the analog ground from affecting the display logic levels by isolating the two grounds.

The logic ground should be connected to the same ground potential as the logic interface circuitry. The analog ground and the logic ground should be connected at a common ground which can withstand the current introduced by the switching LED drivers. When separate ground connections are used, the analog ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltage below -0.3 V can cause all dots to be on. Voltage above +0.3 V can cause dimming and dot mismatch.

ESD Susceptibility

These displays have ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C.

Soldering and Post Solder Cleaning Instructions for the HDSP-213x/-2179

The HDSP-213x/-2179 may be hand soldered or wave soldered with lead-free solder. When hand soldering it is recommended that an electronically temperature controlled and securely grounded soldering iron be used. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be set at $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$, and dwell in the wave should be set between $1 / 2$ to 3 seconds for optimum soldering. The preheat temperature should not exceed $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.

Proper handling is imperative to avoid excessive thermal stresses to component when heated. Therefore, the solder PCB must be allowed to cool to room temperature, $25^{\circ} \mathrm{C}$, before handling.

For further information on soldering and post solder cleaning, see Application Note 1027, Soldering LED Components.

Figure 9. Recommended wave soldering profile for lead-free Smart Display.

Contrast Enhancement

When used with the proper contrast enhancement filters, the HCMS-213x/-2179 series displays are readable daylight ambients. Refer to Application Note 1029 Luminous Contrast and Sunlight Readability of the HDSP-235x Series Alphanumeric Displays for Military Applications for information on contrast enhancement for daylight ambients. Refer to Application Note 1015 Contrast Enhancement Techniques for LED Displays for information on contrast enhancement in moderate ambients.

Night Vision Lighting

When used with the proper NVG/ DV filters, the HDSP-2131, HDSP2179 and HDSP-2133 may be used in night vision lighting applications. The HDSP-2131 (yellow), HDSP-2179 (orange) displays are used as master caution and warning indicators. The HDSP2133 (high per-formance green) displays are used for general instrumenta-tion. For a list of NVG/DV filters and a discussion on night vision lighting technology, refer to Application Note 1030 LED Displays and Indicators and Night Vision Imaging System Lighting. An external dimming circuit must be used to dim these displays to night vision lighting levels to meet NVIS radiance requirements. Refer to AN 1039 Dimming HDSP-213x Displays to Meet Night Vision Lighting Levels.

Intensity Bin Limits

	Intensity Range (mcd)	
Bin	Min.	Max.
G	2.50	4.00
H	3.41	6.01
	5.12	9.01
J	7.68	13.52
K	11.52	20.28

Note: Test conditions as specified in Optical Characteristic table.

Color Bin Limits

		Color Range (nm)	
Color	Bin	Min.	M ax.
Green	1	576.0	580.0
	2	573.0	577.0
	3	570.0	574.0
	4	567.0	571.5
Yellow	3	581.5	585.0
	4	584.0	587.5
	5	586.5	590.0

Note: Test conditions as specified in Optical Characteristic table.

