LOW INPUT CURRENT PHOTOTRANSISTOR OPTOCOUPLERS

Description

The MCT52XX series consists of a high-efficiency AIGaAs, infrared emitting diode, coupled with an NPN phototransistor in a six pin dual-in-line package.

The MCT52XX is well suited for CMOS to LSTT/TTL interfaces, offering 250% CTR ${ }_{\text {CE(SAT) }}$ with 1 mA of LED input current. When an LED input current of 1.6 mA is supplied data rates to 20 K bits/s are possible.
The MCT52XX can easily interface LSTTL to LSTTL/TTL, and with use of an external base to emitter resistor data rates of 100 K bits $/ \mathrm{s}$ can be achieved.

Features

- High CTR CE(SAT) comparable to Darlingtons
- CTR guaranteed $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- High common mode transient rejection $5 \mathrm{kV} / \mu \mathrm{s}$
- Data rates up to 150 kbits/s (NRZ)
- Underwriters Laboratory (UL) recognized (file \#E90700)
- VDE recognized (file \#94766)
- Add option 300 (e.g., MCT5211.300)

Applications

- CMOS to CMOS/LSTTL logic isolation
- LSTTL to CMOS/LSTTL logic isolation
- RS-232 line receiver
- Telephone ring detector
- AC line voltage sensing
- Switching power supply

Parameters	Symbol	Device	Value	Units
TOTAL DEVICE				
Storage Temperature	$\mathrm{T}_{\text {STG }}$	All	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	TopR	All	-55 to +100	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature	$\mathrm{T}_{\text {SOL }}$	All	260 for 10 sec	${ }^{\circ} \mathrm{C}$
Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$ (LED plus detector) Derate Linearly From $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	All	260	mW
			3.5	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
EMITTER				
Continuous Forward Current	$I_{\text {F }}$	All	50	mA
Reverse Input Voltage	V_{R}	All	6	V
Forward Current - Peak (1 $\mu \mathrm{s}$ pulse, 300 pps)	$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	All	3.0	A
LED Power Dissipation Derate Linearly From $25^{\circ} \mathrm{C}$	P_{D}	All	75	mW
		All	1.0	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
DETECTOR				
Continuous Collector Current	I_{C}	All	150	mA
Detector Power Dissipation		All	150	mW
Derate Linearly from $25^{\circ} \mathrm{C}$	D	All	2.0	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

LOW INPUT CURRENT PHOTOTRANSISTOR OPTOCOUPLERS

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise specified.)							
INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameters	Test Conditions	Symbol	Device	Min	Typ**	Max	Units
EMITTER Input Forward Voltage	$\left(I_{F}=5 \mathrm{~mA}\right)$	V_{F}	All		1.25	1.5	V
Forward Voltage Temp. Coefficient	$\left(\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}\right)$	$\frac{\Delta V_{F}}{\Delta T_{A}}$	All		-1.75		$\begin{aligned} & \hline \mathrm{mV/} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Reverse Voltage	$\left(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\right)$	$V_{\text {R }}$	All	6			V
Junction Capacitance	($\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$)	C_{J}	All		18		pF
DETECTOR Collector-Emitter Breakdown Voltage	$\left(I_{C}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0\right)$	$\mathrm{BV}_{\text {CEO }}$	All	30	100		V
Collector-Base Breakdown Voltage	($\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$)	$\mathrm{BV}_{\text {CBO }}$	All	30	120		V
Emitter-Base Breakdown Voltage	($\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$)	$\mathrm{BV}_{\text {EBO }}$	All	5	10		V
Collector-Emitter Dark Current	$\left(\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{BE}}=1 \mathrm{M} \Omega\right)$	ICER	All		1	100	nA
Capacitance Collector to Emitter	$\left(\mathrm{V}_{\text {CE }}=0, \mathrm{f}=1 \mathrm{MHz}\right.$)	$\mathrm{C}_{\text {CE }}$	All		10		pF
Collector to Base	$\left(\mathrm{V}_{\text {CB }}=0, \mathrm{f}=1 \mathrm{MHz}\right.$)	$\mathrm{C}_{\text {CB }}$	All		80		pF
Emitter to Base	$\left(\mathrm{V}_{\text {EB }}=0, \mathrm{f}=1 \mathrm{MHz}\right.$)	$\mathrm{C}_{\text {Eb }}$	All		15		pF

ISOLATION CHARACTERISTICS

Characteristic	Test Conditions	Symbol	Device	Min	Typ**	Max	Units
Input-Output Isolation Voltage ${ }^{(10)}$	($\mathrm{f}=60 \mathrm{~Hz}, \mathrm{t}=1 \mathrm{~min}$.	$\mathrm{V}_{\text {ISO }}$	All	5300			Vac(rms)
Isolation Resistance ${ }^{(10)}$	$\mathrm{V}_{\text {I-O }}=500 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\text {ISO }}$	All	10^{11}			Ω
Isolation Capacitance ${ }^{(9)}$	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {ISO }}$	All		0.7		pF
Common Mode Transient	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}_{\text {P-P1 }}, \mathrm{R}_{\mathrm{L}}=750 \Omega, \mathrm{I}_{\mathrm{F}}=0$	CM_{H}	MCT5210/11		5000		V/ $\mu \mathrm{s}$
Rejection - Output High	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{F}}=0$		MCT5200/01				
Common Mode Transient Rejection - Output Low	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P} 1}, \mathrm{R}_{\mathrm{L}}=750 \Omega, \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	CM ${ }_{\text {L }}$	MCT5210/11		5000		V/us
	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P} 1}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		MCT5200/01				

${ }^{* *}$ All typical $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

TRANSFER CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified.)

TRANSFER CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified.) (Continued)

DC Characteristics	Test Conditions		Symbol	Device	Min	Typ**	Max	Units
Storage Time ${ }^{(7)}$	$\mathrm{V}_{\mathrm{CE}}=0.4 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	t_{s}	MCT5200		15	18	$\mu \mathrm{s}$
	$\begin{aligned} & \mathrm{R}_{\mathrm{BE}}=330 \mathrm{k} \Omega, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		MCT5201		10	13	
Fall Time ${ }^{(8)}$	$\mathrm{V}_{\mathrm{CE}}=0.4 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	t_{f}	MCT5200		16	30	$\mu \mathrm{s}$
	$\begin{aligned} & \mathrm{R}_{\mathrm{BE}}=330 \mathrm{k} \Omega, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		MCT5201		16	30	

${ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Notes

1. DC Current Transfer Ratio ($\mathrm{CTR}_{\mathrm{CE}}$) is defined as the transistor collector current (I_{CE}) divided by the input LED current $\left(\mathrm{I}_{\mathrm{F}}\right) \mathrm{x}$ 100%, at a specified voltage between the collector and emitter (V_{CE}).
2. The collector base Current Transfer Ratio $\left(\mathrm{CTR}_{\mathrm{CB}}\right)$ is defined as the transistor collector base photocurrent $\left(\mathrm{I}_{\mathrm{CB}}\right)$ divided by the input LED current (I_{F}) time 100%.
3. Referring to Figure 14 the $T_{\text {PHL }}$ propagation delay is measured from the 50% point of the rising edge of the data input pulse to the 1.3 V point on the falling edge of the output pulse.
4. Referring to Figure 14 the $T_{\text {PLH }}$ propagation delay is measured from the 50% point of the falling edge of data input pulse to the 1.3 V point on the rising edge of the output pulse.
5. Delay time (t_{d}) is measured from 50% of rising edge of LED current to 90% of Vo falling edge.
6. Rise time (t_{r}) is measured from 90% to 10% of Vo falling edge.
7. Storage time $\left(t_{s}\right)$ is measured from 50% of falling edge of LED current to 10% of Vo rising edge.
8. Fall time $\left(\mathrm{t}_{\mathrm{f}}\right)$ is measured from 10% to 90% of Vo rising edge.
9. $\mathrm{C}_{\text {ISO }}$ is the capacitance between the input (pins 1, 2, 3 connected) and the output, (pin 4, 5,6 connected).
10. Device considered a two terminal device: Pins 1, 2, and 3 shorted together, and pins 5,6 and 7 are shorted together.

PHOTOTRANSISTOR OPTOCOUPLERS

TYPICAL PERFORMANCE GRAPHS

Fig. 1 LED Forward Voltage vs. Forward Current

Fig. 3 Normalized CTR vs. Temperature

Fig. 5 Normalized Collector Base Photocurrent Ratio vs. Forward Current

$I_{F}-$ FORWARD CURRENT - mA

Fig. 2 Normalized Current Transfer Ratio vs.

Fig. 4 Normalized Collector vs. Collector - Emitter Voltage

Fig. 6 Normalized Collector Base Current vs. Temperature

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

LOW INPUT CURRENT PHOTOTRANSISTOR OPTOCOUPLERS

TYPICAL PERFORMANCE GRAPHS (Continued)

Fig. 7 Collector-Emitter Dark Current vs. Ambient Temperature

Fig. 9 Switching Time vs.
Ambient Temperature

Fig. 11 Switching Time vs.
Ambient Temperature

Fig. 8 Switching Time vs.
Ambient Temperature

Fig. 10 Switching Time vs. Ambient Temperature

Fig. 12 Turn-on Time vs. Base-Emitter Resistance

LOW INPUT CURRENT PHOTOTRANSISTOR OPTOCOUPLERS

MCT5200
 MCT5201
 MCT5210
 MCT5211

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)

Figure 13.

Figure 14. Switching Circuit Waveforms

Package Dimensions (0.4" Lead Spacing)

Note
All dimensions are in inches (millimeters)

LOW INPUT CURRENT PHOTOTRANSISTOR OPTOCOUPLERS

ORDERING INFORMATION

Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend
SD	. SD	Surface Mount; Tape and Reel
W	. W	$0.4^{\prime \prime}$ Lead Spacing
300	.300	VDE 0884
300 W	.300 W	VDE 0884, 0.4" Lead Spacing
$3 S$.3 S	VDE 0884, Surface Mount
$3 S D$	$.3 S D$	VDE 0884, Surface Mount, Tape and Reel

MARKING INFORMATION

Definitions	
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option - See order entry table)
4	Two digit year code, e.g., '03'
5	Two digit work week ranging from '01' to ‘53'
6	Assembly package code

Carrier Tape Specifications

User Direction of Feed \longrightarrow
NOTE
All dimensions are in inches (millimeters)

Reflow Profile (Black Package, No Suffix)

- Peak reflow temperature: $225^{\circ} \mathrm{C}$ (package surface temperature)
- Time of temperature higher than $183^{\circ} \mathrm{C}$ for 60-150 seconds
- One time soldering reflow is recommended

LOW INPUT CURRENT PHOTOTRANSISTOR OPTOCOUPLERS

MCT5200

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
