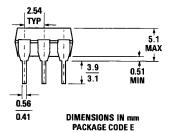
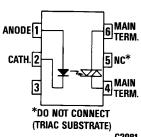

MOC3009 MOC3010 MOC3011 MOC3012


PACKAGE DIMENSIONS


0.3

0.2

ST1603-02

Equivalent Circuit

DESCRIPTION

The MOC3009, MOC3010, MOC3011 and MOC3012 are optically isolated triac driver devices. These devices contain a GaAs infrared emitting diode and a light activated silicon bilateral switch, which functions like a triac. This series is designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 120 VAC operations.

FEATURES

- Low input current required (typically 5mA—MOC3011)
- High isolation voltage—minimum 7500 VAC peak
- Underwriters Laboratory (UL) recognized—File E90700

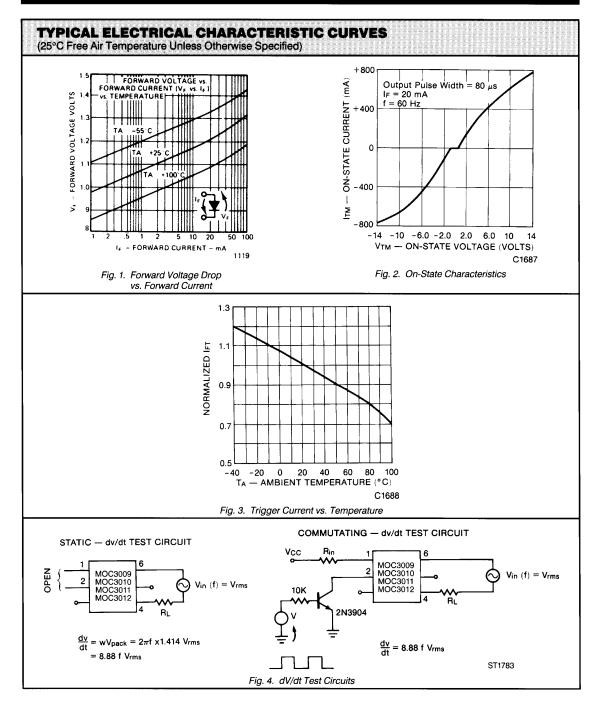
APPLICATIONS

- Triac driver
- Industrial controls
- Traffic lights
- Vending machines
- Motor control
- Solid state relay

	8	2	2	300		1.02						Ų	_	2	30								2	40.2	9,3				3
	9	В	Ŧ	*	Ľ	0	1	33	8	100	ei o	.4	п	ь.	4	8 .	٧.	н	8 .	ч	39	*	7.	¥a ı	ď	.4	7 e~	L٠	ĕ

TOTAL PACKAGE INPUT DIODE Storage temperature –55°C to 150°C Forward DC current 50 mA Operating temperature -40°C to 100°C Reverse voltage 3 V Lead temperature Peak forward current (1 μ s pulse, 300 pps) Withstand test voltage ... 7500 VAC Peak (50-60 Hz) Power dissipation (25°C ambient) 100 mW Derate linearly (above 25°C) 1.33 mW/°C **OUTPUT DRIVER** Off-state output terminal voltage 250 volts T_A=25°C 100 mA On-state RMS current (Full cycle, 50 to 60 Hz) $T_A=70^{\circ}C$ 50 mA Peak nonrepetitive surge current 1.2 A (PW=10 ms, DC=10%) Total power dissipation @ T_A=25°C 300 mW Derate above 25°C 4.0 mW/°C

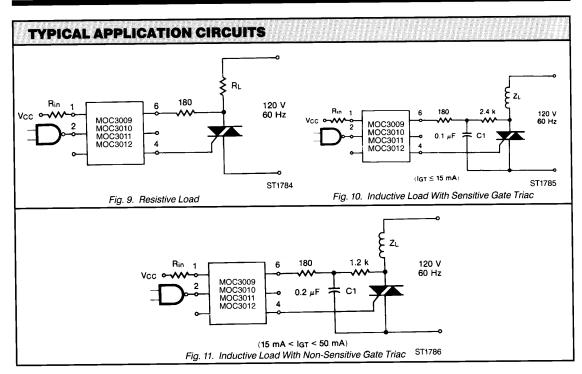
ELECTRO-OPTICAL CHARACTERISTICS (25°C Temperature Unless Otherwise Specified)


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
INPUT DIODE						
Forward voltage	V _F		1.2	1.50	V	I _F =10 mA
Junction capacitance	C,		50		pF	V _F =0 V, f=1 MHz
Reverse leakage current	I _R			100	μΑ	V _R =3.0 V
OUTPUT DETECTOR Peak blocking current, either direction	I _{DRM}	_		100	nA	V _{рям} =250 V, Note 1
Peak on-state voltage, either direction	V _{TM}		2.0	3.0	Volts	I _™ =100 mA Peak

DC CHARACTEI	RISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
LED trigger current (current required	MOC3009	I _{FT}	_	15.0	30	mA	Main terminal
to latch output)	MOC3010	l _{et}	_	10.0	15	mA	voltage=3.0 V, $R_L = 150\Omega$
	MOC3011	I _{FT}		5	10	mA	_
	MOC3012	I _{FT}	_	_	5	mA	_
Holding current		l _H	_	100	_	μΑ	Either direction

CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
AC dv/dt RATING Critical rate of rise of off-state voltage	dv/dt	_	12.0	_	V/μs	Static dv/dt (see Fig. 4)
Critical rate of rise of commutating voltage	dv/dt	_	0.2	_	V/μS	Commutating dv/dt I _{LOAD} =15 mA (see Fig. 4)

ISOLATION CHA	RACTERIS	STICS				
CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Isolation voltage	V _{iso}	5300			V _{AC} RMS	l _{i-0} ≤1 μA, 1 Minute
	V _{iso}	7500			V _{AC} PEAK	I ₁₋₀ ≤ 1 μA, 1 Minute
Isolation resistance	R _{iso}	1011			ohms	V _{I-0} =500 VDC
Isolation capacitance	C _{iso}		0.5		pF	f=1 MHz



DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation