

NHD-C160100AZ-RN-GBW

COG (Chip-On-Glass) Liquid Crystal Display Module

Newhaven Display NHD-C160100-160 x 100 pixels

AZ-Model Reflective R-No backlight N-G-STN- Gray B-6:00 view

W-Wide Temp $(-20^{\circ}C \sim +70^{\circ}C)$

RoHS Compliant

Newhaven Display International, Inc.

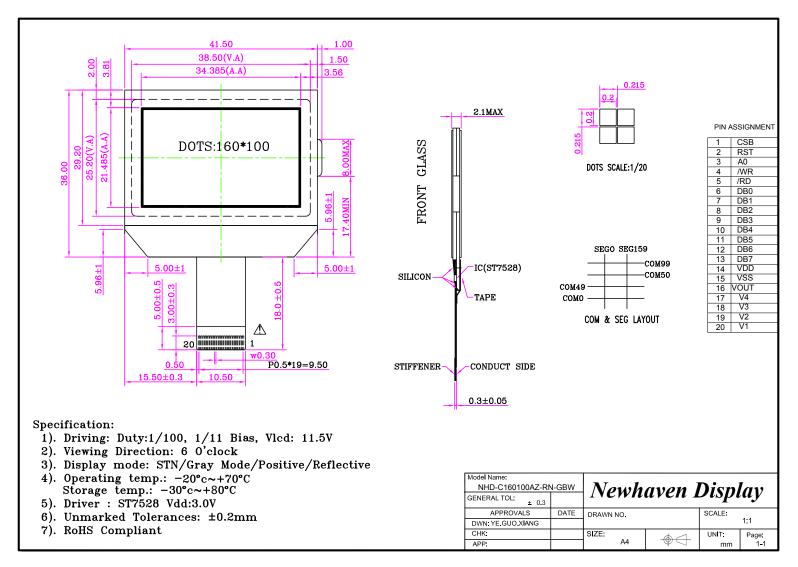
2511 Technology Drive, Suite 101

Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

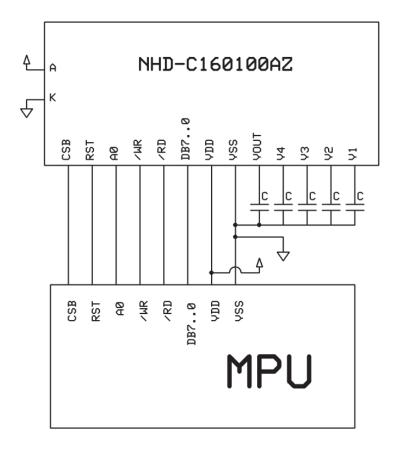

Document Revision History

Revision	Date	Description	Changed by
0	10/31/2007	Initial Release	-
1	9/14/2009	User guide reformat	BE
2	10/14/2009	Updated Electrical Characteristic	MC
3	12/08/2009	Updated Block Diagram, Pins 4 and 5, and Timing	MC
		Characteristics	

Functions and Features

- 160 x 100 pixels
- Built-in ST7528 controller
- +3.0V power supply
- 1/100 duty; 1/11 bias
- RoHS Compliant

Mechanical Drawing



Pin Description and Wiring Diagram

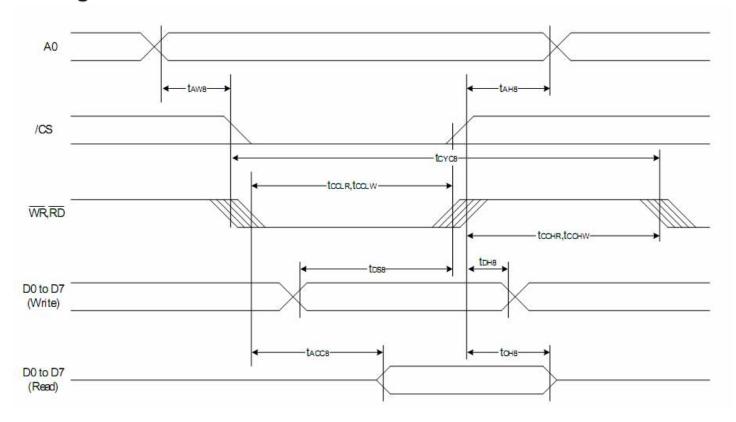
Pin No.	Symbol	External	Function Description
		Connection	
1	CSB	MPU	Active Low chip select
2	RST	MPU	Active Low Reset signal
3	A0	MPU	Register select signal. A0=1: Data, A0=0: Command
4	/WR	MPU	Active LOW write signal
5	/RD	MPU	Active LOW read signal
6-13	DB0-DB7	MPU	Bi-directional 8-bit data bus.
14	VDD	Power Supply	Power supply for LCD and logic (+3.0V)
15	Vss	Power Supply	Ground
16	VOUT	Power Supply	Connect to 1uF cap to VSS or VDD
17	V4	Power Supply	1.0uF-2.2uF cap to Vss
18	V3	Power Supply	1.0uF-2.2uF cap to Vss
19	V2	Power Supply	1.0uF-2.2uF cap to Vss
20	V1	Power Supply	1.0uF-2.2uF cap to Vss

Recommended LCD connector: 0.5mm pitch pins. Molex p/n: 52746-2070

Backlight connector: --- Mates with: ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-10	-	+60	°C
Storage Temperature Range	Tst	Absolute Max	-20	-	+70	°C
Supply Voltage	VDD		2.8	3.0	3.3	V
Supply Current	IDD	Ta=25°C, VDD=3.0V	-	1.5	2.5	mA
Supply for LCD (contrast)	VDD-V0	Ta=25°C	-	11.5	-	V
"H" Level input	Vih		2.2	-	VDD	V
"L" Level input	Vil		0	-	0.6	V
"H" Level output	Voh		2.4	-	-	V
"L" Level output	Vol		-	-	0.4	V


Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle - Vertical		Cr≥2	-60	-	+35	0
Viewing Angle - Horizontal	Ф		-40	-	+40	0
Contrast Ratio	CR		-	6	-	-
Response Time (rise)	Tr	-	-	150	250	ms
Response Time (fall)	Tf	-	-	150	250	ms

Controller Information

Built-in ST7528. Download specification at http://www.newhavendisplay.com/app notes/ST7528.pdf

Timing Characteristics

(VDD = 3.3V , Ta =25°C)

lto	Cianal	Symbol	Condition	Rat	I Indian	
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		0	_	
Address setup time	A0	tAW8		0	_	
System cycle time		tCYC8		240	_	
Enable L pulse width (WRITE)	WR	tCCLW		80	_	
Enable H pulse width (WRITE)	VVK	tCCHW		80	_	
Enable L pulse width (READ)	- RD	tCCLR		140	_	ns
Enable H pulse width (READ)	- KD	tCCHR		80		
WRITE Data setup time		tDS8		40	_	
WRITE Data hold time	D0 to D7	tDH8		10	_	
READ access time	ן טטוטטי	tACC8	CL = 100 pF	_	70	
READ Output disable time		tOH8	CL = 100 pF	5	50	

Table of Commands

Instruction	Α0	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
EXT=0 or 1											
Mode Set		0	0	0	1	1	1	0	0	0	2-byte instruction to set
		0	FR3	FR2	FR1	FR0	0	BE	x'	EXT	Mode and FR(Frame frequency control) BE(Booster efficiency control)
EXT=0											
Read display data	1	1				Read	data				Read data into DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	MF2	MF1	MF0	DS1	DS0	Read the internal status
ICON control register ON/OFF	0	0	1	0	1	0	0	0	1	ICON	ICON=0: ICON disable(default) ICON=1: ICON enable & set the page address to 16
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	Y9	Y8	Y7	Y6	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y5	Y4	Y3	Y2	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode
Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=0: Display OFF D=1: Display ON
Set initial display line register	0	0	0	1	0	0	0	0	x'	x'	2-byte instruction to specify the initial display line to realize
	0	0	x'	S6	S5	S4	S3	S2	S1	S0	vertical scrolling
Set initial COM0 register	0	0	0	1	0	0	0	1	x'	x'	2-byte instruction to specify the initial COM0 to realize
octimizar octivo register	0	0	x'	C6	C5	C4	C3	C2	C1	C0	window scrolling
Set postial display duty ration	0	0	0	1	0	0	1	0	x'	x'	2-byte instruction to set partial
Set partial display duty ration	0	0	D7	D6	D5	D4	D3	D2	D1	D0	display duty ratio
	0	0	0	1	0	0	1	1	x'	x'	2-byte instruction to set N-line
Set N-line inversion	0	0	x'	x'	x'	N4	N3	N2	N1	N0	inversion register
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line inversion mode
Reverse display ON/OFF	0	0	1	0	1	0	0	1	1	REV	REV=0: normal display REV=1: reverse display
Entire display ON/OFF	0	0	1	0	1	0	0	1	0	EON	EON=0: normal display EON=1: entire display ON

Example Initialization Program

```
void write_command(unsigned char datum)
A0=0;
                                                                              /*Instruction register*/
                                                                              /*Read inactive*/
E=1;
P1 = datum;
                                                                              /*put data on port 1*/
CS1=0;
                                                                              /*Chip select active*/
RW=0;
                                                                              /*Write active*/
RW=1;
                                                                              /*Write inactive; latch in data*/
CS1=1;
                                                                              /*Chip select inactive*/
//-----
void write data(unsigned char datum)
                                                                              /*DDRAM data register*/
A0=1;
E=1;
P1=datum;
CS1=0;
RW=0;
RW=1;
CS1=1;
void lcd init(void){
    write command(0xA2);
                            //ICON OFF;
    write_command(0xAE);
                            //Display OFF
    write command(0x48);
                            //Set Duty ratio
    write_command(0x80);
                            //No operation
    write_command(0xa1);
                            //Set scan direction //changed from 0 to 1
    write command(0xc8);
                            //SHL select
    write_command(0x40);
                            //Set START LINE
    write_command(0x00);
    write_command(0xab);
                            //OSC on
    write_command(0x64);
                            //3x
    delay(2000);
    write_command(0x65);
                            //4x
    delay(2000);
                            //5x
    write_command(0x66);
    delay(2000);
    write_command(0x67);
                            //6x
    delay(2000);
    write_command(Ra_Rb);
                            //RESISTER SET
    write_command(0x81);
                            //Set electronic volume register
    write_command(vopcode); //n=0~3f
    write_command(0x57);
                            //1/12bias
    write_command(0x92);
                            //FRC and pwm
    write_command(0x2C);
    delay(20000);//200ms
```

```
write command(0x2E);
delay(20000);//200ms
write command(0x2F);
delay(20000);//200ms
write command(0x92);
                        //frc and pwm
write command(0x38);
                        //external mode
write command(0x75);
    //start settings for 16-level grayscale
                        //3frc,45pwm
write_command(0x97);
write_command(0x80);
write command(0x00);
write command(0x81);
write_command(0x00);
write_command(0x82);
write_command(0x00);
write_command(0x83);
write_command(0x00);
write command(0x84);
write command(0x06);
write_command(0x85);
write_command(0x06);
write command(0x86);
write command(0x06);
write_command(0x87);
write_command(0x06);
write_command(0x88);
write command(0x0b);
write command(0x89);
write command(0x0b);
write command(0x8a);
write_command(0x0b);
write_command(0x8b);
write command(0x0b);
write command(0x8c);
write command(0x10);
write_command(0x8d);
write_command(0x10);
write command(0x8e);
write command(0x10);
write command(0x8f);
write_command(0x10);
write command(0x90);
write_command(0x15);
write command(0x91);
write command(0x15);
write_command(0x92);
write_command(0x15);
write_command(0x93);
write_command(0x15);
write command(0x94);
write command(0x1a);
write_command(0x95);
write_command(0x1a);
write_command(0x96);
```

write command(0x1a);

```
write command(0x97);
write_command(0x1a);
write_command(0x98);
write_command(0x1e);
write_command(0x99);
write command(0x1e);
write command(0x9a);
write command(0x1e);
write command(0x9b);
write_command(0x1e);
write_command(0x9c);
write command(0x23);
write command(0x9d);
write_command(0x23);
write_command(0x9e);
write_command(0x23);
write_command(0x9f);
write_command(0x23);
write command(0xa0);
write_command(0x27);
write_command(0xa1);
write_command(0x27);
write command(0xa2);
write command(0x27);
write_command(0xa3);
write_command(0x27);
write_command(0xa4);
write command(0x2b);
write command(0xa5);
write command(0x2b);
write command(0xa6);
write_command(0x2b);
write_command(0xa7);
write command(0x2b);
write command(0xa8);
write_command(0x2f);
write_command(0xa9);
write_command(0x2f);
write command(0xaa);
write command(0x2f);
write command(0xab);
write_command(0x2f);
write_command(0xac);
write_command(0x32);
write command(0xad);
write command(0x32);
write_command(0xae);
write_command(0x32);
write_command(0xaf);
write_command(0x32);
write command(0xb0);
write command(0x35);
write_command(0xb1);
write_command(0x35);
write_command(0xb2);
write command(0x35);
```

```
write command(0xb3);
   write_command(0x35);
   write_command(0xb4);
   write_command(0x38);
   write_command(0xb5);
   write command(0x38);
   write_command(0xb6);
   write_command(0x38);
   write_command(0xb7);
   write_command(0x38);
   write_command(0xb8);
   write_command(0x3a);
   write_command(0xb9);
   write_command(0x3a);
   write_command(0xba);
   write_command(0x3a);
   write_command(0xbb);
   write_command(0x3a);
   write_command(0xbc);
   write_command(0x3c);
   write_command(0xbd);
   write_command(0x3c);
   write command(0xbe);
   write command(0x3c);
   write_command(0xbf);
   write_command(0x3c);
       //end settings for 16-level grayscale
   write_command(0x38);
   write command(0x74);
   write_command(0xaf); //Display ON
//-----
```

}

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+70°C , 48hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-20°C , 48hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+60°C 48hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-10°C , 48hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C, 90% RH, 48hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	-0°C,30min -> 25°C,5min -> 50°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms