

Vishay Semiconductors

Optocoupler, Phototriac Output, Low Input Current

DESCRIPTION

The IL440 consists of a GaAs infrared emitter optically coupled to a silicon planar triac chip with a non-zero crossing network. The two semiconductors are assembled in a 6 pin dual-in-line plastic package. The IL440 can handle currents up to 100 mA RMS.

AGENCY APPROVALS

- UL1577, file no. E52744 system code H or J, double protection
- CSA 93751
- DIN EN 60747-5-5 (VDE 0884) available with option 1
- BSI IEC60950; IEC60065

FEATURES

- 400 V blocking voltage
- 5 mA maximum trigger current
- Isolation test voltage, 5300 V_{RMS}, t = 1 s
- Isolation materials per UL94
- Pin compatible with optocouplers:
 - IL440-4 MOC 3021 - IL440-5 MOC 3022
 - IL440-6 MOC 3023
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- High current triac driver
- Solid state relay
- Switch small AC loads

ORDERING INFORMATIO	N		
L 4 4 PART NUMBER	0 - # X TRIGGER I CURRENT BIN	0 # # T PACKAGE OPTION TAPE AND REEL	DIP Option 6 7.62 mm Option 7 Option 9 0.7 mm > 0.7 mm
AGENCY CERTIFIED/PACKAGE		TRIGGER CURRENT, IFT	
UL, cUL, BSI	5 mA	10 mA	15 mA
DIP-6	IL440-6	IL440-5	IL440-4
SMD-6, option 7	IL440-6X007	-	-
SMD-6, option 9	IL440-6X009T ⁽¹⁾	IL440-5X009	IL440-4X009T ⁽¹⁾
VDE, UL, cUL, BSI	5 mA	10 mA	15 mA
DIP-6, 400 mil, option 6	IL440-6X016	IL440-5X016	-
SMD-6, option 7	-	IL440-5X017T	IL440-4X017
SMD-6, option 9	IL440-6X019T	-	-

Note

⁽¹⁾ Also available in tubes, do not put T on the end.

Downloaded from Elcodis.com electronic components distributor

Vishay Semiconductors Optocoupler, Phototriac Output, Low Input Current

PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT	
Input				<u>.</u>		
Reverse voltage			V _R	5	V	
Forward current			I _F	60	mA	
Surge current	P.W. < 10 μs		I _{FSM}	3	А	
Power dissipation			P _{diss}	100	mW	
Junction temperature			Тj	100	°C	
Output						
		IL440-4	V _{DRM}	400	V	
Peak off-state voltage		IL440-5	V _{DRM}	400	V	
		IL440-6	V _{DRM}	400	V	
On-state RMS current			I _{D(RMS)}	100	mA	
Peak surge current	t _p ≤ 10 ms		I _{FSM}	1.2	А	
Peak on-state current	$t_p/T = 0.01 \le 100 \ \mu s$		I _{DRM}	2	А	
Power dissipation			P _{diss}	300	mW	
Junction temperature			Тj	125	°C	
Coupler						
Isolation voltage	t = 1 s		V _{ISO}	5300	V _{RMS}	
Creepage distance				≥7	mm	
Clearance distance				≥7	mm	
	V _{IO} = 500 V, T _{amb} = 25 °C		R _{IO}	≥ 10 ¹²	Ω	
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C		R _{IO}	≥ 10 ¹¹	Ω	
Total power dissipation			P _{tot}	330	mW	
Storage temperature range			T _{stg}	- 55 to + 125	°C	
Ambient temperature			T _{amb}	- 40 to + 100	°C	
Junction temperature			Ti	100	°C	
Lead soldering temperature ⁽²⁾	2 mm from case, t < 10 s		T _{sld}	260	°C	

Notes

(1) Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

(2) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).

Optocoupler, Phototriac Output, Low Vishay Semiconductors Input Current

ELECTRICAL CHARACTERISTICS ⁽¹⁾ ($T_{amb} = 25 \degree C$, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input							
Forward voltage	I _F = 50 mA		V _F		1.25		V
Reverse voltage	I _R = 10 μA		V _R	5			V
Junction capacitance	$V_R = 0 V, f = 1 MHz$		Cj		50		pF
Output ⁽²⁾							
		IL440-4		400			V
Off-state voltage	I _{DRM} = 500 nA	IL440-5	V _{D(RMS)}	400			V
		IL440-6		400			V
Peak on-state voltage	$I_{TM} = 100 \text{ mA}, I_{FT} = 30 \text{ mA}$		V _{TM}		1.5	3	V
Trigger current 1		IL440-4	I _{FT1}		15		V
Trigger current 2	V_T = 6 V, R_L = 150 Ω	IL440-5	I _{FT2}		10		V
Trigger current 3		IL440-6	I _{FT3}		5		V
Critical rate of rise of off-state voltage	$I_F = 0, V_D = 0.67 V_{DRM}$		dV/dt _{cr}		50		V/µs
Critical rate of rise of on-state current commutation	$I_F = 30$ mA, $V_D = 60$ V_{RMS}		dV/dt _{crq}	0.13	0.25		V/µs
Coupler							
Holding current	$I_F \geq 10$ mA, $V_S \geq 3$ V		I _H		1		mA

Notes

⁽¹⁾ Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

⁽²⁾ Off-state output terminal voltage (see table 1.)

MAXIMUM SAFETY RATINGS ⁽¹⁾						
TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT ⁽²⁾						
	IS, INPUT			130	mA	
OUTPUT						
	Ps, output			300	mW	
		TEST CONDITION SYMBOL	TEST CONDITION SYMBOL MIN.	TEST CONDITION SYMBOL MIN. TYP. Is, input Isource Isource Isource	TEST CONDITION SYMBOL MIN. TYP. MAX. Is, input 130	

Notes

(1) According to DIN EN 60747-5-5. This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

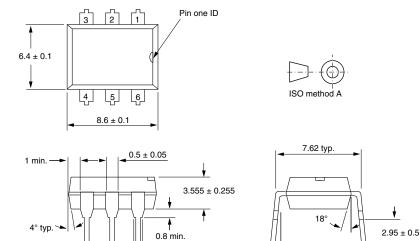
⁽²⁾ The device is used for protective separation agains electrical shock within the maximum safety ratings. This must be ensured by protective circuits in the applications.

SAFETY AND INSULATION RATINGS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Climatic classification (according to IEC68 part 1)				55/100/21		
Pollution degree	DIN VDE 0109			2		
Comparative tracking index		CTI	175			
V _{IOTM}			8000			V _{peak}
V _{IORM}			890			V _{peak}
Insulation resistance at 25 °C	V _{IO} = 500 V	R _{IS}			≥ 10 ¹²	Ω
Insulation resistance at T_S	V _{IO} = 500 V	R _{IS}			≥ 10 ⁹	Ω
Insulation resistance at 100 °C	V _{IO} = 500 V	R _{IS}			≥ 10 ¹¹	Ω
Partial discharge test voltage	Method a, V _{pd} = V _{IORM} x 1.875	V _{pd}			1669	V _{peak}
P _{SO}					500	mW
I _{SI}					250	mA
T _{SI}					175	°C

Document Number: 83631 Rev. 1.9, 29-Oct-10 For technical questions, contact: optocoupleranswers@vishay.com

Vishay Semiconductors Optocoupler, Phototriac Output, Low Input Current

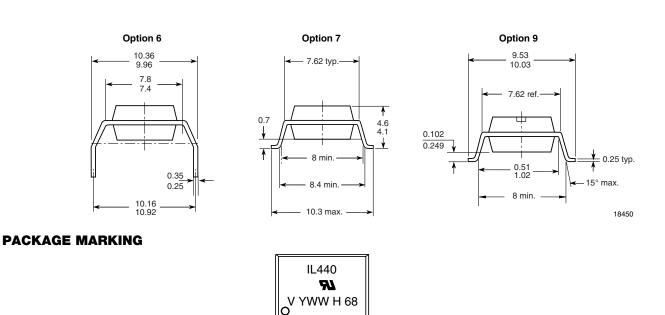
SAFETY AND INSULATION RATINGS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Clearance distance	Standard DIP-6		7			mm
Creepage distance	Standard DIP-6		7			mm
Clearance distance	400 mil DIP-6		8			mm
Creepage distance	400 mil DIP-6		8			mm


Note

• As per IEC60747-5-5, \$ 7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of prodective circuits.

PACKAGE DIMENSIONS in millimeters

0.5 ± 0.05


i178004

0.85 ± 0.05

2.54 typ.

21764-91

3° to 9°

1

0.25 typ.

7.62 to 8.81

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.