Multiformat Video Crosspoint with Integrated Sync Separator

The ISL59450 is a video crosspoint switch supporting multiple video input formats (CVBS, S-Video, YPbPr, and RGB signals). Embedded anti-aliasing filters with programmable corner frequencies eliminate glitch noise from video DACs. The large number of inputs, wide range of formats, integrated anti-aliasing filters, and dual sync-separators make the ISL59450 an ideal choice for video switching in nearly all display systems.

The ISL59450 is available in a 128 Ld MQFP package and is specified for operation over the full $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Ordering Information

PART NUMBER (Note)	PART MARKING	PACKAGE (Pb-free)	PKG. DWG. \#
ISL59450IQZ	ISL59450IQZ	128 Ld MQFP	MDP0055

NOTE: These Intersil Pb-free plastic packaged products employ special Pb -free material sets; molding compounds/die attach materials and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Simplified Block Diagram

[^0]

Features

- 6 Composite, 4 S-Video and 4 Component Video Sources
- 2 Component Inputs can be Configured for VGA with Separate H and V Sync Inputs
- Multi-format Video Filtering
- Compatible with Macrovision® Encoded Signals
- Programmable Gain of $x 1$ or x2
- Outputs have High Impedance Disable Mode
- Two Universal Sync Separators support SD, HD, and Computer Signals
- Pb-free (RoHS compliant)

Applications

- AV Receivers
- LCD-TVs
- AV Switch Boxes
- Projectors
- HDTV Systems
- Multiple Video Input Systems

Absolute Maximum Ratings	
Voltage on V_{A} (referenced to GND $=\mathrm{GND}_{\mathrm{A}}=\mathrm{GND}_{\mathrm{D}}$)	6.0V
```Voltage on \(V_{D}\) (referenced to \(\mathrm{GND}=\mathrm{GND}_{\mathrm{A}}=\mathrm{GND}_{\mathrm{D}}\) )```	4.0V
Voltage on any Analog Input Pin	-0.3 V to $\mathrm{V}_{\mathrm{A}}+0.3 \mathrm{~V}$
Voltage on any Digital Input Pin.	-0.3 V to $\mathrm{V}_{\mathrm{D}}+0.3 \mathrm{~V}$
Current into any Output Pin	$\pm 20 \mathrm{~mA}$
ESD Classification	
Human Body Model	3000 V
Machine Model .	125

## Thermal Information

Thermal Resistance

MQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :---: |
| 27.84 |

Maximum Biased Junction Temperature . . . . . . . . . $+150^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp

## Recommended Operating Conditions

Temperature (Commercial) . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . $\mathrm{V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3.3 \mathrm{~V}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

AC Electrical Specifications $\quad \mathrm{V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\mathrm{TIP}} \mathrm{PNx}=0.5 \mathrm{~V}, \mathrm{VSLICE}$ INx $=0.6 \mathrm{~V}$, $V_{\text {LUMA }}{ }^{x}{ }^{1}{ }_{I N x}=V_{\text {LUMA }} \times{ }^{2}{ }_{I N x}=0.8 ; V_{\text {CHROMA }}{ }^{1}{ }_{1 N x}=V_{\text {CHROMA }} \times{ }^{2}{ }_{I N x}=1.15 \mathrm{~V}$, all frequency response measurements relative to $f=100 \mathrm{kHz}$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
YPbPr/RGB (Component) Video Inputs						
YPbPr-10MHz	Passband Flatness, 10MHz Filter	$\mathrm{f}=6 \mathrm{MHz}$, GAIN 1	-1.6	-1.1	-0.4	dB
		$\mathrm{f}=6 \mathrm{MHz}$, GAIN 2	-1.6	-1.1	-0.4	dB
	Cutoff Flatness, 10MHz Filter	$\mathrm{f}=10 \mathrm{MHz}$, GAIN 1	-4.2	-2.7	-1.5	dB
		$\mathrm{f}=10 \mathrm{MHz}$, GAIN 2	-4.2	-2.7	-1.5	dB
	Stopband Rejection, 10MHz Filter	$\mathrm{f}=27 \mathrm{MHz}$, GAIN 1	-30	-19	-11	dB
		$\mathrm{f}=27 \mathrm{MHz}$, GAIN 2	-30	-19	-11	dB
		$\mathrm{f}=54 \mathrm{MHz}$, GAIN 1		-51		dB
		$\mathrm{f}=54 \mathrm{MHZ}$, GAIN 2		-51		dB
YPbPr-20MHz	Passband Flatness, 20MHz Filter	$\mathrm{f}=12 \mathrm{MHz}$, GAIN 1	-1.5	-0.9	-0.4	dB
		$\mathrm{f}=12 \mathrm{MHz}$, GAIN 2	-1.5	-0.9	-0.4	dB
	Cutoff Bandwidth, 20MHz Filter	$\mathrm{f}=20 \mathrm{MHz}$, GAIN 1	-3.6	-2.3	-1.3	dB
		$\mathrm{f}=20 \mathrm{MHz}$, GAIN 2	-3.6	-2.3	-1.3	dB
	Stopband Rejection, 20MHz Filter	$\mathrm{f}=54 \mathrm{MHz}$, GAIN 1	-30	-15	-9	dB
		$\mathrm{f}=54 \mathrm{MHz}$, GAIN 2	-30	-15	-9	dB
YPbPr-36MHz	Passband Flatness, 36 MHz Filter	$\mathrm{f}=20 \mathrm{MHz}$, GAIN 1	-1.6	-1	-0.4	dB
		$\mathrm{f}=20 \mathrm{MHz}$, GAIN 2	-1.6	-1	-0.4	dB
	Cutoff Bandwidth, 36MHz Filter	$\mathrm{f}=36 \mathrm{MHz}$, GAIN 1	-4.7	-2.7	-1.5	dB
		$\mathrm{f}=36 \mathrm{MHz}$, GAIN 2	-4.7	-2.7	-1.5	dB
	Stopband Rejection, 36MHz Filter	$\mathrm{f}=108 \mathrm{MHz}$, GAIN 1		-22		dB
		$\mathrm{f}=108 \mathrm{MHz}$, GAIN 2		-22		dB

AC Electrical Specifications

 measurements relative to $\mathrm{f}=100 \mathrm{kHz}$, unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
YPbPr-Bypass	Passband Flatness, Filter Bypassed	$\mathrm{f}=220 \mathrm{MHz}$, GAIN 1		$\pm 1$		dB
		$\mathrm{f}=220 \mathrm{MHz}$, GAIN 2		$\pm 1$		dB
	Cutoff Bandwidth, Filter Bypassed	GAIN 1		275		MHz
		GAIN 2		275		MHz
	Positive Slew Rate, Filter Bypassed	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}$ GAIN 1	350	450		V/ $/ \mathrm{s}$
		$V_{\text {OUT }}=2 V_{\text {P-P, }}$ GAIN 2	450	590		V/us
	Negative Slew Rate, Filter Bypassed	$V_{\text {OUT }}=2 V_{\text {P-P, GAIN }} 1$	350	440		V/us
		$\mathrm{V}_{\text {OUT }}=2 V_{\text {P-P, }}$ GAIN 2	720	950		V/ $/$ s
S-Video VIDEO INPUTS						
SV-10MHz	Passband Flatness, 10MHz Filter	$\mathrm{f}=7 \mathrm{MHz}$, GAIN 1	-2.3	-1.5	-0.8	dB
		$\mathrm{f}=7 \mathrm{MHz}$, GAIN 2	-2.3	-1.5	-0.8	dB
	Cutoff Rejection, 10MHz Filter	$\mathrm{f}=11 \mathrm{MHz}$, GAIN 1	-5.5	-3.4	-2	dB
		$\mathrm{f}=11 \mathrm{MHz}$, GAIN 2	-5.5	-3.4	-2	dB
	Stopband Rejection, 10MHz	$\mathrm{f}=27 \mathrm{MHz}$, GAIN 1	-32	-21	-11	dB
		$\mathrm{f}=27 \mathrm{MHz}$, GAIN 2	-32	-21	-11	dB
SV-Bypass	Passband Flatness, Filter Bypassed	$\mathrm{f}=27 \mathrm{MHz}$, GAIN 2	-2.3	-1	-0.8	dB
	Cutoff Rejection, Filter Bypassed	$\mathrm{f}=54 \mathrm{MHz}$, GAIN 2	-12	-3.6	-2.5	dB
CVBS (Composite) VIDEO INPUTS						
CVBS-7MHz	Passband Flatness, 7MHz Filter	$\mathrm{f}=5 \mathrm{MHz}$, GAIN 1	-2.7	-1.7	-1	dB
		$\mathrm{f}=5 \mathrm{MHz}$, GAIN 2	-2.7	-1.7	-1	dB
	Cutoff Rejection, 7MHz Filter	$\mathrm{f}=7 \mathrm{MHz}$, GAIN 1	-5	-3.2	-1.8	dB
		$\mathrm{f}=7 \mathrm{MHz}$, GAIN 2	-5	-3.2	-1.8	dB
	Stopband Rejection, 7MHz Filter	$\mathrm{f}=27 \mathrm{MHz}$, GAIN 1	-50	-39	-26	dB
		$\mathrm{f}=27 \mathrm{MHz}$, GAIN 2	-50	-39	-26	dB
CVBS-Bypass	Passband Flatness, Filter Bypassed	$\mathrm{f}=27 \mathrm{MHz}$, GAIN 2	-1.9	-1.1	-0.7	dB
	Cutoff Rejection, Filter Bypassed	$\mathrm{f}=54 \mathrm{MHz}$, GAIN 2	-7.2	-3.8	-2.7	dB
dG	Differential Gain	$\mathrm{f}=3.58 \mathrm{MHz}$, GAIN 1		0.5		\%
		$\mathrm{f}=3.58 \mathrm{MHz}$, GAIN 2		0.3		\%
dP	Differential Phase	$\mathrm{f}=3.58 \mathrm{MHz}$, GAIN 1		0.45		。
		$\mathrm{f}=3.58 \mathrm{MHz}$, GAIN 2		0.65		。
ALL VIDEO INPUTS						
INTER-X ${ }_{\text {TALK }}$	Inter-Channel Crosstalk	Any input of Channel A to any output Channel B and vice-versa, GAIN 1 and 2, $\mathrm{f}=10 \mathrm{MHz}$		85		dB

DC Electrical Specifications $\mathrm{V}_{\mathrm{A}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\mathrm{TIP}} I \mathrm{IN}=0.5 \mathrm{~V}$, VSLICE ${ }_{I N x}=0.6 \mathrm{~V}$,
$\mathrm{V}_{\text {LUMA }}{ }^{1}{ }_{I N x}=V_{\text {LUMA }}{ }^{2}{ }_{I N x}=0.8 ; V_{\text {CHROMA }}{ }^{x} 1_{I N x}=V_{\text {CHROMA }} \times 2_{I N x}=1.15 \mathrm{~V}$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\mathrm{A}}$	Analog Supply Range		4.5		5.5	V
$\mathrm{V}_{\mathrm{D}}$	Digital Supply Range		2.7		3.6	$\checkmark$
$\mathrm{I}_{\mathrm{A}}$	Analog Supply Current	All output groups enabled		290	350	mA
		1 Composite output enabled		25		mA
		1 S -video output group enabled		48		mA
		1 Component output group enabled		75		mA
ID	Digital Supply Current	Both sync separators enabled		3.5	6	mA
IDISABLED	Standby Supply Current	Disabled Analog Current, $\mathrm{I}_{\mathrm{A}}$		0.7	3	mA
		Disabled Digital Current, $\mathrm{I}_{\mathrm{D}}$		0.7	2.5	mA
PSRR	Power Supply Rejection	GAIN 1 or 2, any output		50		dB
PSRR ${ }_{\text {CLAMP_ON }}$	Rejection with Clamp Enabled	GAIN 1 or 2		45		dB
Gain	Low Frequency Gain	GAIN 1	0.95	1	1.05	V/V
		GAIN 2	1.9	2.0	2.1	V/V
V OS-CLAMP	Clamp Offset (Delta between external reference voltage and output during clamp)	$\mathrm{V}_{\text {REF }}=$ any reference input, GAIN 1	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}- \\ & 30 \mathrm{mV} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}+ \\ & 30 \mathrm{mV} \end{aligned}$	mV
		$\mathrm{V}_{\text {REF }}=$ any reference input, GAIN 2	$\mathrm{V}_{\text {REF }}-$ $30 \mathrm{mV}$		$\begin{gathered} \mathrm{V}_{\mathrm{REF}}+ \\ 30 \mathrm{mV} \end{gathered}$	mV
$\mathrm{V}_{\mathrm{OS}}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \\ & \text { (Useful if DC-Coupling) } \end{aligned}$	Clamp disabled, $\mathrm{A}_{\mathrm{V}}=1$		0.45		V
Ipulldown	Input Pulldown Current	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$, clamp enabled (sinking)		1		$\mu \mathrm{A}$
ICLAMP	Clamp Pullup Current	CV and S-Video, normal offset mode, clamp enabled (sourcing)	100	130	170	$\mu \mathrm{A}$
		Component/RGB, normal offset mode, clamp enabled (sourcing)	220	270	320	$\mu \mathrm{A}$
		CV and S-Video, low offset mode, clamp enabled (sourcing)	220	270	320	$\mu \mathrm{A}$
		Component/RGB, low offset mode, clamp enabled (sourcing)	400	500	650	$\mu \mathrm{A}$
Isc	Short Circuit Current	$\begin{aligned} & \mathrm{VIN}=3 \mathrm{~V}, \mathrm{AV} 2=2.0 \mathrm{~V} \text {, Sourcing, } \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \text { to } \mathrm{GND} \end{aligned}$	60	102	140	mA
		$\mathrm{VIN}=0 \mathrm{~V}$, Sinking, $\mathrm{R}_{\mathrm{L}}=10 \Omega$ to +3 V	20	30	40	mA
$V_{\text {OUT-LIN }}$	Output Linear Voltage Range		0.5		2.5	V
LOGIC INPUTS (SDA, SCL, Address, Reset, PowerDown, HSYNC ${ }_{\text {INx }}$, VSYNC $^{\text {INx }}$, SDETx)						
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage (HIGH)	All logic pins, except $\overline{\text { Reset }}$	2			V
		$\overline{\text { Reset }}$ (Pin must be $>3.5 \mathrm{~V}$ to ensure part is not resetting)	3.5			V
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voltage (LOW)				0.8	V
IIH	Input High Current ( $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Logic Inputs, Sinking)	No pull-up or pull-down	-1	0	1	$\mu \mathrm{A}$
		Pins with $300 \mathrm{k} \Omega$ internal pull-downs: Address, Reset, Power-down	8	17	34	$\mu \mathrm{A}$
IIL	Input Low Current (VIN $=0 \mathrm{~V}$, Logic Inputs, Sourcing)	No pull-up or pull-down	-1	0	1	$\mu \mathrm{A}$
		Pins with $300 \mathrm{k} \Omega$ internal pull-up: SDETx	10	15	25	$\mu \mathrm{A}$

## Serial Interface $\left(\mathbf{I}^{2} \mathrm{C}\right)$ Specifications

| SYMBOL | PARAMETER | MIN <br> (Note 1) | TYP | MAX <br> (Note 1) | UNIT |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |

TIMING CHARACTERISTICS

$\mathrm{f}_{\text {SCL }}$	SCL Frequency			400	kHz
tow	Clock LOW Time	Measured at the $30 \%$ of $\mathrm{V}_{\mathrm{D}}$ crossing.	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	Clock HIGH Time	Measured at the $70 \%$ of $V_{D}$ crossing.	0	0.9	$\mu \mathrm{s}$
tsu:STA	START Condition Set-up Time	SCL rising edge to SDA falling edge. Both crossing $70 \%$ of $\mathrm{V}_{\mathrm{D}}$.	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD: }}$ STA	START Condition Hold Time	From SDA falling edge crossing $30 \%$ of $V_{D}$ to SCL falling edge crossing $70 \%$ of $\mathrm{V}_{\mathrm{D}}$.	0.6		$\mu \mathrm{s}$
$t_{\text {HD }}$ DAT	Input Data Hold Time	From SCL falling edge crossing $70 \%$ of $V_{D}$ to SDA entering the $30 \%$ to $70 \%$ of $V_{D}$ window.	0	0.9	$\mu \mathrm{s}$
tsu:Sto	STOP Condition Set-up Time	From SCL rising edge crossing $70 \%$ of $\mathrm{V}_{\mathrm{D}}$, to SDA rising edge crossing $30 \%$ of $V_{D}$	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{R}}$	SDA and SCL Rise Time	From $30 \%$ to $70 \%$ of $\mathrm{V}_{\mathrm{D}}$	$\begin{gathered} 20+ \\ 0.1 \times \mathrm{Cb} \end{gathered}$		ns
$\mathrm{t}_{\mathrm{F}}$	SDA and SCL Fall Time	From $70 \%$ to $30 \%$ of $\mathrm{V}_{\mathrm{D}}$	$\begin{gathered} 20+ \\ 0.1 \times \mathrm{Cb} \end{gathered}$		ns
Cb	Capacitive Loading of SDA or SCL	Total on-chip and off-chip		400	pF
Cpin	SDA and SCL Pin Capacitance			10	pF

NOTE:

1. Parts are $100 \%$ tested at $+25^{\circ} \mathrm{C}$. Temperature limits established by characterization and are not production tested.

## $1^{2} \mathrm{C}$ Timing Diagram



Functional Diagram


## Component Block Diagram



## S-Video Block Diagram



## Composite Block Diagram



## Sync Separator Block Diagram



## Typical Application Circuit



Pinout


## Pin Descriptions

PIN NUMBER	PIN NAME	DESCRIPTION
COMPOSITE (CV) VIDEO INPUTS (6x1)		
127	$\mathrm{CV}_{\text {IN }} 0$	Composite Video Input 0
128	$\mathrm{CV}_{\text {IN }} 1$	Composite Video Input 1
1	$\mathrm{CV}_{1 \mathrm{IN}^{2}}$	Composite Video Input 2
38	$\mathrm{CV}_{1 \times} 3$	Composite Video Input 3
39	$C V_{\text {IN }} 4$	Composite Video Input 4
40	$\mathrm{CV}_{\text {IN }} 5$	Composite Video Input 5
COMPOSITE (CV) VIDEO OUTPUTS		
96	$\mathrm{CV}_{\text {OUT }} \mathrm{A}$	Composite Video Output A with High-Z disable mode
71	CV ${ }_{\text {OUT }}{ }^{\text {B }}$	Composite Video Output B with High-Z disable mode
S-VIDEO (SV) INPUTS (4x2)		
3	SYIN0	S-Video Luma Input 0
4	$\mathrm{SC}_{\text {IN }} 0$	S-Video Chroma Input 0
6	SY/N1	S-Video Luma Input 1
7	$\mathrm{SC}_{\text {IN }} 1$	S-Video Chroma Input 1
32	SYIN2	S-Video Luma Input 2
33	$\mathrm{SC}_{\text {IN }} 2$	S-Video Chroma Input 2
35	SY/N3	S-Video Luma Input 3
36	$\mathrm{SC}_{\text {IN }} 3$	S-Video Chroma Input 3
S-VIDEO (SV) OUTPUTS		
94	SYOUTA	S-Video Luma Output A with High-Z disable mode
93	SCOUTA	S-Video Chroma Output A with High-Z disable mode
73	SYOUTB	S-Video Luma Output B with High-Z disable mode
74	SCOUTB	S-Video Chroma Output B with High-Z disable mode
S-VIDEO CONNECTION DETECTION PINS		
2	SDET0	Digital Input with internal pull-up to $\mathrm{V}_{\mathrm{A}}$. Detects S -Video connector 0 . Tie to NC switch on S -Video connector, with other end of switch tied to ground. $\mathrm{OV}=$ no cable attached, $\mathrm{V}_{\mathrm{A}}=\mathrm{S}$-Video cable attached. 300 k pull-up to analog supply.
5	SDET1	Digital Input with internal pull-up to $\mathrm{V}_{\mathrm{A}}$. Detects S -Video connector 1. Tie to NC switch on S-Video connector, with other end of switch tied to ground. $\mathrm{OV}=$ no cable attached, $\mathrm{V}_{\mathrm{A}}=\mathrm{S}$-Video cable attached. 300 k pull-up to analog supply.
31	SDET2	Digital Input with internal pull-up to $\mathrm{V}_{\mathrm{A}}$. Detects S -Video connector 2. Tie to NC switch on S-Video connector, with other end of switch tied to ground. $\mathrm{OV}=$ no cable attached, $\mathrm{V}_{\mathrm{A}}=\mathrm{S}$-Video cable attached. 300 k pull-up to analog supply.
34	SDET3	Digital Input with internal pull-up to $\mathrm{V}_{\mathrm{A}}$. Detects S -Video connector 3. Tie to NC switch on S -Video connector, with other end of switch tied to ground. $\mathrm{OV}=$ no cable attached, $\mathrm{V}_{\mathrm{A}}=\mathrm{S}$-Video cable attached. 300 k pull-up to analog supply.

## COMPONENT (YPbPr) VIDEO INPUTS (4×3)

9	YIN0	Luma component (or Green RGB) video input 0
10	$\mathrm{Pb}_{\text {IN }} 0$	Chroma Pb component (or Blue RGB) video input 0
11	$\mathrm{Pr}_{\text {IN }} 0$	Chroma Pr component (or Red RGB) video input 0
13	YIN1	Luma component (or Green RGB) video input 1
15	$\mathrm{Pb}_{\mathrm{IN}} 1$	Chroma Pb component (or Blue RGB) video input 1

## Pin Descriptions (Continued)

PIN NUMBER	PIN NAME	DESCRIPTION
16	$\mathrm{Pr}_{\text {IN }} 1$	Chroma Pr component (or Red RGB) video input 1
22	$\mathrm{Y}_{\mathrm{IN}}{ }^{2}$	Luma component (or Green RGB) video input 2
24	$\mathrm{Pb}_{\text {IN }} 2$	Chroma Pb component (or Blue RGB) video input 2
25	$\mathrm{Pr}_{\text {IN }} 2$	Chroma Pr component (or Red RGB) video input 2
27	$\mathrm{Y}_{\text {IN }}{ }^{3}$	Luma component (or Green RGB) video input 3
29	$\mathrm{Pb}_{\text {IN }} 3$	Chroma Pb component (or Blue RGB) video input 3
30	$\mathrm{Pr}_{\text {IN }} 3$	Chroma Pr component (or Red RGB) video input 3
COMPONENT VIDEO OUTPUTS		
91	Y OUTA	Component Video Luma Output A with High-Z disable mode
89	PboutA	Chroma Pb component (or Blue Component) Video Output A with High-Z disable
88	ProutA	Chroma Pr component (or Red Component) Video Output A with High-Z disable
76	Y ${ }_{\text {OUT }}{ }^{\text {B }}$	Component Video Luma Output B with High-Z disable mode
78	Pbout ${ }^{\text {B }}$	Chroma Pb component (or Blue Component) Video Output B with High-Z disable
79	Prout ${ }^{\text {B }}$	Chroma Pr component (or Red Component) Video Output B with High-Z disable
A SYNC SEPARATOR INPUTS AND OUTPUTS		
108	$\mathrm{HSYNC}_{\text {IN }} \mathrm{A}$	Horizontal External Sync Source for Sync Separator A. This signal may be pure HSYNC or CSYNC.
109	$V^{\prime} Y$ NC ${ }_{\text {IN }} A$	Vertical External Sync Source for Sync Separator A
110	$\mathrm{C}_{\text {SETA }}$	Sync Separator filter capacitor. Connect a $0.056 \mu \mathrm{~F}$ capacitor between this pin and analog ground.
100	HSYNC OUTA	Horizontal Sync Output for Sync Separator A
101	VSYNC ${ }_{\text {OUTA }}$	Vertical Sync Output for Sync Separator A
102	FieldoutA	Field Flag for Sync Separator A. Low = odd field, high = even field.
103	ClampoutA	External Clamp Timing Pulse for Sync Separator A (for timed back porch clamping)


59	HSYNC $_{\text {IN }}$ B	Horizontal External Sync Source for Sync Separator B. This signal may be pure HSYNC or CSYNC.
58	VSYNC $_{\text {IN }}$ B	Vertical External Sync Source for Sync Separator B
57	CSET $^{\text {B }}$	Sync Separator filter capacitor. Connect a $0.056 \mu$ F capacitor between this pin and analog ground.
67	HSYNC $_{\text {OUT }}$ B	Horizontal Sync Output from Sync Separator B
66	VSYNC $_{\text {OUT }}$ B	Vertical Sync Output from Sync Separator B
65	Field $_{\text {OUT }}$ B	Field Flag for Sync Separator B. Low = odd field, high = even field.
64	Clamp $_{\text {OUT }}$ B	External Clamp Timing Pulse for Sync Separator B (for timed back porch clamping)

## EXTERNAL DC REFERENCE LEVELS

122	$\mathrm{V}_{\text {CHROMA }}{ }^{\text {2 }}{ }_{1 N}$ A	Analog Input. Chroma Reference Level for DC-Restore when $A_{V}=2$, for Channel $A$. This DC voltage sets the midpoint voltage of the C signal (S-Video) and the Pb , Pr signals (Component video) for Channel A when the gain is set to $x 2$. When using the YPbPr inputs in YPbPr mode, this DC voltage sets the clamp voltage of the $\mathrm{Pr} / \mathrm{R}$ and $\mathrm{Pb} / \mathrm{B}$ signals for Channel A . This input is typically tied together with $V_{C H R O M A} \times 2_{I N} B$ and driven with the same voltage.
121	$\mathrm{V}_{\text {CHROMA }}{ }^{1} 1_{\text {IN }} \mathrm{A}$	Analog Input. Chroma Reference Level for DC-Restore when $A_{V}=1$, for Channel $A$. This voltage sets the midpoint voltage of the C signal (S-Video) and the Pb, Pr signals (Component video) for Channel A when the gain is set to $\times 1$. When using the YPbPr inputs in YPbPr mode, this DC voltage sets the clamp voltage of the $\mathrm{Pr} / \mathrm{R}$ and $\mathrm{Pb} / \mathrm{B}$ signals for Channel A . This input is typically tied together with $V_{C H R O M A} \times 1_{I N} B$ and driven with the same voltage.

## Pin Descriptions (Continued)

PIN NUMBER	PIN NAME	DESCRIPTION
120	$V_{\text {LUMA }} \times{ }^{\text {a }}$ IN ${ }^{\text {A }}$	Analog Input. Luma Reference Level for $D C$-Restore when $A_{V}=2$, for Channel $A$. When using the $\mathbf{Y P b P r}$ inputs in RGB mode, this DC voltage sets the clamp voltage of the $\mathrm{Pr} / \mathrm{R}$ and $\mathrm{Pb} / \mathrm{B}$ signals for Channel A when the gain is set to $\times 2$. When using the YPbPr inputs in YPbPr mode, this DC voltage sets the clamp voltage of the $\mathrm{Pr} / \mathrm{R}$ and $\mathrm{Pb} / \mathrm{B}$ signals for Channel A . This input is typically tied together with $\mathrm{V}_{\text {LUMA }} \times 2{ }_{I N} B$ and driven with the same voltage. The $\mathrm{Y} / \mathrm{G}$ signal is clamped to the VTIP ${ }_{\text {IN }} A$ voltage in master mode and $V_{\text {LUMA }} \times{ }^{2}{ }_{I N} A$ in slave mode.
119	VLUMA ${ }^{1}{ }_{1 /}{ }^{\text {A }}$	Analog Input. Luma Reference Level for DC-Restore when $A_{V}=1$, for Channel $A$. When using the YPbPr inputs in RGB mode, this DC voltage sets the clamp voltage of the $R$ and $B$ signals for Channel $A$ when the gain is set to $x 1$. This input is typically tied together with $V_{\text {LUMA }} \times{ }^{1}{ }_{I N} B$ and driven with the same voltage. The $\mathrm{Y} / \mathrm{G}$ signal is clamped to the V TIP ${ }_{I N} A$ voltage in master mode and $\mathrm{V}_{\text {LUMA }} \times{ }^{1}{ }_{I N} A$ in slave mode.
118	VSLICE ${ }_{\text {IN }} A$	Analog Input. Slicer comparator threshold for extracting composite sync from video, for Channel A. This DC voltage is typically set to 0.07 V above $\mathrm{V}^{2} P_{I N} \mathrm{~A}$, creating a sync tip slicing level of 70 mV . This input is typically tied together with VSLICE ${ }_{I N} B$ and driven with the same voltage.
117	VTIP INA	Analog Input. Sync Tip Reference Level for DC-Restore, for Channel A. This DC voltage sets the level of the sync tip of Channel A's output signal. This input is typically tied together with VTIP ${ }_{1 N} B$ and driven with the same voltage. In RGB mode (with no Sync-on-Green), this sets the black level of the G channel.
45	$\mathrm{V}_{\text {CHROMA }} \times 2_{\text {IN }} \mathrm{B}$	Analog Input. Chroma Reference Level for DC-Restore when $A_{V}=2$, for Channel A. This DC voltage sets the midpoint voltage of the C signal ( S -Video) and the Pb , Pr signals (Component video) for Channel A when the gain is set to $\times 2$. When using the YPbPr inputs in YPbPr mode, this DC voltage sets the clamp voltage of the $\mathrm{Pr} / \mathrm{R}$ and $\mathrm{Pb} / \mathrm{B}$ signals for Channel B . This input is typically tied together with $\mathrm{V}_{\mathrm{CHROMA}} \times{ }^{\mathrm{IN}} \mathrm{A}$ and driven with the same voltage.
46	$\mathrm{V}_{\text {CHROMA }}{ }^{10}{ }_{\text {IN }} \mathrm{B}$	Analog Input. Chroma Reference Level for DC-Restore when $A_{V}=1$, for Channel A. This voltage sets the midpoint voltage of the C signal ( S -Video) and the Pb , Pr signals (Component video) for Channel A when the gain is set to $\times 1$. When using the YPbPr inputs in YPbPr mode, this DC voltage sets the clamp voltage of the $\mathrm{Pr} / \mathrm{R}$ and $\mathrm{Pb} / \mathrm{B}$ signals for Channel B . This input is typically tied together with $\mathrm{V}_{\text {CHROMA }} \times{ }^{1}{ }_{I N} A$ and driven with the same voltage.
47	$\mathrm{V}_{\text {LUMA }} \times{ }^{\text {a }}$ IN ${ }^{\text {B }}$	Analog Input. Luma Reference Level for DC-Restore when $A_{V}=2$, for Channel $B$. When using the $\mathbf{Y P b P r}$ inputs in RGB mode, this DC voltage sets the clamp voltage of the $R$ and $B$ signals for Channel $B$ when the gain is set to $\times 2$. This input is typically tied together with $V_{\text {LUMA }} \times 2_{I N} A$ and driven with the same voltage. The $\mathrm{Y} / \mathrm{G}$ signal is clamped to the $\mathrm{VTIP}_{I N} B$ voltage in master mode and $\mathrm{V}_{\text {LUMA }} \times 2_{I N} B$ in slave mode.
48	$\mathrm{V}_{\text {LUMA }}{ }^{\times 1}{ }_{\text {IN }}{ }^{\text {B }}$	Analog Input. Luma Reference Level for DC-Restore when $A_{V}=1$, for Channel $B$. When using the YPbPr inputs in RGB mode, this DC voltage sets the clamp voltage of the $R$ and $B$ signals for Channel $B$ when the gain is set to $x 1$. This input is typically tied together with $V_{\text {LUMA }} \times{ }^{1}{ }_{I N} A$ and driven with the same voltage. The $\mathrm{Y} / \mathrm{G}$ signal is clamped to the $\mathrm{VTIP}{ }_{I N} B$ voltage in master mode and $\mathrm{V}_{\text {LUMA }} \times{ }^{1}{ }_{I N} B$ in slave mode.
49	VSLICE $_{\text {IN }} B$	Analog Input. Slicer comparator threshold for extracting composite sync from video, for Channel B. This DC voltage is typically set to 0.07 V above $\mathrm{VTIP}_{I N} \mathrm{~B}$, creating a sync tip slicing level of 70 mV . This input is typically tied together with VSLICE IN A and driven with the same voltage.
50	VTIP ${ }_{\text {IN }}{ }^{\text {B }}$	Analog Input. Sync Tip Reference Level for DC-Restore, for Channel B. This DC voltage sets the level of the sync tip of Channel B's output signal. This input is typically tied together with VTIP ${ }_{\text {IN }} A$ and driven with the same voltage. In RGB mode (with no Sync-on-Green), this sets the black level of the $G$ channel.

## $I^{2} \mathrm{C}$ CONTROL AND I/O

85	SDA	$I^{2} \mathrm{C}$ Bus Data I/O
82	SCL	$I^{2} \mathrm{C}$ Bus Clock
92	Address	Digital Input with internal pull-down. Sets $\mathrm{I}^{2} \mathrm{C}$ address: $0 \times 84$ if tied low, $0 \times 8 \mathrm{C}$ if tied high. (300k pull-down)

IC RESET, ENABLE AND MISC.

77	Reset	5V Digital Input, with 3.5 V logic threshold and a 300k pull-down. Tie to +5 V for normal operation. Taking   Reset to 0 V and back to 5 V initializes all data registers to $0 \times 00$.
90	PowerDown	Digital Input with 300k pull-down. When this pin is taken high, all analog circuitry is disabled to minimize   power consumption. In PowerDown mode, the outputs are tri-stated while the $\mathrm{I}^{2} \mathrm{C}$ interface remains active   and all register data is retained.
POWER SUPPLIES		
$18,20,42,125$	$\mathrm{~V}_{\mathrm{A}}$	+5V Analog supply

## Pin Descriptions (Continued)

PIN NUMBER	PIN NAME	DESCRIPTION
80, 87	$\mathrm{V}_{\mathrm{A}}$	+5V Analog supply for output drivers
POWER SUPPLIES DIGITAL (3V)		
83	$V_{D}$	Digital Plus Supply for $\mathrm{I}^{2} \mathrm{C}$
53, 68, 99, 114	$V_{D}$	Digital Supply for Sync Separators
POWER SUPPLIES ANALOG GROUND (0V)		
$\begin{aligned} & 8,12,14,17, \\ & 19,21,23,26, \\ & 28,37,41,43, \\ & 44,69,70,72, \\ & 81,95,97,98, \\ & 123,124,126 \end{aligned}$	$\mathrm{GND}_{\mathrm{A}}$	Analog Ground
POWER SUPPLIES DIGITAL GROUND (0V)		
$\begin{aligned} & 51,52,54,55, \\ & 56,60,61,62, \\ & 75,84,86, \\ & 105,106,107, \\ & 111,112,113, \\ & 115,116 \end{aligned}$	GND ${ }_{\text {D }}$	Digital Ground
UNUSED PINS		
63, 104	DNC	Not Implemented. Do Not Connect these pins to anything (leave floating).

Typical Performance Curves $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.


FIGURE 1. ANALOG SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 3. COMPOSITE FREQUENCY RESPONSE (GAIN 1)


FIGURE 2. DIGITAL SUPPLY CURRENT vs SUPPLY VOLTAGES


FIGURE 4. COMPOSITE FREQUENCY RESPONSE (GAIN 2)

Typical Performance Curves $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)


FIGURE 5. S-VIDEO FREQUENCY RESPONSE (GAIN 1)


FIGURE 7. COMPONENT BANDWIDTH vs FREQUENCY RESPONSE (GAIN = 1)


FIGURE 9. DIFFERENTIAL GAIN


FIGURE 6. S-VIDEO FREQUENCY RESPONSE (GAIN 2)


FIGURE 8. COMPONENT BANDWIDTH vs FREQUENCY RESPONSE (GAIN = 2)


FIGURE 10. DIFFERENTIAL PHASE

Typical Performance Curves $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)


FIGURE 11. COLORBAR RESPONSE


FIGURE 13. 12.5T RESPONSE


FIGURE 15. COMPONENT LARGE SIGNAL PULSE RESPONSE GAIN 2


FIGURE 12. 2T RESPONSE


FIGURE 14. COMPONENT LARGE SIGNAL PULSE RESPONSE GAIN 1


FIGURE 16. COMPOSITE GROUP DELAY

Typical Performance Curves $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)


FIGURE 17. S-VIDEO GROUP DELAY


FIGURE 19. COMPONENT 20MHz FILTER GROUP DELAY


FIGURE 21. COMPONENT BYPASS GROUP DELAY


FIGURE 18. COMPONENT 10MHz FILTER GROUP DELAY


FIGURE 20. COMPONENT 36MHz FILTER GROUP DELAY


FIGURE 22. INTER-CHANNEL CROSSTALK

Typical Performance Curves $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)


FIGURE 23. INTRA-CHANNEL CROSSTALK: COMPOSITE TO COMPONENT/S-VIDEO


FIGURE 25. INTRA-CHANNEL CROSSTALK: COMPONENT INPUT TO COMPOSITE OUTPUT


FIGURE 27. COMPOSITE/S-VIDEO: CLAMP RESPONSE TO +250mV STEP ON INPUT (HIGH OFFSET MODE)


FIGURE 24. INTRA-CHANNEL CROSSTALK: S-VIDEO TO COMPONENT/COMPOSITE


FIGURE 26. INTRA-CHANNEL CROSSTALK: COMPONENT INPUT TO S-VIDEO OUTPUT


FIGURE 28. COMPOSITE/S-VIDEO: CLAMP RESPONSE TO +250mV STEP ON INPUT (LOW OFFSET MODE)

Typical Performance Curves $\mathrm{V}_{\mathrm{A}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)


FIGURE 29. COMPONENT: CLAMP RESPONSE TO +250mV STEP ON INPUT (HIGH OFFSET MODE)


FIGURE 31. PULL-DOWN CURRENT RESPONSE


FIGURE 30. COMPONENT: CLAMP RESPONSE TO +250mV STEP ON INPUT (LOW OFFSET MODE)


FIGURE 32. PSRR vs FREQUENCY


## Functional Description

## Signal Muxes

The ISL59450 accepts 6 composite, 4 S-video and 4 component video sources. Each signal type is routed into a crosspoint mux with two outputs. The 6 composite signals are routed into a 6:2 mux, the S-video inputs are routed into a double 4:2 mux and the component video signals are routed into a triple 4:2 mux. Each mux is controlled through the $\mathrm{I}^{2} \mathrm{C}$ interface.

Each signal type has two dedicated outputs, A and B. Signal types cannot be routed to different signal type outputs. For example, an S-video signal (Y, C) cannot be routed to the composite outputs.

For the luma (Y and CVBS) channels, the DC-restore function is either a standard sync-tip clamp (Master Mode) or slaved to a clamp signal generated from the sync separator (Slave Mode).
For the chroma ( C and $\mathrm{Pr} / \mathrm{Pb}$ ) channels, the DC -restore function is a keyed clamp timed to the luma channel (Master Mode) or timed to a clamp signal generated from the sync separator (Slave Mode).

The clamping circuit restores the AC-coupled video signal to a fixed DC level ( $V_{\text {TIP, or }} V_{\text {LUMA }}$ ). The clamping circuit provides line-by-line restoration of the video sync level to a the selected DC reference voltage during the sync tip.

## Clamp Modes

The ISL59450 has two clamp modes: master and slave. Each output group can operate in either mode. In master mode, sync timing is derived directly from the video signal and video levels are clamped using this internal sync signal. In slave mode, video sync is derived from the input groups corresponding sync separator (A or B) or an external source connected to the corresponding sync separator. In the slave mode, the sync timing can come from $\mathrm{HSYNC}_{\mathrm{IN}}$ and $\mathrm{VSYNC}_{\text {IN }}$ or it can be derived from the sync timing on the active video on the composite, S-video, or component channels (see "Sync Separator Block Diagram" on page 9). In the slave mode, clamping occurs during the sync tip of the selected video signal or the HSYNC signal (external HSYNC input).

## Filters

The ISL59450 has integrated anti-aliasing/smoothing filters for SD and HD video signals. For the Composite Video signals, the user can use a 7 MHz low pass filter or bypass it (40MHz bandwidth). S-video signals have an 10 MHz filter with bypass ( 43 MHz ). Component Video signals have a user-selectable $36 \mathrm{MHz}, 20 \mathrm{MHz}$, or 10 MHz filter, or bypass $(275 \mathrm{MHz})$. All filters selections are made via the $\mathrm{I}^{2} \mathrm{C}$ host interface.

## Clamps

The clamps for all the luma and composite channels can be sync tip clamps (master mode) or timed keyed clamps (slave
mode) driven off the sync separator. The clamps for the chroma channels ( $\mathrm{C} / \mathrm{Pr} / \mathrm{Pb}$ ) are keyed clamps timed to either the luma (master mode) or the sync separator (slave mode).

## Clamp Disable

The clamp can be disabled for each channel by setting the appropriate bit high in the Miscellaneous 2 register ( $0 \times 16$ ).

For the S-video and component channels, additional action needs to be taken in order to completely disable the clamps.

For S-video, setting the bit in the Miscellaneous 2 register disables the pull-down $1 \mu \mathrm{~A}$ pull-down current for both the luma and chroma channel along with the clamp pull-up current for the luma channel. However, it does not disable the clamp pull-up current for the chroma channel unless the sync separator for that channel is set to $0 \times 25$.
For component, setting the bit in the Miscellaneous 2 register disables the pull-down $1 \mu \mathrm{~A}$ pull-down current for all three channels, along with the clamp pull-up current for the luma channel. However, it does not disable the clamp pull-up current for the Pr and Pb channels unless the sync separator for that channel is set to $0 \times 24$.

## Low Offset Mode

Setting bit 6 in the Composite and S-Video Channel registers increases the maximum amount of pull-up clamp current available from $130 \mu \mathrm{~A}$ to $270 \mu \mathrm{~A}$, which slightly reduces the offset between the reference and the output when the clamp is enabled.

For the component channels, this setting can be enabled by setting Bit 7 in the Miscellaneous 2 register for Channel $A$ and Bit 3 for Channel B. This mode increases the maximum amount of pull-up clamp current available from $270 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$.

## References

Table 1 shows the references used for clamping depending on the mode and video input being used. $V_{\text {SLICE }}$ should usually be set to 70 mV to 100 mV above the selected reference level for luma.
table 1. CHANNEL REFERENCE LEVELS

VIDEO OUTPUT	MASTER MODE		SLAVE MODE	
	GAIN 1	GAIN 2	GAIN 1	GAIN 2
Composite	$\mathrm{V}_{\text {TIP }}$	$\mathrm{V}_{\text {TIP }}$	VLUMAx1	VLUMAx2
S-Video Luma	$\mathrm{V}_{\text {TIP }}$	$\mathrm{V}_{\text {TIP }}$	$V_{\text {LUMA }}{ }^{\text {x }}$	$V_{\text {LUMA }} \times 2$
S-Video Chroma	$\mathrm{V}_{\text {CHROMA }}{ }^{\text {x1 }}$	$\mathrm{V}_{\text {CHROMA }}{ }^{\text {x2 }}$	$\mathrm{V}_{\text {CHROMA }}{ }^{\text {x }}$	$\mathrm{V}_{\text {CHROMA }}{ }^{\text {x2 }}$
Component: Luma/Green (YPrPb Mode)	$\mathrm{V}_{\text {TIP }}$	$\mathrm{V}_{\text {TIP }}$	V Lumax ${ }^{\text {1 }}$	$\mathrm{V}_{\text {LUMA }} \times 2$
Component: Luma/Green (RGB Mode)	$\mathrm{V}_{\text {TIP }}$	$\mathrm{V}_{\text {TIP }}$	V LUMA ${ }^{\text {x }}$	$\mathrm{V}_{\text {LUMA }} \times 2$

TABLE 1. CHANNEL REFERENCE LEVELS (Continued)

VIDEO OUTPUT	MASTER MODE		SLAVE MODE	
	GAIN 1	GAIN 2	GAIN 1	GAIN 2
Component:   Pr/Pb   (YPrPb Mode)	$\mathrm{V}_{\text {CHROMA }}{ }^{1}$	$\mathrm{V}_{\text {CHROMA }} \times 2$	$\mathrm{V}_{\text {Chroma }}{ }^{\text {a }}$	$\mathrm{V}_{\text {CHROMA }}{ }^{\text {2 }}$
Component:   Pr/Pb   (RGB Mode)	$V_{\text {LUMA }} \times 1$	V LUMAX2	$V_{\text {LUMA }} \times 1$	VLUMAx2

Bypass each reference voltage with a $0.01 \mu \mathrm{~F}$ capacitor to ground to reduce noise injection.

TABLE 2. SUGGESTED REFERENCE LEVELS

REFERENCE	voltage   (V)
VTIP ${ }_{\text {IN }} \mathrm{A}$	0.5
VTIP ${ }_{\text {IN }}{ }^{\text {B }}$	0.5
$\mathrm{V}_{\text {LUMA }}{ }^{\text {x }}{ }_{\text {IN }}{ }^{\text {A }}$	0.5
$V_{\text {LUMA }}{ }^{\text {x }}{ }_{\text {IN }}{ }^{\text {A }}$	0.5
$V_{\text {LUMA }}{ }^{1}{ }_{1 \text { IN }}{ }^{\text {B }}$	0.5
$V_{\text {LUMA }} \times{ }^{\text {IN }}$ B	0.5
$\mathrm{V}_{\text {CHROMA }}{ }^{10}{ }_{\text {IN }} \mathrm{A}$	1
$\mathrm{V}_{\text {CHROMA }}{ }^{2}{ }_{\text {IN }}{ }^{\text {A }}$	1
$\mathrm{V}_{\text {CHROMA }}{ }^{10}{ }^{1}{ }^{\text {B }}$ B	1
$\mathrm{V}_{\text {CHROMA }}{ }^{\text {IN }}$ B	1
VSLICE ${ }_{\text {IN }} \mathrm{A}$	0.6
VSLICE $_{\text {IN }} \mathrm{B}$	0.6

## Outputs/Levels

Each signal output has a selectable gain of 0dB (GAIN 1) or 6dB (GAIN 2).

The input to the sync separators can be any of the video inputs, as shown in the "Sync Separator Block Diagram" on page 9. The HSYNC and VSYNC inputs are dedicated to their respective sync separator (i.e. Sync Separator A can connect to $H_{S Y N C}^{I N} A$ and $V S Y N C_{I N} A$, but not $H S Y N C_{I N} B$ and VSYNC $_{\text {IN }}{ }^{B}$ ).

## Sync Separators

The ISL59450 contains two high performance video sync separators that automatically lock to any SD and HD video signal. They will also extract sync timing information from non-standard video inputs and in the presence of Macrovision pulses. Composite sync, vertical sync and horizontal sync outputs are provided from each sync separator. Timing is adjusted automatically for various video standards. The composite sync output follows video in sync pulses and a vertical sync pulse is output on the rising edge of the first vertical serration following the vertical pre-equalizing string. For non-standard vertical inputs, a default vertical pulse is output when the vertical signal stays
low for longer than the vertical sync default delay time. The horizontal output gives horizontal timing with pre/post equalizing pulses.

The use of two sync separators allows the user to send independent sync information for two signals to downstream devices. An example would be two video decoders or two ADCs that are used in a picture-in-picture application. Each sync separator is dedicated to its respective channel, Sync Separator A for Channel A and Sync Separator B for Channel B. It is important to note that the syncs for each channel cannot be MUXed onto the other channel. For example, $\mathrm{HSYNC}_{I N} A$ and $V S Y N C_{I N} A$ cannot be MUXed to HSYNC ${ }_{\text {OUT }} \mathrm{B}$ and VSYNCOUTB.

See the "Sync Separator Timing Diagrams" beginning on page 32 for typical horizontal and vertical sync output timing.

## VERTICAL SYNC

A low-going Vertical Sync pulse is output during the start of the vertical cycle of the incoming video signal. The vertical cycle starts with a pre-equalizing phase of pulses with a duty cycle of about $93 \%$, followed by a vertical serration phase that has a duty cycle of about $15 \%$. Vertical Sync is clocked out of the ISL59450 on the first rising edge during the vertical serration phase. In the absence of vertical serration pulses, a vertical sync pulse will be forced out after the vertical sync default delay time, approximately $60 \mu$ s after the last falling edge of the vertical equalizing phase.

## HORIZONTAL SYNC

The horizontal circuit senses the composite sync edges and produces the true horizontal pulses of nominal width $5 \mu \mathrm{~s}$ for standard definition NTSC signals. The pulse width of the HSYNC output changes as the line frequency of the input signal changes. For example, an NTSC input generates an HSYNC video input generates an HSYNC OUT with a pulse width of $1.9 \mu \mathrm{~s}$. The leading edge is triggered from the leading edge of the input HSYNC with the same propagation delay as composite sync. The half line pulses present in the input signal during vertical blanking are removed with an internal 2 H line eliminator circuit. This is a circuit that inhibits horizontal output pulses until $75 \%$ of the line time is reached, then the horizontal output operation is enabled again. Any signals present on the I/P signal after the true H sync will be ignored, thus the horizontal output will not be effected by MacroVision copy protection. When there is a loss of sync, the Horizontal Sync output is held high.

## $C_{\text {SET }}$

Connect external capacitors from $\mathrm{C}_{\text {SET }} \mathrm{A}$ and $\mathrm{C}_{\text {SET }} \mathrm{B}$ to ground. The $\mathrm{C}_{\text {SET }}$ capacitor should be a X7R grade or better as the Y5U general use capacitors may be too leaky and cause faulty operation. The $\mathrm{C}_{\text {SET }}$ capacitor should be very close to the $C_{S E T} A$ and $C_{S E T} B$ pins to reduce possible board leakage. 56 nF is recommended. The $\mathrm{C}_{\text {SET }}$ capacitor rectifies a $5 \mu$ s pulse current and creates a voltage on $\mathrm{C}_{\text {SET }}$.

The CSET voltage is converted to bias current for $\mathrm{H}_{\text {SYNC }}$ and $V_{\text {SYNC }}$ timing.

## Internal Control Registers

The ISL59450 is initialized and controlled by a set of internal registers that define the operating parameters of the entire device. Communication is established between the external controller and the ISL59450 through a standard I ${ }^{2}$ C host port interface, as described earlier. The Register Listing table on page 24 describes all of these registers. Detailed $I^{2} C$ programming information for each register is described in "ISL59450 Serial Communications" on page 33.

Note: Do not write to reserved registers. Reserved bits in any register should be written with 0s, unless otherwise noted.

## INITIALIZATION

It is recommended that the registers are initialized to $0 x 00$ by toggling the Reset pin low after powering the device. Once the registers are initialized, set bit 0 of Miscellaneous
Register 1 to one to engage the global enable and allow the various channels to be powered up.

## Logic Control Signals

$\overline{\text { Reset }}$ is a 5 V digital Input, with 3.5 V logic threshold and a 300k pull-down. Tie to +5 V for normal operation. Taking Reset to 0 V and back to 5 V initializes all data registers to $0 \times 00$.

Power-down is a digital input with 300k pull-down. When this pin is taken high, all analog circuitry is disabled to minimize power consumption. In Power-down mode, the outputs are tri-stated while the $\mathrm{I}^{2} \mathrm{C}$ interface remains active and all register data is retained.

## Crosstalk Issues

Do not set any one input to both $A$ and $B$ channels if the references and modes for $A$ and $B$ are different. For example, do not send $\mathrm{CV}_{\mathrm{IN}^{2}} 0$ to both $\mathrm{CV}_{\text {OUT }} \mathrm{A}$ and $\mathrm{CV}_{\text {OUT }} \mathrm{B}$ if the references for Channel $A$ and Channel $B$ are different or if one channel is in slave mode while the other is in master mode. This could cause clamping conflicts and compromise performance.

Use the lowest bandwidth setting suitable for each application to minimize noise, aliasing, and crosstalk. See "Typical Application Curves" on page 19 and page 19.

## Layout Issues

- Match channel-to-channel analog I/O trace lengths and layout symmetry. This will minimize propagation delay mismatches for S -video and component traces.
- All signal I/O lines should be routed over continuous ground planes (i.e. no split planes or PCB gaps under these lines).
- Put the proper termination resistors as close to the device as possible.
- When testing, use high quality connectors and cables, matching cable types and keep cable lengths to a minimum.
- Decouple well using a minimum of 2 power supply decoupling capacitors ( $1000 \mathrm{pF}, 0.01 \mu \mathrm{~F}$ ), placed as close to the devices as possible. Vias between the capacitor and the device add unwanted inductance. Larger capacitors can be farther away.


## Power Dissipation

With the high output drive capability of the ISL59450, it is possible to exceed the $+125^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions.
Therefore, it is important to calculate the maximum junction temperature for an application to determine if load conditions or package types need to be modified to assure operation of the amplifier in a safe operating area.

The maximum power dissipation allowed in a package is determined according to Equation 1:
$P D_{\text {MAX }}=\frac{T_{\text {JMAX }}-T_{\text {AMAX }}}{\theta_{J A}}$
Where:
$\mathrm{T}_{\mathrm{JMAX}}=$ Maximum junction temperature
$\mathrm{T}_{\text {AMAX }}=$ Maximum ambient temperature
$\theta_{\mathrm{JA}}=$ Thermal resistance of the package
The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or:
for sourcing use Equation 2 :

$$
\begin{equation*}
\mathrm{PD}_{\mathrm{MAX}}=\mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{SMAX}}+\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \frac{\mathrm{V}_{\mathrm{OUT}}}{R_{\mathrm{L}}} \tag{EQ.2}
\end{equation*}
$$

for sinking use Equation 3:

$$
\begin{equation*}
P D_{\text {MAX }}=V_{S} \times I_{S M A X}+\left(V_{\text {OUT }}-V_{S}\right) \times I_{\text {LOAD }} \tag{EQ.3}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=\text { Supply voltage } \\
& \mathrm{I}_{\text {SMAX }}=\text { Maximum quiescent supply current } \\
& \mathrm{V}_{\text {OUT }}=\text { Maximum output voltage of the application } \\
& \mathrm{R}_{\text {LOAD }}=\text { Load resistance tied to ground } \\
& \text { I LOAD } \text { = Load current }
\end{aligned}
$$

## Register Listings

ISL59	$50 \mathrm{I}^{2} \mathrm{C}$ CONTROL MAP	DATA   GREY = READ ONLY, WHITE = READ/WRITE							
$1^{2} \mathrm{C}$ ADDR.	FUNCTION	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
0x00	Sync Separator A	Sync   Output   Polarity	Reserved Set to 0	Enable	Reserved Set to 0	Sync Input Polarity	Sync Type	Input   Select b1	Input Select b0
$0 \times 01$	Sync Separator B	Sync   Output   Polarity	Reserved Set to 0	Enable	Reserved Set to 0	Sync Input Polarity	Sync Type	Input   Select b1	Input   Select b0
0x02	Composite Output A	Slave   Mode A	Low Offset Mode	Enable	Output Amplifier Gain	Filter Disable	Input   Select b2	Input   Select b1	Input   Select b0
0x03	Composite Output B	Slave Mode B	Low Offset Mode	Enable	Output Amplifier Gain	Filter Disable	Input   Select b2	Input   Select b1	Input Select b0
0x04	S-Video Output Group A	Slave Mode A	Low Offset Mode	Enable	Output Amplifier Gain	Filter Disable	Reserved Set to 0	Input Select b1	Input Select b0
0x05	S-Video Output Group B	Slave   Mode B	Low Offset Mode	Enable	Output Amplifier Gain	Filter Disable	Reserved Set to 0	Input   Select b1	Input Select b0
0x06	Component Video Output Group A	Slave Mode A	RGB   Mode	Enable	Output Amplifier Gain	Filter b1	Filter b0	Input Select b1	Input Select b0
0x07	Component Video Output Group B	Slave Mode B	RGB   Mode	Enable	Output Amplifier Gain	Filter b1	Filter b0	Input Select b1	Input Select b0
$\begin{gathered} 0 \times 08- \\ 0 \times 13 \end{gathered}$	Reserved Ignore the contents of and do not write to these registers.	0	0	0	0	0	0	0	0
0x14	Miscellaneous 1 S-Video Connected. Field Invert Enable allows Field output signal to be inverted when "Sync Output Polarity" bit is set. Global Enable: 0: Low power standby mode with outputs in highimpedance state, 1: Powers up all internal reference	S-Video 3 Connected	S-Video 2 Connected	S-Video 1 Connected	S-Video 0 Connected	Reserved Set to 0	Reserved Set to 0	Field Invert Enable	Global Enable
0x15	Reserved Ignore the contents of and do not write to these registers.	Reserved							
0x16	Miscellaneous 2	Component A Low Offset Mode	Disable Component A Clamp	Disable S-Video A Clamp	Disable Composite A Clamp	Component B Low Offset Mode	Disable Component B Clamp	Disable S-Video B Clamp	Disable Composite B Clamp

Register Descriptions

ADDRESS	REGISTER	BIT(S)	FUNCTION NAME	DESCRIPTION
$0 \times 00$	Sync Separator A	1:0	Input Select A	Chooses the sync source for Sync Separator A to process. Use these bits in conjunction with the Sync Type bit directly below.   00: Component SOG (Channel A)   01: S-Video SOG (Channel A)   10: Composite SOG (Channel A)   11: External H and V or CSYNC on H (Channel A)
		2	Sync Type A	This bit must be set to the type of incoming sync. For all SOG or CSYNC signals, this bit should be set.   0: HSYNC is on HSYNCA, VSYNC is on VSYNCA   1: SOG or CSYNC on HSYNCA
		3	Sync Input Polarity A	This bit must be set depending on the polarity of the incoming sync.   0 : SOG and active low external HSYNC/CSYNC.   1: Active high external, HSYNC/CSYNC signal.   This forces the internal polarity of the HSYNC signal to be correct for clamping. Please note setting this bit also inverts the polarity of HsyncA and VsyncA outputs. See "Typical Register Settings" on page 31 for correct values.
		4	Reserved	Set this bit to 0 .
		5	Enable A	0 : Sync Separator $A$ is disabled   1: Sync Separator $A$ is enabled
		6	Reserved	Set this bit to 0 .
		7	Sync Output Polarity A	Polarity of HsyncA and VsyncA outputs   0: Active Low   1: Active High   Note: If the Field Invert Enable bit (register 0x14b1) is set, FieldA's output will also be inverted when this bit is set.

Register Descriptions (Continued)

ADDRESS	REGISTER	BIT(S)	FUNCTION NAME	DESCRIPTION
0x01	Sync Separator B	1:0	Input Select B	Chooses the sync source for Sync Separator B to process. Use these bits in conjunction with the Sync Type bit directly below.   00: Component SOG (Channel B)   01: S-Video SOG (Channel B)   10: Composite SOG (Channel B)   11: External H and V or CSYNC on H (Channel B)
		2	Sync Type B	This bit must be set to the type of incoming sync. For all SOG or CSYNC signals, this bit should be set.   0 : HSYNC is on HSYNCB, VSYNC is on VSYNCB   1: SOG or CSYNC on HSYNCB
		3	Sync Input Polarity B	This bit must be set depending on the polarity of the incoming sync.   0: SOG and active low external HSYNC/CSYNC.   1: Active high external, HSYNC/CSYNC signal.   This forces the internal polarity of the HSYNC signal to be correct for clamping. Please note setting this bit also inverts the polarity of HsyncB and VsyncB outputs. See "Typical Register Settings" on page 31 for correct values.
		4	Reserved	Set this bit to 0 .
		5	Enable B	0 : Sync Separator B is disabled   1: Sync Separator B is enabled
		6	Reserved	Set this bit to 0 .
		7	Sync Output Polarity B	Polarity of HsyncB and VsyncB outputs   0 : Active Low   1: Active High   Note: If the Field Invert Enable bit (register 0x14b1) is set, FieldB's output will also be inverted when this bit is set.
$0 \times 02$	Composite Channel A	2:0	Input Select A	0: $\mathrm{CVBS}_{\mathrm{IN}^{1}} 0$   1: $\mathrm{CVBS}_{\mathrm{IN}^{1}} 1$   2: $\mathrm{CVBS}_{\mid{ }^{\mathrm{N}} 2}$   3: $\mathrm{CVBS}_{\mathrm{IN}^{3}}$   4: $\mathrm{CVBS}_{\mathbb{N}^{4}} 4$   5: $\mathrm{CVBS}_{\text {IN }} 5$
		3	Filter Disable A	0: 7MHz Smoothing Filter   1: Smoothing Filter bypassed (40MHz bandwidth)
		4	Output Amplifier Gain A	$\begin{aligned} & \text { 0: x1 } \\ & \text { 1: } x 2 \end{aligned}$
		5	Enable A	0: Disables (High-Z) Composite A output   1: Enables Composite output A
		6	Low Offset Mode A	0: Normal Mode   1: Low Offset Mode   Slightly lowers the DC offset from input to output by increasing the maximum amount of clamp restore current from $130 \mu \mathrm{~A}$ to $270 \mu \mathrm{~A}$.
		7	Slave Mode A	0: Sync tip DC-restore on selected channel (master mode)   1: DC-restore clamp timing slaved to Sync Separator A (slave mode)

Register Descriptions (Continued)

ADDRESS	REGISTER	BIT(S)	FUNCTION NAME	DESCRIPTION
0x03	Composite Channel B	2:0	Input Select B	0: $\mathrm{CVBS}_{\mathrm{IN}^{0}}$   1: $\mathrm{CVBS}_{\mathrm{IN}^{1}}$   2: $\mathrm{CVBS}_{\mathrm{IN}^{2}}$   3: $\mathrm{CVBS}_{\text {IN }} 3$   4: $\mathrm{CVBS}_{\text {IN }} 4$   5: $\mathrm{CVBS}_{\text {IN }} 5$
		3	Filter Disable B	0: 7MHz Smoothing Filter   1: Smoothing Filter bypassed ( 40 MHz bandwidth)
		4	Output Amplifier Gain B	$\begin{array}{\|l\|} \hline 0: \text { x1 } \\ \text { 1: x2 } \end{array}$
		5	Enable B	0: Disables (High-Z) Composite B output   1: Enables Composite output B
		6	Low Offset Mode B	0: Normal Mode   1: Low Offset Mode   Slightly lowers the DC offset from input to output by increasing the maximum amount of clamp restore current from $130 \mu \mathrm{~A}$ to $270 \mu \mathrm{~A}$.
		7	Slave Mode B	0: Sync tip DC-restore on selected channel (master mode)   1: DC-restore clamp timing slaved to Sync Separator B (slave mode)
0x04	S-Video Channel A	1:0	Input Select A	0 : Svideoin ${ }^{0}$   1: Svideo ${ }^{\mathbf{N}}{ }^{1}$   2: Svideo $_{\text {IN }}{ }^{2}$   3: Svideo ${ }^{1} 3$
		2	Reserved	Set this bit to 0
		3	Filter Disable A	0: 10MHz Smoothing Filter   1: Smoothing Filter bypassed (40MHz bandwidth)
		4	Output Amplifier Gain A	$\begin{array}{\|l\|l\|} \hline 0: \times 1 \\ 1: x 2 \end{array}$
		5	Enable A	0: Disables (High-Z) S-Video A outputs 1: Enables S-Video A outputs
		6	Low Offset Mode A	0: Normal Mode   1: Low Offset Mode   Slightly lowers the DC offset of the output by increasing the maximum amount of clamp restore current from $130 \mu \mathrm{~A}$ to $270 \mu \mathrm{~A}$.
		7	Slave Mode A	0: Sync tip DC-restore on selected channel (master mode)   1: DC-restore clamp timing slaved to Sync Separator A (slave mode)

Register Descriptions (Continued)

ADDRESS	REGISTER	BIT(S)	FUNCTION NAME	DESCRIPTION
$0 \times 05$	S-Video Channel B	1:0	Input Select B	$0:$ Svideo $_{\mathrm{N}} 0$   1: Svideo ${ }^{\mathbf{N}}{ }^{1}$   2: Svideo $_{\text {IN }}{ }^{2}$   3: Svideo.n ${ }^{3}$
		2	Reserved	Set this bit to 0
		3	Filter Disable B	$0: 10 \mathrm{MHz}$ Smoothing Filter   1: Smoothing Filter bypassed (40MHz bandwidth)
		4	Output Amplifier Gain B	$\begin{aligned} & \text { 0: x1 } \\ & \text { 1: } x 2 \end{aligned}$
		5	Enable B	0: Disables (High-Z) S-Video B outputs   1: Enables S-Video B outputs
		6	Low Offset Mode B	0: Normal Mode   1: Low Offset Mode   Slightly lowers the DC offset of the output by increasing the maximum amount of clamp restore current from $130 \mu \mathrm{~A}$ to $270 \mu \mathrm{~A}$.
		7	Slave Mode B	0: Sync tip DC-restore on selected channel (master mode)   1: DC-restore clamp timing slaved to Sync Separator B (slave mode)
0x06	Component Channel A	1:0	Input Select A	0: YPbPrin 0   1: $\mathrm{YPbPr}_{\mathrm{IN}}{ }^{1}$   2: $\mathrm{YPbPr}_{\mathrm{I}}{ }^{2}$   3: $\mathrm{YPbPr}_{\mathrm{IN}}{ }^{3}$
		3:2	Filter Select A	$0: 10 \mathrm{MHz}$ Smoothing FIlter   1: 20 MHz Smoothing Fllter   2: 36 MHz Smoothing Filter   3: Smoothing Filter Bypassed (250MHz bandwidth)
		4	Output Amplifier Gain A	$\begin{aligned} & \text { 0: x1 } \\ & \text { 1: } x 2 \end{aligned}$
		5	Enable A	0: Disables (High-Z) Component A outputs   1: Enables Component A outputs
		6	RGB Mode A	0 : YPbPr Mode   Y clamps to VTIPINA (master mode)   Y clamps to $\mathrm{V}_{\text {LUMA }} \times 1 / 2_{\text {IN }} \mathrm{A}$ (slave mode)   $\mathrm{Pb} / \mathrm{Pr}$ clamps to $\mathrm{V}_{\text {CHROMA }}{ }^{\mathrm{x}} 1 / 2_{\text {IN }} A$   1: RGB Mode   Y clamps to VTIPINA (master mode)   Y clamps to $\mathrm{V}_{\text {LUMA }} \times 1 / 2_{\text {IN }} \mathrm{A}$ (slave mode)   $\mathrm{Pb} / \mathrm{Pr}$ clamps to $\mathrm{V}_{\text {LUMA }} \times 1 / 2_{\text {IN }} A$
		7	Slave Mode A	0: Sync tip DC-restore on selected channel (master mode)   1: DC-restore clamp timing slaved to Sync Separator A (slave mode)

Register Descriptions (Continued)

ADDRESS	REGISTER	BIT(S)	FUNCTION NAME	DESCRIPTION
0x07	Component Channel B	1:0	Input Select B	
		3:2	Filter Select B	0: 10MHz Smoothing Filter   1: 20 MHz Smoothing Filter   2: 36 MHz Smoothing Filter   3: Smoothing Filter Bypassed (250MHz bandwidth)
		4	Output Amplifier Gain B	$\begin{array}{\|l\|} \hline 0: \text { x1 } \\ \text { 1: x2 } \end{array}$
		5	Enable B	0: Disables (High-Z) Component B outputs   1: Enables Component $B$ outputs
		6	RGB Mode B	0 : YPbPr Mode   Y clamps to $\mathrm{VTIP}_{\text {IN }} \mathrm{B}$ (master mode)   Y clamps to $V_{\text {LUMA }} \times 1 / 2_{I N} B$ (slave mode)   $\mathrm{Pb} / \mathrm{Pr}$ clamps to $\mathrm{V}_{\text {CHROMA }} \times 1 / \mathrm{IIN}^{\mathrm{B}} \mathrm{B}$   1: RGB Mode   Y clamps to $\mathrm{VTIP}_{I N} B$ (master mode)   Y clamps to $\mathrm{V}_{\text {LUMA }} \times 1 / 2_{\text {IN }} B$ (slave mode)   $\mathrm{Pb} / \mathrm{Pr}$ clamps to $\mathrm{V}_{\text {LUMA }} \times 1 / 2_{\text {IN }} B$
		7	Slave Mode B	0: Sync tip DC-restore on selected channel (master mode)   1: DC-restore clamp timing slaved to Sync Separator B (slave mode)
0x08-0x0B	Reserved (Read only)	7:0	Reserved	Reserved
0x0C-0x0D	Reserved	7:0	Reserved	Write 0x00 to these registers
0x0E-0x11	Reserved (Read only)	7:0	Reserved	Reserved
0x12-0x13	Reserved	7:0	Reserved	Write 0x00 to these registers
$0 \times 14$	Miscellaneous 1 (Bits 4 thru 7 are read-only)	0	Global Enable	0 : All outputs disabled   1: Outputs enabled per their individual Enable settings
		1	Field Invert Enable	0: The Sync Output Polarity bit (Sync Separator) does not affect Field polarity.   1: The Sync Output Polarity bit (Sync Separator) inverts the Field output.
		2	Reserved	Set this bit to 0
		3	Reserved	Set this bit to 0
		4	S-Video 0 Connected	0: Cable plugged in to S-Video Channel 0   1: Nothing plugged in to S-Video Channel 0
		5	S-Video 1 Connected	0 : Cable plugged in to S-Video Channel 1   1: Nothing plugged in to S-Video Channel 1
		6	S-Video 2 Connected	0: Cable plugged in to S-Video Channel 2   1: Nothing plugged in to S-Video Channel 2
		7	S-Video 3 Connected	0: Cable plugged in to S-Video Channel 3   1: Nothing plugged in to S-Video Channel 3
0x15	Reserved	7:0	Reserved	Reserved

Register Descriptions (Continued)

ADDRESS	REGISTER	BIT(S)	FUNCTION NAME	DESCRIPTION
0x16	Miscellaneous 2	0	Disable Composite B Clamp	This bit disables the DC-restore clamp for composite Channel B.   0 : Composite A clamp enabled   1: Composite A clamp disabled
		1	Disable S-Video B Clamp	This bit disables the DC-restore clamp for the luma (Y) of S-Video Channel B.   Disables the $1 \mu \mathrm{~A}$ pull-down currents for both Y and C . Does not disable the clamp for chroma channel unless in Slave mode and Sync Separator. $B=0 \times 25$.   0 : S-Video A clamp enabled   1: S-Video A clamp disabled
		2	Disable Component B Clamp	This bit disables the DC-restore clamp for Y/G of component Channel B.   Disables the $1 \mu \mathrm{~A}$ pull-down currents for ALL three channels.   Does not disable the pull-up clamp for $\mathrm{Pr} / \mathrm{R}$ and $\mathrm{Pb} / \mathrm{B}$ unless in Slave mode AND Sync Separator. B $=0 \times 24$.   0 : Y Component A clamp enabled   1: Y Component A clamp disabled
		3	Component B Low Offset Mode	0: Normal operation   1: DC-restore clamp has a lower offset. Slightly lowers the DC offset of the component outputs by increasing the maximum amount of clamp restore current from $250 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$.
		4	Disable Composite A Clamp	This bit disables the DC-restore clamp for composite Channel A   0: Composite A clamp enabled   1: Composite A clamp disabled
		5	Disable S-Video A Clamp	This bit disables the DC-restore clamp for the luma $(\mathrm{Y})$ of S-Video Channel A.   Disables the $1 \mu \mathrm{~A}$ pull-down currents for both Y and C . Does not disable the clamp for chroma channel unless in Slave mode and Sync Separator. $A=0 \times 25$.   0 : S-Video A clamp enabled   1: S-Video A clamp disabled
		6	Disable Component A Clamp	This bit disables the DC-restore clamp for $\mathrm{Y} / \mathrm{G}$ of component Channel A.   Disables the $1 \mu \mathrm{~A}$ pull-down currents for ALL three channels.   Does not disable the clamps for $\mathrm{Pr} / \mathrm{R}$ and $\mathrm{Pb} / \mathrm{B}$ unless in Slave mode AND Sync Separator. A $=0 \times 24$.   0: Y Component A clamp enabled   1: Y Component A clamp disabled
		7	Component A Low Offset Mode	0: Normal operation   1: DC-restore clamp has a lower offset. Slightly lowers the DC offset of the component outputs by increasing the maximum amount of clamp restore current from $250 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$.

## Typical Register Settings

REGISTER SETTINGS	VIDEO TYPE	CHANNEL A REGISTER ADDRESS	CHANNEL B REGISTER ADDRESS	CHANNEL REGISTER VALUE	SYNC SEPARATOR REGISTER VALUE
For all settings, Miscellaneous 1 Register ( $0 \times 14$ ) $=0 \times \mathrm{X} 1$ and Miscellaneous $2(0 \times 16)=0 \times 00$.					
Composite 0	Composite	0x02	0x03	0x30	0x00
Composite 1	Composite	0x02	$0 \times 03$	0x31	0x00
Composite 2	Composite	0x02	0x03	0x32	0x00
Composite 3	Composite	0x02	0x03	0x33	0x00
Composite 4	Composite	0x02	0x03	0x34	0x00
Composite 5	Composite	0x02	0x03	0x35	0x00
S-Video 1	S-Video	0x04	0x05	0x30	0x00
S-Video 2	S-Video	0x04	0x05	0x31	0x00
S-Video 3	S-Video	0x04	0x05	0x32	0x00
S-Video 4	S-Video	0x04	0x05	0x33	0x00
Component 0	Component	0x06	0x07	0x3C	0x00
	RGB + HV	0x06	$0 \times 07$	0xFC	$0 \times 23$ (active low sync in) $0 \times A B$ (active high sync in)
Component 1	Component	0x06	$0 \times 07$	0x3D	0x00
	RGB + HV	0x06	$0 \times 07$	0xFD	$0 \times 23$ (active low sync in) $0 \times A B$ (active high sync in)
Component 2	Component	0x06	0x07	0x3E	0x00
	RGB + HV	0x06	$0 \times 07$	0xFE	$0 \times 23$ (active low sync in) $0 \times A B$ (active high sync in)
Component 3	Component	0x06	0x07	0x3F	0x00
	RGB+HV	0x06	0x07	0xFF	$0 \times 23$ (active low sync in) 0xAB (active high sync in)

## Sync Separator NTSC Vertical Timing

SIGNAL 1a. COMPOSITE VIDEO INPUT, FIELD ONE


SIGNAL 1b. VERTICAL SYNC OUTPUT


NOTES:
2. The composite sync output reproduces all the video input sync pulses, with a propagation delay.
3. Vertical sync leading edge is coincident with the first vertical serration pulse leading edge with a propagation delay.
4. Horizontal sync output produces the true " H " pulses of nominal width of $5 \mu \mathrm{~s}$. It has the same delay as the composite sync.

## Sync Separator NTSC Horizontal Timing

CONDITIONS: $\mathrm{V}_{\mathrm{D}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$


PARAMETER	DESCRIPTION	CONDITIONS	TYP	UNIT
$t_{\text {HOUT }}$	HOUT Timing Relative to Input		200	ns
tHOUT	Horizontal Output Width		5 s	

## Sync Separator HSYNC Timing for 720p

```
CONDITIONS: \(\mathrm{V}_{\mathrm{D}}=3.3 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=+\mathbf{+ 2} 5^{\circ} \mathrm{C}\)
```



PARAMETER	DESCRIPTION	CONDITIONS	TYP $@ 3.3 V$	UNIT
td HOUT	HOUT Timing Relative to Input		90	ns
$\mathrm{t}_{\text {HOUT }}$	Horizontal Output Width		1.90	$\mu \mathrm{s}$

## ISL59450 Serial Communications

## $1^{2} c$ Overview

The ISL59450 uses a 2 -wire ${ }^{2} \mathrm{C}$ serial bus for communication with its host. SCL is the Serial Clock line, driven by the host, and SDA is the Serial Data line, which can be driven by all devices on the bus. SDA is open drain to allow multiple devices to share the same bus
simultaneously.
Communication is accomplished in three steps:

1. The Host selects the ISL59450 with which it wishes to communicate.
2. The Host writes the initial ISL59450 Configuration Register address it wishes to write to or read from.
3. The Host writes to or reads from the ISL59450's Configuration Register. The ISL59450's internal address pointer auto increments, so to read registers $0 \times 00$ through $0 \times 16$, for example, one would write $0 \times 00$ in step two, then repeat step four 28 times, with each read returning the next register value.
The ISL59450 has a 7-bit address on the serial bus. The upper 6-bits are permanently set to 100010x, with the $x$ determined by the state of the Address pin (Table 3). This allows two

ISL59450s to be independently controlled while sharing the same bus. The Address pin has an internal pull-down resistor to pull the terminal low to set a zero.

TABLE 3. ${ }^{2} \mathrm{C}$ C ADDRESS OPTIONS

B7	B6	B5	B4	B3	B2	B1	B0	HEX
A6   (MSB)	A5	A4	A3	A2	A1	A0   (Address)	R/W	
1	0	0	0	0	1	0	$1 / 0$	$0 \times 85 / 0 \times 84$
1	0	0	0	0	1	1	$1 / 0$	$0 \times 87 / 0 \times 86$

The bus is nominally inactive, with SDA and SCL high. Communication begins when the host issues a START command by taking SDA low while SCL is high (Figure 34). The ISL59450 continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has been met. The host then transmits the 7-bit serial address plus a $\mathrm{R} / \overline{\mathrm{W}}$ bit, indicating if the next transaction will be a Read $(R / \bar{W}=1)$ or a Write $(R / \bar{W}=0)$. If the address transmitted matches that of any device on the bus, that device must respond with an ACKNOWLEDGE (Figure 35).

Once the serial address has been transmitted and acknowledged, one or more bytes of information can be written to or read from the slave. Communication with the selected device in the selected direction (read or write) is ended by a STOP command, where SDA rises while SCL is high (Figure 34), or a second START command, which is commonly used to reverse data direction without relinquishing the bus.

Data on the serial bus must be valid for the entire time SCL is high (Figure 36). To achieve this, data being written to the ISL59450 is latched on a delayed version of the rising edge of SCL. SCL is delayed and de-glitched inside the ISL59450 for three crystal clock periods ( 120 ns for a 25 MHz crystal) to
eliminate spurious clock pulses that could disrupt serial communication.

When the contents of the ISL59450 are being read, the SDA line is updated after the falling edge of SCL, delayed and de-glitched in the same manner.

## Configuration Register Write

Figure 37 shows two views of the steps necessary to write one or more words to the Configuration Register.

## Configuration Register Read

Figure 38 shows two views of the steps necessary to read one or more words from the Configuration Register.

SCL

SDA


FIGURE 34. VALID START AND STOP CONDITIONS


FIGURE 35. ACKNOWLEDGE RESPONSE FROM RECEIVER


FIGURE 36. VALID DATA CHANGES ON THE SDA BUS


Signals the beginning of serial I/O

## ISL59450 Device Select Address Write

The first 7 bits of the first byte select the ISL59450 on the 2-wire bus at the address set by the Address pin. $R / \bar{W}=0$, indicating the next transaction will be a write.

## ISL59450 Register Address Write

This is the address of the ISL59450's configuration register that the following byte will be written to.

## ISL59450 Register Data Write(s)

This is the data to be written to the ISL59450's configuration register. Note: The ISL59450's Configuration Register's address pointer auto increments after each data write. Repeat this step to write multiple sequential bytes of data to the Configuration Register.


## Signals the ending of serial I/O

* The data write step may be repeated to write to the ISL59450's Configuration Register sequentially, beginning at the Register Address written in the previous step.


FIGURE 38. CONFIGURATION REGISTER READ

Metric Plastic Quad Flatpack Packages (MQFP)


DETAIL Y

## MDP0055

14x20mm 128 LEAD MQFP (WITH AND WITHOUT HEAT SPREADER) 3.2 mm FOOTPRINT

SYMBOL	DIMENSIONS   (MILLIMETERS)	REMARKS
A	Max 3.40	Overall height
A1	$0.250 \sim 0.500$	Standoff
A2	$2.750 \pm 0.250$	Package thickness
$\alpha$	$0^{\circ} \sim 7^{\circ}$	Foot angle
b	$0.220 \pm 0.050$	Lead width 1
b1	$0.200 \pm 0.030$	Lead base metal width $\mathbf{1}^{1}$
D	$17.200 \pm 0.250$	Lead tip to tip
D1	$14.000 \pm 0.100$	Package length
E	$23.200 \pm 0.250$	Lead tip to tip
E1	$20.000 \pm 0.100$	Package width
e	0.500 Base	Lead pitch
L	$0.880 \pm 0.150$	Foot length
L1	1.600 Ref.	Lead length
T	$0.170 \pm 0.060$	Frame thickness $\quad$ 1
T1	$0.152 \pm 0.040$	Frame base metal thickness 1
ccc	0.100	Foot coplanarity
ddd	0.100	Foot position

Rev. 2 2/07
NOTES:

1. General tolerance: Distance $\pm 0.100$, Angle $+2.5^{\circ}$.
2. 1 Matte finish on package body surface except ejection and pin 1 marking (Ra 0.8~2.0um).
3. All molded body sharp corner RADII unless otherwise specified (Max RO.200).
4. Package/Leadframe misalignment (X, Y): Max. 0.127
5. Top/Bottom misalignment ( $\mathrm{X}, \mathrm{Y}$ ): Max. 0.127
6. Drawing does not include plastic or metal protrusion or cutting burr.
7. 2 Compliant to JEDEC MS-022.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^1]For information regarding Intersil Corporation and its products, see www.intersil.com


[^0]:    SCL-I2C System Control
    SDA

[^1]:    Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

