FEATURES

- Choose from among the following memory density options: IDT72P51767 — Total Available Memory $=5,242,880$ bits IDT72P51777 - Total Available Memory $=10,485,760$ bits
- Configurable from 1 to 128 Queues
- Multiple default configurations of symmetrical queues
- Default multi-queue device configurations
- IDT72P51767: $512 \times 40 \times 128 Q$
- IDT72P51777: 1,024×40×128Q
- Number of queues and queue sizes may be configured; at master reset, though serial programming, (via the queue address bus)
- 166 MHz High speed operation (6ns cycle time)
- 0.48ns access time
- Independent Read and Write access per queue
- Echo Read Clock available
- Internal PLL
- On-chip Output Impedance matching
- User Selectable Bus Matching Options:
- x40 in to x40 out
$-\times 20$ in to x20 out
- x40 in to x20 out
- x20in to x400ut
- User selectable I/O: 1.5 V HSTL or 1.8 V eHSTL
- 100% Bus Utilization, Read and Write on every clock cycle
- Selectable Back off one (BOI) or IDT standard mode of operation
- Ability to operate on packet or word boundaries
- Mark and Re-Write operation
- Mark and Re-Read operation
- Individual, Active queue flags ($\overline{\mathrm{EF}}, \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{PAF}}$)
- 8 bit parallel flag status on both read and write ports
- Direct or polled operation of flag status bus
- Expansion of up to 256 queues
- JTAG Functionality (Boundary Scan)
- Available in a 376 -pin BGA, 1 mm pitch, $23 \mathrm{~mm} \times 23 \mathrm{~mm}$
- HIGH Performance submicron CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, seeing Ordering Information

FUNCTIONAL BLOCK DIAGRAM

10G DDR MULTI-QUEUE FLOW-CONTROL DEVICE

Table of Contents

Features 1
Description 5
Pin configuration 7
Detailed Description 8
Pin Descriptions 10
Pin number table 15
Recommended DC operating conditions 16
Absolute maximum ratings 16
DC electrical characteristics 17
AC electrical characteristics 19
Functional description 22
Serial Programming 24
Default Programming 27
Parallel Programming 27
Modes of operation 29
Standard mode operation 29
IDT Standard mode vs. BOI mode 29
PLL on vs PLL off modes 30
Read Queue Selection and Read Operation 33
Switching Queues on the Write Port 34
Switching Queues on the Read Port 44
Flag Description 52
PAFn Flag Bus Operation 52
Full Flag Operation 52
Empty Flag Operation 52
Almost Full Flag 53
Almost Empty Flag 53
JTAG Interface 83
JTAGAC electrical characteristics 87
Ordering Information 88
List of Tables
Table 1-Summary of the differences between the 4M MQ and 10G MQ 9
Table 2 -DC and AC specifications (informative) 21
Table 3 - IDT to XGMII Interface Mapping Schema 21
Table 4 - Device programming mode comparison 22
Table 5-Setting the queue programming mode during master reset 23
Table 6 — ID[2:0] and WRADD[7:5]/RDADD[7:5] Configuration 27
Table 7 - Parallel Programming Mode Queue Configuration Example(1) 28
Table 8 — Write Address Bus, WRADD[7:0] 32
Table 9 - Read Address Bus, RDADD[7:0] 33
Table 10 -Write Queue Switch Operation 35
Table 11 - Backup Usage when Re-entering a Queue 43
Table 13-Same Queue Switch 45
Table 12-Read Queue Switch Operation 45
Table 14 - Flag operation boundaries \& Timing 55
Table 15-Interface Data Rates 57
Table 16 - Bus-Matching Configurations 58

List of Figures

Figure 1. Multi-Queue Flow-Control Device Block Diagram 6
Figure 2a. AC Test Load 18
Figure 2b. Lumped Capacitive Load, Typical Derating 18
Figure 3. HSTL Termination for XGMII 21
Figure 4. Reference Signals 22
Figure 5. Expansion for Unlimited Number of Multi-Queue Devices Example 28
Figure 6. Device Programming Hierarchy 29
Figure 7. DDR Read Operation with PLL ON 30
Figure 8. DDR Read Operation with PLL OFF 30
Figure 9. SDR Read Operation with PLL ON 31
Figure 10. SDR Read Operation with PLL OFF 31
Figure 11. Write Port Switching Queues Signal Sequence 34
Figure 12. Switching Queues Bus Efficiency 34
Figure 13. Simultaneous Queue Switching 35
Figure 14. Application: Reading words from the MQ using the EOP bit to end the read operation 36
Figure 15. Output Data during a Queue Switch (SDR w/o PLL) 37
Figure 16. Output Data during a Queue Switch (SDR w/ PLL) 38
Figure 17. Output Data during a Queue Switch (DDR w/PLL) 39
Figure 18. Output Data during a Queue Switch (DDR w/o PLL) 40
Figure 19. Output Data during two Queue Switches (DDR w/ PLL) 41
Figure 20. Output Data during two Queue Switches (DDR w/o PLL) 42
Figure 21. Read Port Switching Queues Signal Sequence 44
Figure 22. Switching Queues Bus Efficiency 44
Figure 23. Simultaneous Queue Switching 45
Figure 24. MARK and Re-Write Sequence 46
Figure 25. MARK and Re-Read Sequence 46
Figure 26. MARKing a Queue - Write Queue MARK 47
Figure 27. MARKing a Queue - Read Queue MARK 47
Figure 28. UN-MARKing a Queue - Write Queue UN-MARK 48
Figure 29. UN-MARKing a Queue - Read Queue UN-MARK 48
Figure 30. Leaving a MARK active on the Write Port 49
Figure 31. Leaving a MARK active on the Read Port 49
Figure 32. Inactivating a MARK on the Write Port Active 50
Figure 33. Inactivating a MARK on the Read Port Active 50
Figure 34. DDR Source Synchronous Center Aligned Clocking 57
Figure 35. SDR Edge Aligned Clocking 57
Figure 36. Bus-Matching Byte Arrangement 59
Figure 37. Master Reset 60
Figure 38. Default Programming 61
Figure 39. Write Address/Read Address Programming 62
Figure 40. Serial Port Connection for Serial Programming 63
Figure 41. Serial Programming (2 Device Expansion) 64
Figure 42. SDR Write Queue Select, Write Operation and Full Flag Operation 65
Figure 43. DDR Write Operation, Write Queue Select, Full Flag Operation 66
Figure 44. Write Queue Select, Mark and Rewrite 67
Figure 45. Full Flag Timing in Expansion Configuration 68
Figure 46. SDR Read Queue Select, Read Operation (IDT mode) 69
Figure 47. DDR Read Operation, Read Queue Select, $\overline{\mathrm{EF}} \& \overline{\mathrm{PAE}}$ Flag Operation 70
Figure 48. Read Queue Select, Mark and Reread (IDT mode) 71
Figure 49. Standard Mode Pointers on Queue Re-entry for DDR Read Operation 72
Figure 50. BOI Mode Pointers on Queue Re-entry for DDR Read Operation 72
Figure 51. Read Queue Selection with Read Operations (IDT mode) (SDR mode, PLL = OFF) 73
Figure 52. Read Queue Select, Read Operation and OE Timing 74
Figure 53. Almost Full Flag Timing and Queue Switch 75
Figure 54. Almost Full Flag Timing 75

List of Figures (Continued)

Figure 55. Almost Empty Flag Timing ... 76
Figure 56. $\overline{\text { PAEn }}$ - Direct Mode - Status Word Selection .. 77
Figure 57. PAFn - Direct Mode - Status Word Selection .. 77
Figure 58. $\overline{\text { PAE }}$ - Direct Mode, Flag Operation ... 78
Figure 59. $\overline{\text { PAFn }}$ - Direct Mode, Flag Operation ... 79
Figure 60. $\overline{\text { PAFn Bus - Polled Mode .. } 80}$
Figure 61. Connecting two 10G MQ 128Q devices in Expansion Mode .. 81
Figure 62. Connecting THREE or more 10G MQ 128Q in Expansion Mode Using WADDR bit 7/RDADD bit 7 ... 82
Figure 63. Boundary Scan Architecture .. 83
Figure 64. TAP Controller State Diagram ... 84
Figure 65. Standard JTAG Timing ... 87

DESCRIPTION

The IDT72P51767/ IDT72P51777 multi-queue flow-control devices are singlechip solutions containing up to 128 configurablequeues. All queues within the device have a common datainputbus, Din[39:0] (write port) and a common data outputbus Qout[39:0], (read port). Datawritten intothe write port is directed to a respective queue via an integrated de-multiplex function. Data read from the read port is accessed from a given queue transparently via an internal multiplex operation. Data writes and reads can be performed at high speeds up to 166MHzDDR allowing data rates upto 10Gigabits/s (OC-192). By utilizing high speed interfaces such as 1.5 V HSTL, coupled with ax40 bit data bus and 10 Mb of data storage, the 10 G Multi-Queue can interface with the industry standard 10 Gigabits/secMedia Independent Interface (XGMII) to allow high speed datatransmission over 10G Ethernet and SONET line cards. Data write and read operations are totally independent of each other. TheWriteClock and Read Clock can operate at independentfrequencies. A different queue may be selected on the write port and read port or both ports may select the same queue simultaneously. Multiple clocking schemes areofferedforthis deviceas well. The user can utilize either single ended or differential clocking for DDR read operations. DDR write operation utilize a single ended clock. SDR write and read operations utilize a single ended clock.

The devices provide Full flag and Empty flag status for the queue selected for write and read operations respectively. Also a Programmable Almost Full ($\overline{\text { PAF }}$) and Programmable AlmostEmpty ($\overline{\mathrm{PAE}}$) flagforeachqueue is provided. Two 8 bit programmable flag busses ($\overline{\mathrm{PAF}}, \overline{\mathrm{PAEn}}$) are available, providing status of queues that are not the present queue selected for write or read operations. When 8 or fewer queues are configured in the device, these flag busses provide an individual flag per queue, when more than 8 queues are used; thequeue status is multiplexed throughthe 8stus lines. The multiplexing can be configured either a Polled or Direct mode of bus.

Bus Matching is available on this device; either port can be x20 bits or x40 bits wide. When Bus Matching is used the device ensures the logical transfer of datathroughput. . Witha40 databits configuration parity checking and packet tagging is achievable if desired. Parity checking is availablethroughthe use of

4 user selectable bits as part of the 40 bit word. The user will be able to pass along parity bitsthroughtheMulti-Queueto use forerrordetection inaup/down stream device. The Multi-Queue device does not provide parity checking circuits.

In Back offOnemode, the user canswitch queues withouthaving to read the lastpipelineddataword thatisstoredintheoutput registerwhich in IDT standard mode is required to be read out during a queue switch. The lastpipelined data word in BOI mode is retained in the output data register until it is actively read.
AMark and Re-write and aMark and Re-read function are available on the write and read ports respectively. These functions allows for a mark locationto be independently issued on the read and/or write ports, in their respective queues. The option to reset a given queue to the mark location effectively dropping data written into the queue or allow data to be read again from the device.
Thedevices offer adefaultconfigurationupon reset, offering 128 symmetrical queues configured at start-up, which meansthe user can program the number of queues to divide the $10 \mathrm{Mb} / 5 \mathrm{Mb}$ of memory depending on the device. The Multi-Queuescanevenbe programmedto supportonesinglequeue to beused as a FIFO for high performance applications of sequential queuing. The programmableflagpositions are alsouserprogrammable. Ifthe userdoes not wish to program the multi-queue device, a default option is available that configures the device in a predetermined manner. A Master Reset latches in all configuration setup pins and must be performed before programming of the device can take place.
The multi-queueflow-control devices have the capability of operating its I/O in either 1.5V HSTL, or 1.8 V eHSTL mode. The type of I / O is selected via the IOSEL input. The core supply voltage(VCC) to the multi-queue is always 1.8 V , however the output levels can be set independently via a separate supply, VDDQ. The package used will bea23mmx23mm, BB-376BGA package for better noise immunity and ground bounce prevention.

AJTAG test port is provided, here the multi-queueflow-control device has afully functional Boundary Scanfeature, compliantwithIEEE 1149.1 Standard TestAccess Port and Boundary Scan Architecture.

Figure 1. Multi-Queue Flow-Control Device Block Diagram

PIN CONFIGURATION

A	\bigcirc																					
	GND	GND	D11	D9	D7	D5	D3	D1	TRST	TMS	TDI	ID2	IDO	Q1	Q3	Q5	Q7			Q13	GND	GND
B	\bigcirc																					
	GND	GND	D12	D10	D8	D6	D4	D2	D0	тCK	TDO	ID1	Q0	Q2	Q4	Q6	Q8	Q10	Q12	Q14	GND	GND
C	\bigcirc																					
	GND	GND	D13	D14	VdDQ	VDDQ	VDDQ	VDDQ	VDDQ	VDDQ	GND	GND	Vdda	VDDQ	Vdda	VDDQ	VDDQ	VDDQ	Q16	Q15	GND	GND
D	\bigcirc																					
	D17	D16	D15	VDD	GND	GND	VDD	Q17	Q18	Q19												
E	\bigcirc																					
	FF	D19	D18	VDD	VDD	VDD	VDD	VDD	VDD	GND	GND	GND	GND	VDD	VDD	VDD	VDD	VDDQ	VDD	DNC	EREN	ERCLK
F	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc													\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	PAF6	PAF7	PAF	VDDQ	VDDQ													VDDQ	VDDQ	ERCLK	PAE7	PAE6
G	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc													\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\overline{\text { PAF3 }}$	PAF4	PAF5	Vdda	Vdda													VDD	VDDQ	$\overline{\text { PAE5 }}$	$\widehat{\text { PAE4 }}$	PAE3
H	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc													\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\stackrel{\text { PAFO }}{ }$	PAF1	PAF2	VdD	VDD													VDd	VDD	PAE2	PAE1	PAEO
J	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Vref	FSYNC	FXO	VDD	GND				GND	GND	GND	GND	GND	GND				GND		REN	$\stackrel{\square}{\text { RCS }}$	RCLK
K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	SENI	SENO	SCLK	GND	GND				GND	GND	GND	GND	GND	GND				GND	GND	GND	AVDD	AVss
L	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	wcs	SI	so	GND	GND				GND	GND	GND	GND	GND	GND				GND	GND	GND	AVss	AVss
M	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	WEN	wCLK	waden	GND	GND				GND	GND	GND	GND	GND	GND				GND	GND	GND	Vref	AVDD
N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	wRADDo	WRADD1	WRADD2	GND	GND				GND	GND	GND	GND	GND	GND				GND	GND	PAE	EF	zQ
P	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	WRADD3	WRADD4	$4 \text { WRADD5 }$	VDD	GND				GND	GND	GND	GND	GND	GND				GND	VDD	$\overline{\text { BOI }}$	ESYNC	EXO
R	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc													\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	wRADD6	wRADD7	VDD	VDD	VDD													Vdd	VDD	ESTR	EXI	OE
T	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc													\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	FXI	FSTR	MRS	VDDQ	VDDQ													VDDQ	Vdda	RDADD1	RDADDO	RADEN
U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc													\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	MAST	FM	TP	Vdda	Vdda													Vddo	VDDQ	RDADD4	RDADD3	RDADD2
V	\bigcirc																					
	PLLON	D20	D21	VDD	Vdd	VDD	Vdd	VDD	GND	GND	GND	GND	GND	GND	VDD	Vdd	VDD	VDD	Vdd	RDADD7	RDADD6	RDADD5
W	\bigcirc																					
	D22	D23	D24	VDD	GND	GND	VDD	Q22	Q21	Q20												
Y	\bigcirc																					
	GND	GND	D26	D25	VDDQ	VDDQ	VDDQ	VDDQ	Vdda	Vdda	GND	GND	GND	VDDQ	VDDQ	VDDQ	VDDQ	VDDQ	Q23	Q24	GND	GND
AA	\bigcirc																					
	GND	GND	D27	D29	D31	D33	D35	D37	D39	QSEL1	DFM	BM2	Q39	Q37	Q35	Q33	Q31	Q29	Q27	Q25	GND	GND
BB	\bigcirc	○	\bigcirc																			
	$\mathrm{I}^{\text {GND }}$	GND	D28	D30	D32	D34	D36	D38	QSELO	QSEL2	BM0	BM1	BM3	Q38	Q36	Q34	Q32	Q30	Q28	Q26	GND	GND
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
																						$24 \mathrm{dmo3}$

NOTE

1. DNC - Do Not Connect.

DETAILED DESCRIPTION

MULTI-QUEUE STRUCTURE

The IDT multi-queue flow-control device has a single data input port and single data output portwith up to 128 FIFO queues in parallel buffering between the two ports. The usercan setup between 1 and 128 Queues within the device. Thesequeues canbe configured to utilize the total available memory, providing the userwithfullflexibility andability to configurethequeues to be variousdepths, independent of one another.

MEMORYORGANIZATION/ALLOCATION

The memory is organized into what is known as "blocks", each block being 256×40 bits. Whenthe user is configuring the number of queues and individual queue sizes the user mustallocate the memory to respective queues, in units of blocks, that is, a single queue can be made up from 0 to m blocks, where m is the total number of blocks available within a device. Also the total size of any given queue must be in increments of 256×40. For the IDT72P51767 and IDT72P51777 the Total Available Memory is 1024 and 512 blocks respectively (a block being 256×40). Queues can be built from these blocks to make any size queue desired and any number of queues desired.

BUS WIDTHS

The inputportis commonto all queues withinthe device, as isthe output port. The device providesthe userwith Bus Matchingoptions suchthatthe input port and output port can be either x20, x 40 bits wide, the read and write port widths can be set independently of one another. Because a ports are common to all queuesthe width of thequeuesis notindividually set. Theinputwidthofallqueues are the same and the output width of all queues are the same.

WRITING TO \& READING FROM THE MULTI-QUEUE

Data being written into the device via the input port is directed to a discrete queue viathe writequeue address input. Conversely, data being readfromthe device read port is read from aqueue selected viathe read queue address input. Data can be simultaneously written into and read from the same queue or different queues. Once a queue is selected for data writes or reads, the writing and reading operation is performed inthe same manner as a conventional IDT synchronous FIFO, utilizing clocks and enables, there is a single clock and enable per port. When a specific queue is addressed on the write port, data placed onthe datainputs is written to that queue sequentially based onthe rising edge of a write clock provided setup and hold times are met. Conversely, data is read on to the output port after an access time from a rising edge on a read clock.

The operation of the write port is comparable to the function of a conventional FIFO operating in standard IDT mode. Write operations can be performed on the write portprovidedthatthequeuecurrently selected is notfull, afull flagoutput provides status of the selected queue. When a queue is selected on the output port, the next word in that queue will be available for reading on the output register. All subsequent words from that queue require an enabled read cycle. Data cannotbe read from a selected queue ifthat queue is empty, the read port provides an Empty flag indicating when data read outis valid. Ifthe userswitches to a queue that is empty, the last word from the previous queue will remain on the output bus. The device can operate in IDT Standard mode or $\overline{\mathrm{BOI}}$ mode. In IDT Standard mode the read port provides a word to the output bus (Qout) foreach clock cycle that $\overline{R E N}$ is asserted. Referto Figure 46, SDRRead Queue Select, Read Operation (IDT Mode).

As mentioned, the write porthas a full flag, providing full status of the selected queue. Along withthe full flaga dedicated almostfull flag is provided, this almost full flag is similar to the almostfull flag of a conventional IDT FIFO. The device provides a user programmable almost full flag for all 128 queues and when a
respectivequeue is selected onthe write port, the almostfull flag providesstatus for that queue. Conversely, the read port has an Empty flag, providing status of the data being read from the queue selected on the read port. As well as the Emptyflagthedeviceprovides adedicatedalmostemptyflag. This almostempty flag is similar to the almost empty flag of a conventional IDT FIFO. The device provides a user programmable almost empty flag for each 128 queues and when a respective queue is selected on the read port, the almost empty flag provides status for that queue.

PROGRAMMABLE FLAG BUSSES

In additiontothesededicatedflags, full\& almostfull onthe write portandOutput Ready \& almost empty on the read port, there are two flag status busses. An almostfullflagstatus busis provided, this bus is 8bits wide. Also, analmostempty flag status bus is provided, againthis bus is 8 bits wide. The purpose of these flagbusses is to providetheuserwithameansbywhichto monitorthedatalevels within queues that may notbe selected on the write or read port. As mentioned, the device provides almostfull and almostempty registers (programmableby the user) for each of the 128 queues in the device.

In the IDT72P51767/72P51777 multi-queue flow-control devices the user has the option of utilizing 1 to 128 queues, therefore the 8 bitflag status busses are multiplexed betweenthe 128 queues, a flag bus can only provide status for 8 of the 128 queues at any moment, this is referred to asa "StatusWord", such that when the bus is providing status of queues 1 through 8 , this is status word 1 , when it is queues 9 through 16 , this is status word 2 and so on up to status word 16. If less than 128 queues are setup in the device, there are still 4 status words, such that in "Polled" mode of operationthe flag bus will still cycle through 4 status words. If for example only 22 queues are setup, status words 1 and 2 will reflect status of queues 1 through 8 and 9 through 16 respectively. Status word 3 will reflect the status of queues 17 through 22 on the least significant 6 bits, the mostsignificant2bits of the flagbus are don'tcare. The remainingstatus words are not used as there are no queues to report.

The flag busses are available in two user selectable modes of operation, "Polled" or "Direct". When operating in polled mode a flag bus provides status of each status word sequentially, that is, on each rising edge of a clock the flag bus is updated to show the status of each status word in order. The rising edge of the write clock will update the almost full bus and a rising edge on the read clock will update thealmostemptybus. Themode ofoperationisalwaysthesame forboth the almostfull and almostempty flag busses. When operating in direct mode, the status word on the flag bus is selected by the user. So the user can actually address the status word to be placed on the flag status busses, these flag busses operate independently of one another. Addressing of the almostfull flag bus is done viathe write port and addressing of the almostempty flag bus is done via the read port.

EXPANSION

Expansion of multi-queue devices is possible. Expansion achieves either depth orqueue expansion. Depth Expansion means expanding the depths of individual queues. Queue expansion means increasing the total number of queues available. Depth expansion is possible by virtue of the fact that more memory blocks within a multi-queue device canbe allocated to a fewernumber of queuesto increase the depth of each queue. For example, depth expansion of 2 devices provides the possibility of 2queues, each queue being setup within a single device utilizing all memory blocks available to produce a single queue. This is the deepest queue that can setup within a device.

For queue expansion a maximum number of 256 queues (2×128 queues) may be setup. If fewer queues are desired, then more memory blocks will be available to increasequeue depths if desired. Referto Figure61, Connecting two 10G Multi-Queue 128Q devices in Expansion Mode, and Figure 62,

Connecting three or more 10G Multi-Queue 128Q in Expansion mode using WRADD bit 7/RDADD bit 7for device connection details.

10Gbps MULTI-QUEUE DIFFERENCES FROM THE 4M MULTI-QUEUE
The 10G Multi-Queue was developed to support very high performance applications that needed $10 \mathrm{~Gb} / \mathrm{s}$ of bandwidth, and the flexibility of buffering packets of information in large bursts such as Jumbo Ethernet packets that can be as large as 9KBs. Listed below are the differences between the 10G MultiQueue and the previous4MMulti-Queue with descriptions of theenhancements made to support performance functions in queuing.

PERFORMANCEENHANCEMENTS

- 333.34 Mbps (per pin) High speed data rate in DDR mode
- x40 Din and x40 Qout (8more pins for user selectable operation such as parity check or packettagging)
- Electrical compatibility to 802.3ae XGMII specificationfor passive interconnectionto Ethernet devices.
- Single clocking in DDR and SDR, PLL on/off Mode. (PAD_PLLON pin) allowing data latency to be the same for SDR and DDR.
- Burst of 2 timing and interface logic
- Output impedance matching for signal quality on the outputpins.
- More Data latency (same cycle on write, 1 cycle on read)
- Three "echo" output pins: ERCLK, $\overline{E R C L K}$, and $\overline{E R E N}$ used for Source Synchronous data on the output. Data can be center alignedonthe EchoClock orissued onthe risingedge ofthe EchoClock. - Access Time (Ta) reducedto 0.48ns with Echo Clock used forfaster Synchronized data delivery down stream

USER FLEXIBILITY IMPROVEMENTS

- 10Mbits of storage and queuing density for support large packet frames such as Jumbo Ethernet
- During a Queue switch, BOI mode preserves the data word in the output register until it's read.
- "Real Time" Flags, for both DDR and SDR.
- $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ have 1 more cycle (WCLK/RCLK) latency (3 vs. 2)
- Tskew of $\overline{\mathrm{EF}} / \overline{\mathrm{PAE}}$ with respect to WCLK has 1 WCLK cycle delay.
- Tskew of $\overline{\mathrm{FF}} / \overline{\mathrm{PAF}}$ with respect to RCLK has 1 RCLK cycle delay.
- Programmable Defaultconfiguration of 128,64,32,16,8or4symmetrical queues are available using DFM, QSEL[2:0] pins
- User selectable I/O: 1.5V HSTL, or 1.8V eHSTL for faster switching I/O
- Expansion of upto 256 queues and/or80Mbitlogical configuration using up to 8 multi-queue devices
- Defaultflagoffsetvalue is defined accordingto bus matching configuration
- The $\overline{\text { PAE }}$ flag can be used as a packet indicator

TABLE 1 - SUMMARY OF THE DIFFERENCES BETWEEN THE 4M MQ AND 10G MQ

FEATURE	4M MQ (IDT72P51769)	10M MQ (IDT72P51777)
Data TransferModes	SDR	SDR, DDR
BusWidth	x36, x18, x9	x40, x20
XGMIICompatibility	no	yes
Accesstime(ta)	3.6 ns max	0.48 ns max
DataStorageCapacity	4 Mb	10 Mb
Data Throughput	7.2 Gbps	10 Gbps
Operating Frequency	200mhz	166 mhz
Configurable Queues	Up to 128	Up to 128
Package	256 pin PBGA	376 pin BGA
OutputImpedanceTechnology	no	yes
I/OVoltages	$1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$	$1.5 \mathrm{~V}, 1.8 \mathrm{~V}$
Echo read Clock	no	yes
Modes of Operation	FWFT, IDT, Packet	IDT, BOI
OutputdataClocking	Edgealigned	Centeredaligned

PIN DESCRIPTIONS

 (Pin No.)	Name	I/OTYPE	Description
BM [3:0] (BM3-BB13 BM2-AA12 BM1-BB12 BM0-BB11)	BusMatching	1.8V LVTTL INPUT	These pins define the bus width and data transfer rate (DDR/SDR) of the input write port and the output read port ofthe device. The bus widths/data rates are set during a Master Restcycle. The BM[3:0] signals must meet the setup and hold time requirements of Master Reset and mustnottoggle/change state after a Master Reset cycle.
$\begin{aligned} & \overline{\mathrm{BOI}} \\ & \text { (P20) } \end{aligned}$	BackOffOne Mode	HSTL INPUT	When in BOI, data is back-off one position in which Packet 1 and Packet 2 are out again during second Queue Switch. See section on 10Gbps Multi-queue Differences from the 4M multi-queue, previous page.
$D[39: 0]$ (See Pin No. tablefor details)	Data InputBus	$\begin{aligned} & \text { HSTL } \\ & \text { INPUT } \end{aligned}$	These are the 32 data input pins. Data is written into the device via these input pins on the rising edge of WCLK provided that WEN is LOW. Any unused data input pins should be tied HIGH. D[39:36] user definable inputbits $\mathrm{D}[33]$ userdefinable $\mathrm{D}[32]$ user definable $[31: 0]$ data inputbits
DFM (AA11)	DefaultMode	1.8V LVTTL INPUT	The 10G multi-queue device requires programming after master reset. The user can do this serially via the serial port, or the user can use the default method. If DFM is LOW at Master Reset then serial mode will be selected, if DFM is HIGH then default mode is selected.
$\overline{\mathrm{EF}}$ (N21)	Empty Flag	HSTL OUTPUT	The Empty Flag $(\overline{\mathrm{EF}})$ provides valid status for the selected queue. The Empty Flag indicates the selected queue is empty, all words have been read. This flag is delayed to match the data output path delay.
ERCLK (E22)	Echo Read Clock	$\begin{gathered} \text { HSTL } \\ \text { OUTPUT } \end{gathered}$	The rising edge of this clock is centered aligned with Qout data.
$\begin{aligned} & \overline{\text { ERCLK }} \\ & \text { (F20) } \end{aligned}$	Echo Read Clock	$\begin{gathered} \text { HSTL } \\ \text { OUTPUT } \end{gathered}$	Read Clock Echo is the inverse of ERCLK.
$\begin{aligned} & \overline{\text { EREN }} \\ & \text { (E21) } \end{aligned}$	Echo Read Enable	HSTL OUTPUT	Echo Read Enable output, used in conjunction with ERCLK and $\overline{\text { ERCLK }}$.
$\begin{aligned} & \text { ESTR } \\ & \text { (R20) } \end{aligned}$	$\overline{\text { PAEn Flag Bus }}$	HSTL INPUT	Ifdirectoperation of the $\overline{\text { PAEn bus has been selected, the ESTR input is used in conjunction with RCLK }}$ andthe RDADD busto selectaquadrant of queues to be placed onto $\overline{\text { PAE }}$ output. Aquadrantaddressed viathe RDADD busisselected onthe rising edge of RCLK provided thatESTR is HIGH. IfPolled operation hasbeenselected, ESTR shouldbetiedinactive,LOW. Note, thata $\overline{\text { PAEnflagbusselection cannotbemade, }}$ (ESTR mustNOT goactive) until programming ofthe parthas been completed andSENO has goneLOW.
ESYNC (P21)	$\overline{\text { PAEn Bus Sync }}$	HSTL OUTPUT	ESYNC is an output from the multi-queue device that provides a synchronizing pulse for the $\overline{\mathrm{PAE}}$ b bus during Polled operation of the $\overline{\mathrm{PAE}}$ b bus. During Polled operation each quadrant of queue status flags is loaded on to the $\overline{\text { PAEn }}$ bus outputs sequentially based on RCLK. The first RCLK rising edge loads quadrant 1 on to $\overline{\mathrm{PAE}}$, the second RCLK rising edge loads quadrant 2 and soon. The fifth RCLK rising edge will again load quadrant 1 . During the RCLK cycle that quadrant 1 of a selected device is placed on to the $\overline{\text { PAEn bus, the ESYNC output will be HIGH. For all other quadrants of that device, the ESYNC }}$ outputwill be LOW.
$\begin{aligned} & \text { EXI } \\ & \text { (R21) } \end{aligned}$	PAEnBus Expansion In	HSTL INPUT	The EXI inputis used when multi-queue devices are connected in expansion mode and Polled $\overline{\text { PAEn }}$ bus operation has been selected. EXI of device ' N ' connects directly to EXO of device ' $\mathrm{N}-1$ '. The EXI receives a token from the previous device in a chain. In single device mode the EXI input must be tied LOW if the $\overline{\text { PAE }}$ b bus is operated in direct mode. If the $\overline{\text { PAEn bus is operated in polled mode the EXI input must be }}$ connected to the EXO output of the same device. In expansion mode the EXI of the first device should be tied LOW, when direct mode is selected.
$\begin{aligned} & \text { EXO } \\ & \text { (P22) } \end{aligned}$	$\overline{\text { PAEnBus }}$ ExpansionOut	HSTL OUTPUT	EXO is an output that is used when multi-queue devices are connected in expansion mode and Polled pin pulses when device N has placed its final (4th) quadrant on to the $\overline{\text { PAEn }}$ bus with respect to RCLK. This pulse (token) is then passed on to the next device in the chain ' $\mathrm{N}+1$ ' and on the next RCLK rising edge the first quadrant of device $\mathrm{N}+1$ will be loaded on to the $\overline{\text { PAEn bus. This continues through the chain }}$ and EXO of the last device is then looped back to EXI of the first device. The ESYNC output of each device in the chain provides synchronization to the user of this looping event.
$\begin{aligned} & \bar{F} \bar{F} \\ & (E 1) \end{aligned}$	Full Flag	HSTL OUTPUT	This pin provides the full flag output for the active Queue, that is, the queue selected on the input port for write operations, (selected via WCLK, WRADD bus and WADEN). On the WCLK cycle after a queue selection, this flag will show the status of the newly selected queue. Data can be written to this queue provided $\overline{\mathrm{FF}}$ is HIGH. This flag has High-Impedance capability, this is important during expansion of

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/OTYPE	Description
$\overline{\mathrm{FF}}$ (Continued) (E1)	Full Flag	HSTL OUTPUT	devices, when the $\overline{F F}$ flag output of up to 8 devices may be connected together on a common line. The device with a queue selected takes control of the FF bus, all other devices place their $\overline{F F}$ outputinto HighImpedance. When aqueue selection is made onthe write portthis output will switch fromHigh-Impedance control on the next WCLK cycle. This flag is asserted synchronous to WCLK.
$\begin{aligned} & \mathrm{FM} \\ & \text { (U2) } \end{aligned}$	Flag Mode	1.8V LVTTL INPUT	This pin is setup before a Master Reset and must nottoggle during any device operation. The state of the FM pinduring Master Resetwill determine whetherthe $\overline{\mathrm{PAF}}$ nand $\overline{\mathrm{PAE}}$ nflagbusses operate ineitherPolled or Direct mode. If FM is HIGH, Polled mode is selected, if FM LOW, Direct mode is selected.
FSTR (T2)	$\overline{\text { PAFn Flag }}$ Bus Strobe	HSTL INPUT	If directmode for the $\overline{\text { PAF }}$ nbus has been selected, the FSTR inputis used in conjunction with WCLK and the WRADD bus to select a quadrant of queues to be placed on to the $\overline{\text { PAF }}$ b bus outputs. A quadrant addressed via the WRADD bus is selected on the rising edge of WCLK provided that FSTR is HIGH. If polled operations has been selected, FSTR should be tied inactive, LOW. Note, that a $\overline{\text { PAF }}$ n flag bus selection cannotbe made, (FSTR mustNOT goactive) until programming of the parthas been completed and SENO has gone LOW.
FSYNC (J2)	$\overline{\text { PAFn Bus Sync }}$	HSTL OUTPUT	FSYNC is an output from the multi-queue device that provides a synchronizing pulse for the $\overline{\text { PAFn }}$ bus during Polled operation of the $\overline{\mathrm{PAF}}$ b bus. During Polled operation each quadrant of queue status flags is loaded on to the $\overline{\text { PAFn }}$ bus outputs sequentially based on WCLK. The first WCLK rising edge loads quadrant 1 on to $\overline{\mathrm{PAF}}$ n, the second WCLK rising edge loads quadrant2 and so on. The fifth WCLK rising edge will again load quadrant 1 queue status flags. During the WCLK cycle that quadrant 1 of a selected device is placed on to the $\overline{\text { PAF }}$ nbus, the FSYNC output will be HIGH. Forall otherquadrants of that device, the FSYNC output will be LOW.
FXI (T1)	$\overline{\text { PAF }}$ Bus Expansion In	HSTL INPUT	The FXI inputis used when multi-queue devices are connected in expansion mode and Polled $\overline{\text { PAF }} n$ bus operation has been selected. FXI of device ' N ' connects directly to FXO of device ' $\mathrm{N}-1$ '. The FXI receives a token from the previous device in a chain. In single device mode the FXI input must be tied LOW ifthe $\overline{\mathrm{PAF}}$ n bus is operated in direct mode. If the $\overline{\mathrm{PAF}}$ n bus is operated in polled mode the FXI input must be connected to the FXO output of the same device. In expansion mode the FXI of the first device should be tied LOW, when direct mode is selected.
$\begin{aligned} & \text { FXO } \\ & \text { (J3) } \end{aligned}$	$\overline{\text { PAF }}$ Bus ExpansionOut	HSTL OUTPUT	FXO is an output that is used when multi-queue devices are connected in expansion mode and Polled $\overline{\mathrm{PAF}}$ n bus operation has been selected. FXO of device ' N ' connects directly to FXI of device ' $\mathrm{N}+1$ '. This pin pulses when device N has placed its final (4th) quadrant on to the $\overline{\text { PAF }}$ b bus with respect to WCLK. This pulse (token) is then passed on to the next device in the chain ' $\mathrm{N}+1$ ' and on the next WCLK rising edge the first quadrant of device $\mathrm{N}+1$ will be loaded on to the $\overline{\mathrm{PAF}}$ nbus. This continues throughthe chain andFXO of the last device is then looped back to FXI of the first device. The FSYNC output of each device in the chain provides synchronization to the user of this looping event.
ID[2:0] (ID2-A12 ID1-B12 IDO-A13)	Device ID Pins	1.8V LVTTL INPUT	The ID[2:0] pins are used to uniquely address individual devices when multiple Multi-Queue devices are connected in expansion mode. Addressing devices in expansion mode requires matching WRADD/ RDADD address bits with the address that is assigned to each device by the ID[2:0] pins. During write/ read operations the WRADD/RDADD address are compared to the device ID [2:0] value. Note: expansion mode supportsamaximum 256 queues, regardless of thenumber of devices used inexpansion mode. The firstdevice in achain of multi-queue's (connected in expansion mode), may be setup as '000', the second as '001". In single device mode the ID[2:0] pins should be setup as ' $0 x x$ ' and the MSb (bit 7) of the WRADD and RDADD address busses should be zero. The ID[2:0] inputs setup a respective device IDduring MasterReset. These ID pins mustnottoggleduring any deviceoperation. Note, the device selected as the 'Master' does not have to have the ID of ' 000 '.
MAST (U1)	Master Device	1.8V LVTTL INPUT	The state of this input at Master Reset determines whether a given device (within a chain of devices), is the Master device or a Slave. If this pin is HIGH, the device is the masterifitis LOW then it is a Slave. The master device is the first to take control of all outputs after a Master Reset, all slave devices go to HighImpedance, preventing bus contention. If a multi-queue device is being used in single device mode, this pin mustbe setHIGH.
$\overline{\text { MRS }}$ (T3)	Master Reset	$\begin{aligned} & \text { HSTL } \\ & \text { INPUT } \end{aligned}$	The Master Reset is used to configure the device. To configure the device configuration signals must be asserted that meetthe setup time and hold time requirements of a Master Resetcycle. Transitioning $\overline{\text { MRS }}$ from HIGH to LOW then LOW to HIGH performs a complete Master Resetcycle. Note, additional device programming is required after master reset.

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/OTYPE	Description
$\overline{\mathrm{OE}}$ (R22)	OutputEnable	HSTL INPUT	The Output Enable signal is the three-state control of the multi-queue data output bus Q[39:0], Qout. Ifa device has been configuredas a "Master"device, the Qoutdata outputs will be inalow impedance condition ifthe $\overline{\text { OE }}$ input is LOW. If $\overline{\mathrm{EE}}$ is H IGH then the Qout data outputs will be in high impedance. If a device is configureda "Slave" device, then the Qout data outputs will always be in highimpedance until that device has been selected on the Read Port, at which point $\overline{\mathrm{E}}$ provides three-state of that respective device.
$\begin{array}{\|l} \hline \overline{\mathrm{PAE}} \\ \text { (N20) } \end{array}$	Programmable Almost-Empty Flag	HSTL OUTPUT	This pin provides the Almost-Empty flagstatusforthe Queue thathas been selected on the outputportfor read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected Queue is almost-empty. Thisflag output may beduplicated on one ofthe $\overline{\text { PAEn bus lines. Thisflagis synchronized }}$ to RCLK.
$\overline{\text { PAEn }}[7: 0]$ ($\overline{\text { PAE }} 7-F 21$ PAE6-F22 PAE5-G20 PAE4-G21 PAE3-G22 PAE2-H20 PAE1-H21 $\overline{\text { PAE }} 0-\mathrm{H} 22$)	Programmable Flag Bus	HSTL OUTPUT	The $\overline{\text { PAEn bus is } 8 \text { bits wide. During a Master Resetthis bus is setupfor Almost Empty configuration. This }}$ output bus provides $\overline{\text { PAE status of } 8 \text { queues (1 quadrant), within a selected device. During Queue read/ }}$ write operations these outputs provide programmable empty flag status or packet data available status, in either polled ordirect mode. The mode offlagoperation is determined during master resetviathe state of the FM input. This flag bus is capable of High-Impedance state, this is important during expansion of mult-queuedevices. During directoperationthe $\overline{\text { PAE }}$ n bus is updated to show the $\overline{\text { PAE status of aquadrant }}$ of queues within a selected device. Selection is made using RCLK, ESTR and RDADD. During Polled operationthe $\overline{\text { PAEn }}$ bus is loaded with the $\overline{\text { PAE status of multi-queueflow-control quadrants sequentially }}$ based on the rising edge of RCLK.
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { PAF } \end{array} \\ (\text { (} \end{array}$	Programmable Almost-Full Flag	HSTL OUTPUT	This pin provides the Almost-Fullflagstatusfor the Queuethathas been selected on the input portforwrite operations, (selected via WCLK, WRADD and WADEN). This pin is LOW when the selected Queue is almost-full. This flag output may be duplicated on one of the $\overline{\text { PAFn }}$ bus lines. The $\overline{\text { PAE flag is asserted }}$ synchronous to WCLK.
	Programmable Almost-Full Flag Bus	HSTL OUTPUT	The $\overline{\text { PAF }}$ nbus is 8 bits wide. Atany one time this outputbus provides $\overline{\mathrm{PAF}}$ status of 8 queues (1 quadrant), within a selected device. During Queue read/write operations these outputs provide programmable full flagstatus, in eitherdirector polled mode. The mode offlagoperation is determined during master reset viathe state of the FM input. This flag bus is capable of High-Impedance state, this is important during expansion of multi-queue devices. During directoperationthe $\overline{\text { AFFn bus is updated to show the } \overline{\mathrm{PAF}} \text { status }}$ of a quadrant of queues within a selected device. Selection is made using WCLK, FSTR, WRADD and WADEN. During Polled operationthe $\overline{\text { PAFn bus is loaded withthe } \overline{\text { PAF }} \text { status of multi-queue flow-control }}$ quadrants sequentially based on the rising edge of WCLK.
$\begin{array}{\|l} \hline \text { PLL ON } \\ \text { (V1) } \end{array}$	PLL ON	HSTL INPUT	This pinis usedto enable the PLL. When PLL is activated, data will be clocked out by PLL generated clock.
Q[39:0](Qout) (See Pin No. tablefordetails	DataOutputBus	HSTL OUTPUT	These are the 40 data outputpins. Data is read out of the device via these outputpins on the rising edge of RCLK provided that REN is LOW, $\overline{\text { OE }}$ is LOW and the Queue is selected. Due to bus-matching notall outputs may be used, any unused outputs should not be connected.
$\begin{array}{\|l\|} \hline \text { QSEL[2:0] } \\ \text { (QSEL2-BB10 } \\ \text { QSEL1-AA10 } \\ \text { QSELO-BB9) } \\ \hline \end{array}$	QueueSelect	1.8V LVTTL INPUT	The QSEL pins provides various queue programming options. Refer to Table 10, Write Queue Switch Operationfordetails.
$\begin{aligned} & \begin{array}{l} \text { RADEN } \\ \text { (T22) } \end{array} \end{aligned}$	Read Address Enable	HSTL INPUT	The RADEN input is used in conjunction with RCLK and the RDADD address bus to select a queue to be read from. A queue addressed via the RDADD bus is selected on the rising edge of RCLK provided that RADEN is HIGH. RADEN should be asserted (HIGH) only during a queue change cycle(s). RADEN should notbe permanentlytied HIGH. RADEN cannotbe HIGH forthe same RCLK cycle as ESTR. Note, thata read queue selection cannotbe made,(RADEN mustNOT go active) until programming of the part has been completed and SENO has gone LOW.
$\begin{array}{\|l\|} \hline \text { RCLK } \\ \text { (J22) } \end{array}$	Read Clock	HSTL INPUT	When enabled by $\overline{R E N}$, the rising edge of RCLK reads datafrom the selected queue via the output bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK while RADEN is HIGH. A rising edge of RCLK in conjunction with ESTR and RDADD will also select the $\overline{\overline{A A E}}$ flagquadrant to be placed on the $\overline{\text { PAEn }}$ bus during directflag operation. During polledflag operation the $\overline{\text { PAEn bus is cycled with respecto RCLK and the ESYNC signal is synchronizedto RCLK. The } \overline{\text { AE }} \text {, and }}$

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/OTYPE	Description
RCLK (Cont'd) (J22)	Read Clock	$\begin{aligned} & \text { HSTL } \\ & \text { INPUT } \end{aligned}$	EF outputs are all synchronizedto RCLK. During device expansion the EXO and EXI signals are based on RCLK. RCLK must be continuous and free-running.
$\begin{aligned} & \hline \overline{\mathrm{RCS}} \\ & \text { (J21) } \end{aligned}$	Read Chip Select	HSTL INPUT	The $\overline{R C S}$ signal in concert with $\overline{\mathrm{REN}}$ signal provides control to enable data on to the output read data bus. During a Master Reset cycle the $\overline{\mathrm{RCS}}$ it is don't care signal.
RDADD[7:0] (RDADD7-V20 RDADD6-V21 RDADD5-V22 RDADD4-U20 RDADD3-U21 RDADD2-U22 RDADD1-T20 RDADD0-T21)	Read Address Bus	HSTL INPUT	For the 128Q device the RDADD bus is 8 bits. The RDADD bus is a dual purpose address bus. The first function ofRDADD istoselectaQueuetobe readfrom. Theleastsignificant5bits ofthebus, RDADD[4:0]are used to address 1 of 128 possible queues within a multi-queue device. The most significant 3 bits, RDADD[7:5] are used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. These3MSB's will address a device with the matching ID code. (See ID[2:0] descriptionfor more detail on matching ID code. The second function of the RDADD bus is to select the quadrant of queues to be loaded on to the $\overline{\mathrm{PAE}}$ n bus during strobed flag mode. The least significant 4 bits, RDADD[3:0] are usedtoselectthequadrantofadevicetobeplacedonthe $\overline{\text { PAEnbus. Themostsignificant3bits, RDADD[7:5] }}$ are again used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. Address bit RDADD[4] is don't care during quadrant selection.
$\begin{aligned} & \overline{\mathrm{REN}} \\ & (\mathrm{~J} 20) \end{aligned}$	Read Enable	HSTL INPUT	The $\overline{R E N}$ inputenables read operations from a selected Queue based on a rising edge of RCLK. A queue to be read from can be selected via RCLK, RADEN and the RDADD address bus regardless of the state of $\overline{R E N}$. Data from a newly selected queue will be available on the Qout output bus on the second RCLK cycle after queue selection regardless of $\overline{R E N}$. A read enable is not required to cycle the $\overline{\text { PAEn bus }}$ (in polled mode) or to select the $\overline{\text { PAE }}$ quadrant, (in direct mode).
$\begin{aligned} & \text { SCLK } \\ & (\mathrm{K} 3) \end{aligned}$	SerialClock	$\begin{aligned} & \text { HSTL } \\ & \text { INPUT } \end{aligned}$	If serial programming of the multi-queue device has been selected during master reset, the SCLK input clocks the serial datathroughthe multi-queue device. Data setup onthe Sl input is loaded intothe device onthe rising edge of SCLK provided thatSENl isenabled, LOW. When expansion of devices is performed the SCLK of all devices should be connected to the same source.
$\begin{aligned} & \text { SENI } \\ & \text { (K1) } \end{aligned}$	Serial Input Enable	HSTL INPUT	During serial programming of a multi-queue device, data loaded onto the Sl input will be clocked into the part (via a rising edge of SCLK), provided the SENI input of that device is LOW. If multiple devices are cascaded, the SENl inputshould beconnectedtothe SENO output of the previous device. So when serial loading of a given device is complete, its SENO output goes LOW, allowing the next device in the chain to be programmed (SENO will follow SENI of a given device once that device is programmed). The SENI input of the master device (or single device), should be controlled by the user.
$\begin{aligned} & \text { SENO } \\ & \text { (K2) } \end{aligned}$	Serial Output Enable	HSTL OUTPUT	This outputis used to indicate that serial programming or default programming of the multi-queue device has been completed. SENO follows SENI once programming of a device is complete. Therefore, SENO will go LOW after programming provided SENI is LOW, once SENI is taken HIGH again, SENO will also go HIGH. When the SENO output goes LOW, the device is ready to begin normal read/write operations. If multiple devices are cascaded and serial programming of the devices will be used, the SENO output should be connected to the SENl input of the next device in the chain. When serial programming of the first device is complete, SENO will go LOW, thereby taking the SENl input of the next device LOW and so on throughout the chain. When a given device in the chain is fully programmed the SENO output essentially followsthe SENl input. The usershouldmonitortheSENO output of the final device inthe chain. When this output goes LOW, serial loading of all devices has been completed.
SI (L2)	Serial In	$\begin{aligned} & \text { HSTL } \\ & \text { INPUT } \end{aligned}$	During serial programming this pin is loaded withthe serial datathat will configure the multi-queue devices. Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion mode the serial datainputis loaded intothefirstdevice in achain. Whenthat device is loaded anditsSENO has goneLOW, the data presenton SI will be directly outputtotheSO output. TheSO pin of the firstdevice connects to the SI pin of the second and so on. The multi-queue device setup registers are shift registers.
$\begin{aligned} & \hline \text { SO } \\ & \text { (L3) } \end{aligned}$	SerialOut	HSTL OUTPUT	This output is used in expansion mode and allows serial data to be passed through devices in the chain to complete programming of all devices. The SI of a device connects to SO of the previous device in the chain. The SO of the final device in a chain should not be connected.
TCK (B10)	JTAG Clock	HSTL INPUT	Clock input for JTAG function. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to TCK. Datafrom TMS and TDI are sampled onthe risingedge of TCK and outputs change on the falling edge of TCK. Ifthe JTAG function is not used this signal needs to be tied to GND.

PIN DESCRIPTIONS (CONTINUED)

Symbol \& (Pin No.)	Name	I/OTYPE	Description
$\begin{array}{\|l\|} \hline \text { TDI } \\ \text { (A11) } \end{array}$	JTAG Test Data	HSTL INPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, Input test data serially loaded via the TDI on the rising edge of TCK to either the Instruction Register, ID Register and Bypass Register. Aninternal pull-up resistorforces TDIHIGHifleftunconnected
$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { TDO } \\ (\mathrm{B} 11) \end{array}$	JTAG Test Data Output	HSTL	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, testdata serially loaded outputviathe TDO onthe falling edge of TCK from eitherthe Instruction Register, ID Register and Bypass Register. This outputis highimpedance exceptwhen shitting, while in SHIFT-DR and SHIFT-IR controller states.
$\begin{aligned} & \hline \mathrm{TP} \\ & \text { (U3) } \end{aligned}$	IDT Internal TestPin	LVTTL	For IDT internal test purpose only, must be tied to GND for normal/correct operation.
$\begin{aligned} & \hline \text { TMS } \\ & \text { (A10) } \\ & \hline \end{aligned}$	JTAG Mode Select	HSTL INPUT	TMS is a serial inputpin. One offourterminals required by IEEEStandard 1149.1-1990. TMS directsthe device throughits TAP controllerstates. An internal pull-up resistorforces TMS HIGHifleftunconnected
$\begin{aligned} & \hline \overline{\mathrm{TRST}} \\ & \text { (A9) } \end{aligned}$	JTAG Reset	HSTL INPUT	$\overline{\text { TRST }}$ is an asynchronous reset pin for the JTAG controller. The JTAG TAP controller does not automatically resetupon power-up, thus it mustbe reset by eitherthis signal orby setting TMS=HIGH for five TCK cycles. Ifthe TAP controlleris notproperly resetthen the outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use $\overline{\text { TRST }}$, then $\overline{\text { TRST }}$ can be tied with $\overline{\text { MRS }}$ to ensure properqueue operation. Ifthe JTAG function is notused then this signal needs to betied to GND. An internal pull-up resistorforces TRST HIGH ifleft unconnected.
$\begin{aligned} & \begin{array}{l} \text { WADEN } \\ \text { (M3) } \end{array} \end{aligned}$	Write Address Enable	HSTL INPUT	The WADEN input is used in conjunction with WCLK and the WRADD address bus to select a queue to be written into. Aqueue addressed viathe WRADD bus is selected on the rising edge of WCLK provided thatWADEN is HIGH.WADEN should be asserted (HIGH) only during aqueue change cycle(s). WADEN should not be permanently tied HIGH. WADEN cannotbe HIGHforthe same WCLK cycleasFSTR. Note, that a write queue selection cannotbe made, (WADEN mustNOT go active) until programming ofthe part has been completed and SENO has gone LOW.
$\begin{array}{\|l} \hline \text { WCLK } \\ \text { (M2) } \end{array}$	WriteClock	HSTL INPUT	When enabled by $\overline{\text { WEN, }}$, the rising edge of WCLK writes data into the selected Queue via the input bus, Din. The Queue to be written to is selected viathe WRADD address bus and arising edge of WCLK while WADEN is HIGH. A rising edge of WCLK in conjunction with FSTR and WRADD will also select the flag quadrantto be placed on the $\overline{\text { PAF }}$ bus during directilag operation. During polledflag operationthe $\overline{\text { PAFn }}$ bus is cycled with respectto WCLK andthe FSYNC signal is synchronizedto WCLK. The $\overline{\mathrm{PAF}}, \overline{\mathrm{PAF}}$ and $\overline{\text { FF }}$ outputs are all synchronized to WCLK. During device expansionthe FXO and FXI signals are based on WCLK. The WCLK must be continuous and free-running
$\begin{array}{\|l} \hline \overline{W C S} \\ (\mathrm{~L} 1) \end{array}$	WriteChip Select	HSTL INPUT	The $\overline{W C S}$ signa in concertwith $\overline{W E N}$ signal provides control to enable data from the inputwrite data bus to be written into the device. During a Master Reset cycle the $\overline{W C S}$ it is don't care signal.
$\begin{array}{\|l\|} \hline \overline{\mathrm{WEN}} \\ \text { (M1) } \end{array}$	Write Enable	HSTL INPUT	The WEN input enables write operations to a selected Queue based on a rising edge of WCLK. A queue to be written to can be selected viaWCLK, WADEN and the WRADD address bus regardless of the state of WEN. Data presenton Din can be written to a newly selected queue on the second WCLK cycle after queue selection provided that $\overline{W E N}$ is LOW. A write enable is not requiredto cycle the $\overline{\text { PAFn }}$ bus (in polled mode) or to select the PAFn quadrant, (in direct mode).
WRADD[7:0] (WRADD7-R2 WRADD6-R1 WRADD5-P3 WRADD4-P2 WRADD3-P1 WRADD2-N3 WRADD1-N2 WRADDO-N1)	Write Address Bus	HSTL INPUT	The WRADD bus is 8 bits. The WRADD bus is a dual purpose address bus. The firstfunction of WRADD is to selecta Queue to be writtento. The leastsignificant5 bits of the bus, WRADD[4:0] are usedto address 1 of 128 possible queues within a multi-queue device. The mostsignificant 3 bits, WRADD[7:5] are used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. These 3MSB's will address a device with the matching ID code. (See ID[2:0] description for more detail on matching ID code. The second function of the WRADD bus is to select the quadrant of queues to be loaded on to the $\overline{\text { PAFnbusduringstrobedflagmode. The leastsignificant4bits, WRADD[3:0] are usedtoselect thequadrant }}$ of adevice to be placed on the $\overline{\text { PAFn }}$ bus. The mostsignificant 3bits, WRADD[7:5] are again used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. Address bit WRADD[4] is don'tcare during quadrant selection.
$\begin{array}{\|l\|} \hline \mathrm{ZQ} \\ \text { (N22) } \end{array}$	ZQ	HSTL INPUT	Output Impedance Matching Input. This inputis used to tune the device outputs to the system data bus impedance. Q[39:0] outputimpedance is setto $0.2 \times R Q$, where RQ is a resistor connected betweenZQ and ground. This pin cannot be connected directly to GND or left unconnected.

PIN DESCRIPTIONS (CONTINUED)

 Pin No.	Name	I/OTYPE	Description
VDD (See below)	+1.8 V Supply	Power	These are VCC power supply pins and must all be connected to a +1.8V supply
VDDQ (See below)	OutputVoltage	Power	These pins must be tied to the desired output supply voltage ($=1.5 \mathrm{~V}$ for HSTL and =1.8V for eHSTL).
Vref (J1, M21)	Reference	INPUT	This is a Voltage Reference input and must be connected to a voltage level determined from the table Voltage"Recommended DC Operating Conditions". The input provides the reference level for HSTL/ eHSTLinputs.
GND (See below)	Ground	Ground	These are Ground pins and must all be connected to the Ground of the power supply.
AVDD (K21, M22)	PLL Power	Power	1.8 V PLL Power Supply.
AVSS (L(21,22), K22)	PLL Ground	Ground	Ground for the PLL device. Should be connected to ground of the system.

NOTE:

1. Inputs should not change after Master Reset.

PIN NUMBER TABLE

Symbol	Name	I/OTYPE	Pin Number
D[39:0]	DatalnputBus	HSTL-LVTTL INPUT	D39-AA9, D38-BB8, D37-AA8, D36-BB7, D35-AA7, D34-BB6, D33-AA6, D32-BB5, D31-AA5, D30-BB4, D29-AA4, D28-BB3, D27-AA3, $D(26,25)-Y(3,4), D(24-22)-W(3-1), D(21,20)-V(3,2), D(19,18)-E(2,3)$, D(17-15)-D(1-3), D(14,13)-C(4,3), D12-B3, D11-A3, D10-B4, D9-A4, D8-B5, D7-A5, D6-B6, D5-A6, D4-B7, D3-A7, D2-B8, D1-A8, D0-B9
Q[39:0]	DataOutputBus	HSTL-LVTTL	Q39-AA13, Q38-BB14, Q37-AA14, Q36-BB15, Q35-AA15, Q34-AA15, Q33-AA16, Q32-BB17, Q31-AA17, Q30-BB18, Q29-AA18, Q28-BB19, Q27-AA19, Q26-BB20, Q25-AA20, Q(24,23)-Y(20,19), Q(22-20)-W(20-22), Q(19-17)-D(22-20), Q(16,15)-C(19,20), Q14-B20, Q13-A20, Q12-B19, Q11-A19, Q10-B18, Q9-A18, Q8-B17, Q7-A17, Q6-B16, Q5-A16, Q4-B15, Q3-A15, Q2-B14, Q1-A14, Q0-B13
VDD	+1.8V Supply	Power	$\begin{aligned} & D(4-10,13-19), E(4-9,14-17,19), G 18, H(4,5,18,19), J(4,19), P(4,19), R(3-5,18,19), V(4-8,15-19) \text {, } \\ & W(4-10,13-19) \end{aligned}$
VDDQ	O/P Rail Voltage	Power	$\mathrm{C}(5-10,13-18) \mathrm{E} 18, \mathrm{~F}(4,5,18,19), \mathrm{G}(4,5,19), \mathrm{T}(4,5,18,19), \mathrm{U}(4,5,18,19), \mathrm{Y}(5-10,14-18)$
GND	Ground Pin	Ground	$A(1,2,21,22), B(1,2,21,22), C(1,2,11,12,21,22), D(11,12), E(10-13), J(5,9-14,18), K(4,5,9-14,18-20)$, $\mathrm{L}(4,5,9-14,18-20), \mathrm{M}(4,5,9-14,18-20), \mathrm{N}(4,5,9-14,18,19), \mathrm{P}(5,9-14,18), \mathrm{V}(9-14), \mathrm{W}(11,12)$, $\mathrm{Y}(1,2,11-13,21,22), \mathrm{AA}(1,2,21,22), \mathrm{BB}(1,2,21,22)$

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Commercial	Unit
VTERM	Terminal Voltage with respect to GND	-0.5 to $+2.9^{(2)}$	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	-50 to +50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Compliant with JEDEC JESD8-5. VDD terminal only.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
$\operatorname{Cin}^{(2,3)}$	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	$10^{(3)}$	pF
CouT $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	15	pF

NOTES:

1. With output deselected, ($\overline{\mathrm{OE}} \geq \mathrm{V} / \mathrm{H}$).
2. Characterized values, not currently tested.
3. CIN for Vref is 20 pF .

RECOMMENDED DC OPERATING CONDITIONS

\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol \& Parameter \& Min. \& Typ. \& Max. \& Unit

\hline VDd \& Supply Voltage \& 1.7 \& 1.8 \& 1.9 \& V

\hline VdDQ \& $$
\begin{array}{|ll}
\hline \text { Output Rail Voltage for I/Os } & - \text { eHSTL } \\
& - \text { HSTL }
\end{array}
$$ \& $$
\begin{aligned}
& 1.7 \\
& 1.4 \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& 1.8 \\
& 1.5
\end{aligned}
$$ \& $$
\begin{aligned}
& 1.9 \\
& 1.6 \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& \hline \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
$$

\hline GND \& Supply Voltage \& 0 \& 0 \& 0 \& V

\hline $\mathrm{V} / \mathrm{H}^{(2)}$ \& $\begin{array}{cl}\text { InputHigh Voltage } & \text { - eHSTL } \\ & \text { - HSTL }\end{array}$ \& $$
\begin{aligned}
& \text { VREF+0.2 } \\
& \text { VREF+0. }
\end{aligned}
$$ \& \& - \& $$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
$$

\hline VIL \& Input Low Voltage

- eHSTL
- HSTL \& - \& \& | VREF-0. 2 |
| :--- |
| VREF-0. 2 | \& \[

$$
\begin{aligned}
& \text { V } \\
& \text { V }
\end{aligned}
$$
\]

\hline VREF ${ }^{(1)}$ (HSTL only) \& $\begin{aligned} \text { Voltage Reference Input } & - \text { eHSTL } \\ & - \text { HSTL }\end{aligned}$ \& \[
$$
\begin{gathered}
0.8 \\
0.68
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
0.9 \\
0.75
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1.0 \\
& 0.9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
$$
\]

\hline TA \& OperatingTemperatureCommercial \& 0 \& - \& 70 \& ${ }^{\circ} \mathrm{C}$

\hline TA \& OperatingTemperatureIndustrial \& -40 \& - \& 85 \& ${ }^{\circ} \mathrm{C}$

\hline
\end{tabular}

NOTES:

1. VREF is only required for HSTL or eHSTL inputs.
2. VIH AC Component $=\mathrm{VREF}+0.4 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter			Min.	Max.	Unit
ILI	InputLeakageCurrent			-10	10	$\mu \mathrm{A}$
ILO	OutputLeakageCurrent			-10	10	$\mu \mathrm{A}$
VOH1 ${ }^{(7)}$	Output High Voltage (test conditions: $\mathrm{RQ}=205 \Omega \mathrm{IOH}=-8 \mathrm{~mA}$)			VdDQ/2-0.12	V DDQ/2+0.12	V
VoL1 ${ }^{(8)}$	Output Low Voltage (test conditions: $\mathrm{RQ}=205 \Omega \mathrm{loL}=8 \mathrm{~mA}$)			VdDQ/2-0.12	VDDQ/2+0.12	V
VOH2 ${ }^{(9)}$	Output High Voltage (test conditions: $\mathrm{IOH}=-0.1 \mathrm{~mA}$)			VdDQ-0.12	VDDQ	V
Vol2 ${ }^{(10)}$	Output Low Voltage (test conditions: $10 \mathrm{~L}=0.1 \mathrm{~mA}$)			Vss	0.2	V
IDD1 ${ }^{(1,2)}$	Active VDD Current (VDD $=1.8 \mathrm{~V}$)		$\begin{aligned} & \mathrm{I} / \mathrm{O}=\mathrm{HSTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{eHSTL} \end{aligned}$	-	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
IDD2 ${ }^{(1,5)}$	Standby VdD Current (VdD $=1.8 \mathrm{~V}$)		$\begin{aligned} & I / O=H S T L \\ & I / O=\mathrm{HSSTL} \end{aligned}$	-	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
IDDQ ${ }^{(1,2)}$	Active Vdda Current	$\begin{aligned} & \text { (VDDQ }=1.5 \mathrm{~V} \text { HSTL) } \\ & (\mathrm{VDDQ}=1.8 \mathrm{~V} \text { eHSTL) } \end{aligned}$	$\begin{aligned} & 1 / O=H S T L \\ & 1 / O=\text { eHSTL } \end{aligned}$	-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTES:

1. Both WCLK and RCLK toggling at 20MHz.
2. Data inputs toggling at 10 MHz .
3. Total Power consumed: $\mathrm{PT}=[(V \mathrm{VD} \times \mathrm{IDD})+(\mathrm{VDDQ} \times \mathrm{IDDQ})]$.
4. Outputs are not 2.5 V or 3.3 V tolerant.
5. The following inputs should be pulled to GND: WRADD, RDADD, WADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs. The following inputs should be pulled to VDD: $\overline{\mathrm{WEN}}, \overline{\mathrm{REN}}, \overline{\text { SENI, }}, \overline{\mathrm{MRS}}, \mathrm{TDI}, \mathrm{TMS}$ and $\overline{\mathrm{TRST}}$.
All other inputs are don't care and should be at a known state.
6. The $Z Q$ pin is used to control the device outputs (Q[39:0], EREN, ERCLK, and ERCLK).
7. Outputs are impedance-controlled. $\mathrm{IOH}=-(\mathrm{VDDQ} / 2) /(\mathrm{RQ} / 5)$ and is guaranteed by device characterization for $175 \Omega<\mathrm{RQ}<350 \Omega$. This parameter is tested at $\mathrm{RQ}=250 \Omega$ which gives a nominal 50Ω output impedance.
8. Outputs are impedance-controlled. IOL $=(\mathrm{VDDQ} / 2) /(\mathrm{RQ} / 5)$ and is guaranteed by device characterization for $175 \Omega<\mathrm{RQ}<350 \Omega$ This parameter is tested at $\mathrm{RQ}=250 \Omega$ which gives a nominal 50Ω output impedance.
9. This measurement is taken to ensure that the output has the capability of pulling to the VDDQ rail, and is not intended to be used as an impedance measurement point.
10. This measurement is taken to ensure that the output has the capability of pulling to VSS, and is not intended to be used as an impedance measurement point.

HSTL

1.5V AC TEST CONDITIONS

InputPulse Levels	0.25 to 1.25 V
InputRise/Fall Times	0.4 ns
InputTimingReferenceLevels	0.75
OutputReferenceLevels	Vod/2

NOTE:

1. $\mathrm{V} D \mathrm{DQ}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$.

EXTENDED HSTL

1.8V AC TEST CONDITIONS

AC TEST LOADS

Figure 2a. AC Test Load

Figure 2b. Lumped Capacitive Load, Typical Derating

OUTPUT ENABLE \& DISABLE TIMING

NOTE:
6724 drw05

1. $\overline{\mathrm{REN}}$ is HIGH .

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	Commercial		Com'l and Ind'I		Unit
		IDT72P51767L6 IDT72P51777L6		IDT72P51767L7-5 IDT72P51777L7-5		
		Min.	Max.	Min.	Max.	
fic	Clock Cycle Frequency	-	166	-	133	MHz
ta (PLL ON)	Data Access Time	-1.0	1.0	-1.2	1.2	ns
ta (PLL OFF)	Data Access Time	0.6	3.6	0.8	3.8	ns
tcle	Clock Cycle Time	6.0	-	7.5	-	ns
tCLKH	Clock High Time	2.8	-	3.0	-	ns
tCLKL	Clock Low Time	2.8	-	3.0	-	ns
DS	DataSetup Time	0.48	-	0.7	-	ns
DH	Data Hold Time	0.48	-	0.7	-	ns
tens	Enable Setup Time	2.0	-	2.2	-	ns
ENH	Enable Hold Time	0.5	-	0.7	-	ns
tRS	ResetPulse Width ${ }^{(3)}$	30	-	30	-	ns
tRSS	ResetSetup Time	15	-	15	-	ns
tRSR	Reset Recovery Time	10	-	10	-	ns
tohz	Output Enable to Outputin HighZ	0.6	3.6	0.8	3.8	ns
toe	Output Enable to $\overline{\mathrm{OE}}$	0.6	3.6	0.8	3.8	ns
fs	Clock Cycle (SCLK)	-	10	-	10	MHz
tsclk	Serial Clock Cycle	100	-	100	-	ns
tSCKH	Serial Clock High	45	-	45	-	ns
tSCKL	Serial Clock Low	45	-	45	-	ns
tSDS	Serial Data in Setup	20	-	20	-	ns
tSDH	Serial Data in Hold	0.8	-	0.8	-	ns
tSENS	Serial Enable Setup	20	-	20	-	ns
tSENH	Serial Enable Hold	0.8	-	0.8	-	ns
tSDO	SCLK to Serial Data Out	-	20	-	20	ns
tseno	SCLK to Enable Out	-	20	-	20	ns
tSDOP	Serial Data Out Delay	0.8	3.6	0.8	3.6	ns
tSENOP	Serial Enable Delay	0.8	3.6	0.8	3.6	ns
TPCWQ	Programming to Write Queue Selection	-	7	-	7	cycles
tPCRQ	Programming to Read Queue Selection	-	7	-	7	cycles
tAS	Address Setup	2.0	-	2.2	-	ns
taH	Address Hold	0.5	-	0.7	-	ns
tWFF	Write Clock to Full Flag ($\overline{\mathrm{FF}}$)	-	3.6	-	3.8	ns
tREF	Read Clock to Empty Flag ($\overline{\text { EF }}$)	-	3.6	-	3.8	ns
tSTS	StrobeSetup	2.0	-	2.2	-	ns
tSTH	Strobe Hold	0.5	-	0.7	-	ns
tos	Queue Setup	2.0	-	2.2	-	ns
toh	Queue Hold	0.5	-	0.7	-	ns
tWAF	WCLK to $\overline{\text { PAF }}$ flag	0.6	3.6	0.8	3.8	ns
traE	RCLK to $\overline{\text { PAE }}$ flag	0.6	3.6	0.8	3.8	ns
tPAF	WCLK to Sync $\overline{\text { PAF }}$ bus	0.6	3.6	0.8	3.8	ns
tPAE	RCLK to Sync $\overline{\text { PAE }}$ bus	0.6	3.6	0.8	3.8	ns
tPAELZ	RCLK to Low-Z	0.6	3.6	0.8	3.8	ns
tPAEHZ	RCLK to High-Z	0.6	3.6	0.8	3.8	ns
tPAFLZ	WCLK to $\overline{\text { PAF }}$ Bus Low-Z	0.6	3.6	0.8	3.8	ns

NOTES:

1. Industrial temperature range product for the $7-5 \mathrm{~ns}$ is available as a standard device. All other speed grades available by special order.
2. Values guaranteed by design, not currently tested.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

(Commercial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VDD}=1.8 \mathrm{~V} \pm 0.10 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{JEDEC}$ JESD8-A compliant)

Symbol	Parameter	Commercial IDT72P51767L6 IDT72P51777L6		Com'I and Ind'I IDT72P51767L7-5 IDT72P51777L7-5		Unit
		Min.	Max.	Min.	Max.	
tPAFHZ	WCLK to PAF Bus High-Z	0.6	3.6	0.8	3.8	ns
tFFHz	WCLK to FF High-Z	0.6	3.6	0.8	3.8	ns
tFFLZ	WCLK to FFF Low-Z	0.6	3.6	0.8	3.8	ns
tEFHz	RCLK to EF High-Z	0.6	3.6	0.8	3.8	ns
teflz	RCLK to EF Low-Z	0.6	3.6	0.8	3.8	ns
tFSYNC	WCLK to $\overline{\text { PAF }}$ Bus Sync	0.6	3.6	0.8	3.8	ns
tFXO	WCLK to $\overline{\text { PAF }}$ Bus Exp	0.6	3.6	0.8	3.8	ns
tesync	RCLK to $\overline{\text { PAF }}$ Bus Sync	0.6	3.6	0.8	3.8	ns
texo	RCLK to $\overline{\text { PAF }}$ Bus Exp	0.6	3.6	0.8	3.8	ns
terclk (DDR)	RCLK to ERCLK (DDR)	-	2.5	-	3.2	ns
terclk (SDR)	RCLK to ERCLK (SDR)	-	4	-	5	ns
tSKEW1	Skew time for $\overline{E F}$ and $\overline{\mathrm{FF}}$	6.0	-	7.0	-	ns
tSKEW2	Skew time for $\overline{\text { PAF }}$ and $\overline{\text { PAE }}$	6.0	-	7.0	-	ns
tSKEW3	Skew time for $\overline{\text { PAF/PAE }}$ [0:7]	6.0	-	7.0	-	ns
tx\|s	Expansion Input Setup	2.0	-	2.2	-	ns
tXIH	Expansion Input Hold	0.5	-	0.7	-	ns
tlock	PLLLock Time	-	15	-	15	$\mu \mathrm{s}$

NOTES:

1. Industrial temperature range product for the $7-5 \mathrm{~ns}$ is available as a standard device. All other speed grades available by special order.
2. Values guaranteed by design, not currently tested.

XGMII REFERENCE SPECIFICATION

The XGMII uses 1.5V High Speed Transceiver Logic (HSTL) signallevels.
The electrical characteristics of the XGMII are specified such thatthe XGMII can be applied within a variety of $10 \mathrm{~Gb} / \mathrm{s}$ equipment types. The electrical specificationsare selectedforanintegratedcircuittointegratedcircuitapplication. The electrical characteristics specified inthis clause apply to all XGMII signals.

When implemented as a chip-to-chip interface, the XGMII uses High Speed TransceiverLogic(HSTL), specified for a 1.5 volt outputbuffer supply voltage. XGMIIchip-to-chipsignals shall comply withEIA/JEDECStandardEIA/JESD86 using Classl, outputbuffers. Outputimpedance shall be greater than 38Ω to assure acceptableovershootandundershootperformanceinanun-terminated interconnection.

TABLE 2 - DC AND AC SPECIFICATIONS (INFORMATIVE)

Symbol	Parameter	Minimum	Nominal	Maximum	Units
VDDQ	OutputVoltageSupply	1.4	1.5	1.6	V
VREF	Input Reference Voltage	0.68	0.75	0.90	V
VIH_DC	DC Input Logic High	VREF +0.10	-	VDDQ +0.3	V
VIL_DC	DC Input Logic Low	-0.30	-	VREF- 0.1	V
VIH_AC	AC Input Logic High	VREF+0.20	-	-	V
VIL_AC	AC Input Logic Low	-	-	VREF- 0.20	V

Figure 3. HSTL Termination for XGMII

TABLE 3 - IDT TO XGMII INTERFACE MAPPING SCHEMA

Signal Type	IDT Interface Signal Nomenclature	XGMII Signal Nomenclature
Input Port - Input Port Data - Input Port Enable - Input Port Control - InputPortStatus - Input Port Clock	$\begin{aligned} & \mathrm{D}[31: 0] \\ & \mathrm{D}[32: 39] \\ & \overline{\mathrm{WEN}} \\ & \frac{\mathrm{~N} / \mathrm{A}}{} \\ & \hline \mathrm{FF}, \mathrm{PAF} \\ & \text { WCLK } \end{aligned}$	TXD [31:0] Userdefinable N/A TXC[3:0] N/A TX_CLK
Output Port -Output PortData -OutputPortEnable - Output Port Control - OutputPortStatus - OutputPortClock	$\begin{gathered} \mathrm{Q}[31: 0] \\ \mathrm{Q}[32: 39] \\ \overline{\mathrm{REN}} \\ \mathrm{~N} / \mathrm{A} \\ \overline{\mathrm{EF}, \overline{\mathrm{PAE}}} \\ \mathrm{RCLK} \end{gathered}$	RXD [31:0] Userdefinable N/A RXC [3:0\} N/A RX CLK

FUNCTIONALDESCRIPTION

MASTERRESET

A Master Reset is performed by toggling the $\overline{\mathrm{MRS}}$ input from HIGH to LOW to HIGH. During a master resetall internal multi-queue device setup and control registers are initialized and require programming either serially by the uservia the serial port, orvia parallel programming orby using the defaultsettings. Refer to Figure 6, Device Programming Hierarchy for the programming hierarchy structure. During a master reset the state of the following inputs determine the functionality of the part, these pins should be held HIGH or LOW.

FM - Flag bus Mode
BM [3:0] - Bus Matching options
MAST - Master Device
ID0, 1, 2 - Device ID
QSEL[2:0]Queue Select Mode

DFM - Programming mode, serial or default
Once a master resethas taken place, the device mustbe programmedeither serially or via the default method before any read/write operations can begin. See Figure 37, Master Resetfor relevant timing.

PROGRAMMING MODE CAPTURED

On the rising of $\overline{M R S}$ the programming mode signals (QSEL[2:0], DFM) are captured. Once the programming mode signals are captured (latched), refer to Table 5, Setting the Queue Programming Mode during Master Reset for details. It will then require a number of clock cycles for the device to complete the configuration. Configuration completion is indicated whenthe $\overline{\mathrm{SENO}}$ signal transitions fromhightolow. The configuration completion indication is consistent with the previous MQ device.

6724 drw06

Figure 4. Reference Signals

TABLE 4 - DEVICE PROGRAMMING MODE COMPARISON

Programming Options	Serial Programming Mode	Default/Parallel Programming Mode
QueueSelection	Any number from 1 to 128	Any number from 1 to 128
Queue Depth	Each queue depth can be individualized	Default Value (total available memory divided by number of queues)
$\overline{\text { PAE/PAF }}$	Programmable to any value	Default value
Bus-Matching	Any available option can be selected using BM[3:0]pins	Any available option can be selected using BM[3:0] pins
I/Ovoltage	Any available option can be selected	Any available option can be selected

TABLE 5-SETTING THE QUEUE PROGRAMMING MODE DURING MASTER RESET

/MRS	$\begin{aligned} & \hline \text { Default } \\ & \text { Mode } \\ & \text { (DFM) } \end{aligned}$	QSEL 2	QSEL 1	QSEL 0	Queue Programming Method
\uparrow	0	0	0	0	Serial programming mode
\uparrow	0	0	0	1	RESERVED
\uparrow	0	0	1	0	RESERVED
\uparrow	0	0	1	1	RESERVED
\uparrow	0	1	0	0	RESERVED
\uparrow	0	1	0	1	RESERVED
\uparrow	0	1	1	0	RESERVED
\uparrow	0	1	1	1	RESERVED
\uparrow	1	0	0	0	Selects 128 Queues
	1	0	0	1	Selects 64 Queues
\uparrow	1	0	1	0	Selects 32 Queues
\uparrow	1	0	1	1	Selects 16 Queues
\uparrow	1	1	0	0	Selects 8 Queues
1	1	1	0	1	Selects 4 Queues
\uparrow	1	1	1	0	Parallel programming enables the user to program the number of queues using the Write Address bus
\uparrow	1	1	1	1	Parallel programming enables the user to program the number of queues using the Read Address bus

SERIAL PROGRAMMING

The multi-queueflow-control device is a fully programmable device, providing the user withflexibility in how queues are configured interms of the number of queues, depth of each queue and position of the $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ flags within respective queues. All user programming is done via the serial port after a master reset has taken place. Internally the multi-queue device has setup registers which mustbe serially loaded, these registers contain valuesforevery queue within the device, such as the depth and $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offset values. The IDT72P51767/72P51777 devices are capable of up to 128 queues and therefore contain 128 sets of registers for the setup of each queue.

During a Master Reset if the DFM (Default Mode) input is LOW, then the device will require serial programming by the user. It is recommended that the user utilize a 'C' program provided by IDT, this program will prompt the user for all information regarding the multi-queue setup. The program will then generate a serial bit stream which should be serially loaded into the device via the serial port. For the IDT72P51767/72P51777 devices the serial programming requires a total number of serially loaded bits per device, (SCLK cycles with $\overline{\text { SENI }}$ enabled), calculated by: 27+(Qx104) where Q is the number of queues the user wishes to setup within the device.

Once the master reset is complete and $\overline{\mathrm{MRS}}$ is HIGH, the device can be serially loaded. Data present on the SI (serial in), input is loaded into the serial port on a rising edge of SCLK (serial clock), provided that SENI (serial in enable), isLOW. Once serial programming of the devicehas beensuccessfully completed the device will indicate this viathe $\overline{\mathrm{SENO}}$ (serial outputenable) going active, LOW. Upon detection of completion of programming, the user should cease all programming and take $\overline{\text { SENI }}$ inactive, HIGH. Note, $\overline{\text { SENO }}$ follows $\overline{\mathrm{SENI}}$ once programming of a device is complete. Therefore, $\overline{\mathrm{SENO}}$ will goLOW after programming provided $\overline{\mathrm{SENI}}$ is LOW, once $\overline{\mathrm{SENI}}$ is taken HIGH again, $\overline{\text { SENO }}$ will also go HIGH. The operation of the SO output is similar, when programming of a given device is complete, the SO output will follow the Sl input.

If devices are being used in expansion configuration the serial ports of devices should be cascaded. The user can load all devices via the serial input portcontrol pins, SI\& $\overline{\text { SENII, of thefirst device inthechain. Again, the usermay }}$
utilize the 'C' program to generate the serial bit stream, the program prompting the userforthenumber ofdevices to be programmed. The $\overline{S E N O}$ and SO (serial out) ofthefirstdevice should be connectedtothe $\overline{\mathrm{SENl}}$ andSl inputs ofthe second device respectively and so on, with the $\overline{\mathrm{SENO}} \&$ SO outputs connecting to the $\overline{\text { SENI }} \&$ Sl inputs of all devices throughthe chain. All devices in the chain should beconnectedtoacommonSCLK. The serial outputportofthefinal device should be monitored by the user. When $\overline{\text { SENO }}$ of the final device goes LOW, this indicatesthatserial programming of all deviceshasbeensuccessfully completed. Upon detection of completion of programming, the user should cease all programming and take $\overline{\text { SENI }}$ of the first device in the chain inactive, HIGH .

As mentioned, the first device in the chain has its serial input port controlled by the user, this is the first device to have its internal registers serially loaded by the serial bit stream. When programming of this device is complete it will take its $\overline{S E N O}$ outputLOW and bypassthe serial dataloaded ontheSl inputto itsSO output. The serial input of the second device in the chain is now loaded withthe data from the SO of the first device, while the second device has its $\overline{\mathrm{SEN}}$ input LOW. This process continuesthroughthechain until all devices are programmed and the $\overline{\mathrm{SENO}}$ of the final device (or master device, ID = '000') goes LOW.

Once all serial programming has been successfully completed, normal operations, (queue selections on the read and write ports) may begin. When connected in expansion configuration, the IDT72P51767/72P51777 devices require a total number of serially loaded bits per device to complete serial programming, (SCLK cycles withSENI enabled), calculated by:n[27+(Qx104)] where Q is the number of queues the user wishes to setup within the device, where n is the number of devices in the chain.

SeeFigure 40, Serial Port Connectionand Figure 41, Serial Programming forconnection andtiming information.

The IDT72P51777/72P51767 device can be programmed using the serial inputsignals (SENI, SI, SCLK). Serial programming is accomplished by shifting in 26 bit words. It requires 1 HeaderWord to start the programming sequence andanadditional4Programming Wordsforeachqueuethatisconfigured within the device.

EACH OF THE 26 BIT WORDS ARE DESCRIBED BELOW:

HeaderWord: This is 1st26-bit word and has the following bit assignments.

- Bits [25:7] is the Start of Header identifier.
- Bits [6:0] are the number of queues to be programmed.

The Start of Header identifierMUSTbeallones(1's). The all 1's pattern intheHeaderword signifies the start of the programming cycle. The Header Word is only needed once for each device. For example, for 128 queues bits [6:0] = "1111111" for 32 queues bits [6:0] = "0011111".

Bits	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Q64	Q32	Q16	Q8	Q4	Q2	Q1

$\overline{\mathrm{FF}}$: This is the $2^{\text {nd }} 26$-bit word and represents the Full Flag programmed value. The Full Flag value is equal to the Queue depth-2. Each queue requires an individual $\overline{\mathrm{FF}}$ value.

Bits	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Binary Value	0	0	0	0	0	0	524288	262144	131072	65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1

$\overline{\text { PAE }: ~ T h i s ~ i s ~ t h e ~} 3{ }^{\text {rd }} 26$-bit word and represents the Programmable Almost Empty $(\overline{\mathrm{PAE}})$ value. Each queue requires an individual $\overline{\mathrm{PAE}}$ value. The $\overline{\mathrm{PAE}}$ value that is programmed into the device is the number of words. For example, for a $\overline{P A E}$ value $=52$ words, bits $[19: 0]=$ "000000000000000110100".

Bits	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Binary Value	0	0	0	0	0	0	524288	262144	131072	65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1

$\overline{\text { PAF }}$: This is the $4^{\text {th }} 26$-bit word and represents the Programmable Almost Full ($\left.\overline{\mathrm{PAF}}\right)$ value. Each queue requires an individual $\overline{\mathrm{PAF}}$ value. The $\overline{\mathrm{PAF}}$ value that is programmed into the device is the "Queue Depth Value" - "The PAF Offset value". For example, with a Queue Depth of 16K (16384) and a desired $\overline{\text { PAF }}$ value $=39$ words, bits [19:0] = "00000011111111011001".

Bits	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Binary Value	0	0	0	0	0	0	524288	262144	131072	65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1

Queue End/Start Address

This is the 5th 26-bit word and represents both the start and end address of each queue.

End Address: The queue end address is bits [25:13] of the 26-bit. An end addresses is specified as; Queue Depth - 1k. Ending address are specified in increments of 1 K words. For example, for a Queue Depth of 16 K , the first queue would have a starting address of 0, bits [12:0] = "0000000000000" and an end address of 15 K , bits [25:13] = "0000000001111",

Start Address: The queue starting address is bits[12:0] of the 26-bitword. Startaddresses are specified in increments of words. The first queue should always startat address 0 . The starting address of the next queue should be programmed at an address that is words greater the ending address of the previous queue.

Bits	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Value	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	4096	2048	1024	512	256	128	64	32	16	8	4	2	1

The following is an explanation of the binary file created by the C program for the 10G MQ devices (IDT72P51767/72P51777).
The Desired Device Configuration is;

- Number of Queues = 32
- Each Queue Depth = 16 k
- Each Queue PAE Value = 52
- Each Queue PAF Value = 39

Queue 1 00000000000000000000110100 00000000000011111111011001 00000001111110000000100000

00000000000011111111111110 00000000000000000000110100
Queue 2 00000000000011111111011001 00000010111110000001000000 00000000000011111111011001 00000011111110000001100000

$:$

This indicates the end of the programming sequence for the device.

DEFAULTPROGRAMMING

During a Master Reset if the DFM (Default Mode) input is HIGH the multiqueue device will be configured for default programming, (serial programming is not permitted). Default programming provides the user with a simpler, however limitedmeansto setup the multi-queueflow-control device, ratherthan using the serial programming method. The default mode will configure a multiqueue device with the maximum number of queues setup, and the available memory allocated equally between the queues. The values of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined by the state of the (default) pin during a master reset.

For the IDT72P51767/72P51777 devices the default mode will setup 128 queues, each queue being $256 \times 40,512 \times 40$, and 1024×40 deep respectively.

Whenconfiguring the IDT72P51767/72P51777 devices in defaultmodethe user simply has to apply WCLK cycles after a master reset, until SENO goes LOW, this signals that defaultprogramming is complete. These clockcycles are required for the device to load its internal setup registers. When a single multiqueue device is used, the completion of device programming is signaled by the SENO output of a device going fromHIGHtoLOW. Note, that $\overline{\text { SENI }}$ mustbeheld LOW when a device is setup for default programming mode.
When multi-queue devices are connected in expansion configuration, the $\overline{\mathrm{SENI}}$ of thefirst device in achain canbeheld LOW. The $\overline{\mathrm{SENO}}$ of a device should connectto the $\overline{\mathrm{SENI}}$ ofthenext device inthechain. The $\overline{\mathrm{SENO}}$ of the final device is used to indicate that default programming of all devices is complete. Whenthe master (ID='000') $\overline{\text { SENO goes LOW normal operations may begin. Again, all }}$ devices will be programmed with their maximum number of queues and the memory divided equally between them. Please refer to Figure 38, Default Programming.

PARALLELPROGRAMMING

During a Master Reset cycle (i.e. the $\overline{\mathrm{MRS}}$ signal transitions from HIGH to LOW then LOW to HIGH) if the DFM (Default Mode) input signal is HIGH and the QSEL[2:0] input signal is "110" for Write address and "111" for Read address, the Multi-Queue Flow Control device is configured for Parallel Programming. Parallel Programming enablesthe number of queues withinthe
device to be set through either the Write Address (WRADD) bus or Read Address (RDADD) bus after the Master Resetcycle. Within Parallel Programming mode the Multi-Queue (MQ) device programmable parameters are; number of queues, queue depth, $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ flag offset value, bus matching and the I/O voltage level. As previously indicated, the number of queues are configured using the write or read address bus, however bus matching is set during the Master Reset cycle. The value that is set during the Master Reset cycle is determined by the Bus Matching (BM) bits. For the IDT72P51767/ 72P51777 devices in Parallel Programming Mode the value of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets at master reset is determined by the state of the input.
When configuring the IDT72P51767/72P51777 devices in Parallel Programming Modethe usersimply hasto apply WCLK cycles after a master reset, until SENOgoesLOW, thissignalsthatParallel Programmingis complete. These clock cycles are required for the device to load its internal setup registers. When a single multi-queue device is used, the completion of device programming is signaled by the $\overline{\text { SENO }}$ output of a device going from HIGH to LOW. Note, that SENI mustbeheld LOW when adevice is setupforParallel Programmingmode.

ID[2:0] PINS AND WRADD/RDADD CONFIGURATIONS

The 10G DDR Multi-Queue will have the ability to expand up to a maximum of 256 Queues by 2 to 8 devices depending on the configuration setup. For programming the ID Codes for each device the WRADD/RDADD address buses impose the limitation of 256 Queues because, with an 8-bitaddress bus, the3MSB intheWRADD/RDADD are used to decode the ID[2:0] pins oneach device. The slave devices mustbe configured before the master device as well. For 8-device expansion the least[4:0] bits are used for expansion addressing meaning a configuration of 32 queues can be accomplished. TheMSBs [7:5] will select which of the eight devices to access depending on theirMSBID[2:0] settings. IfID[2:0] is 000, then it serves as the master device. Otherwise, the devices will serve as the slave devices. Ex: For using two 128 queue MQ devices, ID[2:0] = 0xx is for selecting the master device. For using 8 devices, ID[2:0]=111 isfor selecting the 8th slave device andWRADD/RDADD bits[4:0] for configuring 32 queues/device. And so on.

TABLE 6 -ID[2:0] AND WRADD[7:5]/RDADD[7:5] CONFIGURATION

Queues Addressed	\mathbf{x}	128	64	32	16	8	4	$\mathbf{2}$
ID[2:0]MasterDeviceConfiguration WRADD[7:5] or RDADD[7:5]		$0 x x$	$00 x$	000	000	000	000	000
ID[2:0]2nd Device Configuration WRADD[7:5] or RDADD[7:5]		1 xx	10 x	100	100	100	100	100
ID[2:0] 3rd Device Configuration WRADD[7:5] or RDADD[7:5]		NA	01 x	010	010	010	010	010
ID[2:0]4th DeviceConfiguration WRADD[7:5] or RDADD[7:5]		NA	11 x	110	110	110	110	110
ID[2:0]5th DeviceConfiguration WRADD[7:5] or RDADD[7:5]		NA	NA	001	001	001	001	001
ID[2:0]6th DeviceConfiguration WRADD[7:5] or RDADD[7:5]		NA	NA	101	101	101	101	101
ID[2:0]7th DeviceConfiguration WRADD[7:5] or RDADD[7:5]		NA	NA	011	011	011	011	011
ID[2:0] 8th DeviceConfiguration WRADD[7:5] or RDADD[7:5]		NA	NA	111	111	111	111	111

TABLE 7 - PARALLEL PROGRAMMING MODE QUEUE CONFIGURATION EXAMPLE ${ }^{(1)}$

WRADD/RDADD[7:0]	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
128Queues/Device	x	$\mathbf{1}$	1	1	1	1	1	1
64Queues/Device	x	0	$\mathbf{1}$	1	1	1	1	1
32Queues/Device	x	0	0	$\mathbf{1}$	1	1	1	1
16Queues/Device	x	0	0	0	1	1	1	1
8Queues/Device	x	0	0	0	0	$\mathbf{1}$	1	1
4Queues/Device	x	0	0	0	0	0	$\mathbf{1}$	1
1Queue/Device	x	0	0	0	0	0	0	0

NOTE:

1. Users can also program 6 different settings in Default Programming mode using QSEL[2:0] and DFM pins instead of using Parallel Programming Mode. This table above shows how a user might program the number of queues in the device and can program any $1-128$ queues in the device by using the WRADD/RDADD[7:0] pins.

The 10G Multi-Queue also has the capability of expanded theoretically to unlimitednumberofdevices. AsFigure5shows, theWRADD[7] andRDADD[7] will act as the Write Chip Select Enable and Read Chip Select Enable respectively, and the user can then decode each Multi-Queue device separately using these pins and still maintain 128 Queues per device. The WRADD[6:0] and RDADD[6:0] can still be routed as shared buses to each device, as can write and read data buses and external control pins and flags.

Tomake this possible the ID pin, ID2 of all slave devices mustbe connected to "1"andtheMasterdeviceIDPins, ID[2:0], shouldequal000. Itis notrecommend expanding greater than 10 devices because sufficient capacitive loading on each bus makes itdiffcultto drive a greater multiple of devices perbus. The real $\overline{W C S}$ and $\overline{R C S}$ pins can be tied to a ground plane on the board to save FPGA pins.

Figure 5. Expansion for Unlimited Number of Multi-Queue Devices Example

WhenMulti-Queue devices are connected in an Expansion Configuration, the $\overline{S E N I}$ signal ofthe firstdevice in achain mustbeheld LOW. The $\overline{S E N O}$ signal of a device should connectto the $\overline{\mathrm{SENI}}$ ofthenextdevice inthechain. The $\overline{\mathrm{SENO}}$ of the final device is used to indicate that the programming of all devices is complete. When the master device (ID=' 000 ') $\overline{\text { SENO }}$ signal goes LOW the internal programming is complete and queue write/read operation may begin. Please refer to Figure 41, Parallel Programming for signal timing details.

PROGRAMMING HIERARCHY

Configuring the device is a 2 stage sequence. The first stage is to set the expansion device type, the desired programming mode and the device operating mode during the master resetcycle (i.e. on the rising edge of Master Reset $(\overline{\mathrm{MRS}})$). The second stage is to set values such as $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$, number of queues, queue depth, etc. using the programming mode (serial, parallel, default) selected in stage 1. Referto Figure 6, Device Programming Hierarchy.

Figure 6. Device Programming Hierarchy

MODES OF OPERATION

STANDARD MODE OPERATION

The 10G Multi-queue supports two modes of operation, IDT Standard Mode and BOI Mode.

IDT STANDARD MODE VS. BOI MODE

The device mode is configured during the master reset cycle. Only the read side is affected by these two modes, the write side is identical in both modes. In

IDT standard mode, the device operates as the IDT72P51769 (4M multiqueue) device as shown in Figure 49 and 50.

The other option, or BOI mode, has the device reissue the last data from a queue upon reentry to that queue. This allows for a customerto monitora data bit and stop reading based on the output (e.g., End of Packet or EOP). Note: the $\overline{E F}$ flag is always updated "real time" using the read count in both modes.

PLL ON VS PLL OFF MODES

The PLL has a frequency response rate of $85-166 \mathrm{MHz}$. The PLL reduces the accesstime (ta)fortheDDR. Below 85MHz or in SDR mode, the PLL must be turned off. The following diagrams show the difference between the two modes:

NOTES:

1. Echo clocks are center aligned.
2. $\overline{E R C L K}$ is aligned with internal PLL generated clock.
3. QOUT is clocked out 1 cycle after valid REN.
4. Data Access time (Ta) is +/-1.Ons when PLL is on, with respect to rising edges of RCLK (1 Clock Latency).

Figure 7. DDR Read Operation with PLL ON

NOTES:

1. $\overline{E R C L K}$ has uncontrollable delay when PLL is off.
2. DOUT is clocked out 1 cycle after valid REN.
3. Data Access time (Ta) is <3.6 ns when PLL is off, with respect to rising/falling edges of RCLK.

Figure 8. DDR Read Operation with PLL OFF

NOTES:

1. In single-ended clocking scheme, ERCLK is 50% duty cycle.
2. QOUT is clocked out 1 cycle after valid $\overline{\text { REN }}$.
3. Data Access time (Ta) is $+/-1.0 \mathrm{~ns}$ when PLL is on, with respect to rising edges of RCLK.

Figure 9. SDR Read Operation with PLL ON

NOTES:

1. $\overline{\mathrm{ERCLK}}$ has uncontrollable delay when PLL is off, $\mathrm{Ta}<3.6 \mathrm{~ns}$ when PLL is off.
2. DOUT is clocked out 1 cycle after valid $\overline{R E N}$.
3. Data Access time (Ta) is $<3.6 \mathrm{~ns}$ when PLL is off, with respect to rising edges of RCLK.

Figure 10. SDR Read Operation with PLL OFF

STANDARDMODEOPERATION

WRITE QUEUE SELECTION AND WRITE OPERATION (STANDARD MODE)

The IDT72P51767/72P51777 multi-queue flow-control devices can be configured up to a maximum of 128 queues which data can be written via a common write port using the data inputs (Din), write clock (WCLK) and write enable ($\overline{\mathrm{WEN}}$). The queue to be written is selected by the address present on the write address bus (WRADD) during a rising edge on WCLK while write addressenable(WADEN) isHIGH. The state ofWEN does notimpactthequeue selection. The queue selection requires 4 WCLK cycle. All subsequent data writes will be to this queue until another queue is selected.

Standard mode operation is defined as individual words will be written to the device. The write port is designed such that 100% bus utilization can be obtained. This means that data can be written into the device on every WCLK rising edge including the cycle that a new queue is being addressed.

Changing queues requires 4WCLK cycles on the write port (see Figure 42, SDR Write Queue Select, Write Operation and Full flag Operation). WADEN goes high signaling a change of queue (clock cycle " A "). The address on WRADD at that time determines the next queue. Data presented during that cycle, will be written to the active (each) queue, provided $\overline{\mathrm{WEN}}$ is LOW. If $\overline{\mathrm{WEN}}$ is HIGH (inactive), data will not be written in a queue. The write port discrete fullflag will update to show the full status ofthenewly selectedqueue. Datapresent on the data inputbus (Din), can be written into the newly selected queue onthe risingedge of WCLK achange of queue, provided $\overline{W E N}$ is LOW and the queue is notfull. Ifthe selected queue is full atthe pointof its selection, any writes to that queue will be prevented. Data cannot be written into a full queue.

Refer to Figure 42, SDR Write Queue Select, Write Operation and Full flag Operation, and Figure 45, Full Flag Timing in Expansion Configuration for timing diagrams.

TABLE 8 - WRITE ADDRESS BUS, WRADD[7:0]

READ QUEUE SELECTION AND READ OPERATION (STANDARD MODE)

The IDT72P51767/72P51777 multi-queue flow-control devices can be configureduptoamaximum of 128 queueswhich data canbe readviaacommon read port using the data outputs (Qout), read clock (RCLK) and read enable $(\overline{\operatorname{REN}})$. An output enable, $\overline{\mathrm{OE}}$ control pin is also provided to allow HighImpedance selection of the Qout dataoutputs. The multi-queue device read port operates in standard IDT mode or BOI mode. The queue to be readis selected by the address presented on the read address bus (RDADD) during a rising edge on RCLK while readaddress enable (RADEN) is HIGH. The state of $\overline{\text { REN }}$ does not impact the queue selection. The queue selection requires 4 RCLK cycles. All subsequent data reads will be from this queue until another queue isselected.

Standard mode operation is defined as individual words will be readfromthe device. The read port is designed such that 100% bus utilization can be obtained. This means that data can be read out of the device on every RCLK rising edge including the cycle that a new queue is being addressed.

Changing queues requires a minimum offour RCLK cycles on the read port (see Figure 46, SDR Read Queue Select, Read Operation). RADEN goes high signaling a change of queue (clock cycle "D"). The address on RDADD atthattime determines the next queue. Data presented during that cycle will be read. Reading data can continue from the active queue, provided $\overline{\mathrm{REN}}$ is LOW. If $\overline{R E N}$ is HIGH (inactive), data will notbe read from the queue. Ifanew selected queue is empty, reads from that queue will be prevented. Data cannotbe read fromanemptyqueue. Rememberthat $\overline{O E}$ allowstheuserto placethedataoutput bus (Qout)intoHigh-Impedanceandthe datacanbe read intotheoutput register regardless of $\overline{\mathrm{OE}}$.

Refer to Table 9, for Read Address Bus arrangement.

TABLE 9 - READ ADDRESS BUS, RDADD[7:0]

Operation	RCLK	RADEN	ESTR	RDADD[7:0]					
Read Queue Select	-	1	0	7 6	5	4	3	2	1

Status Word Address	Queue Status on $\overline{\text { PAEn Bus }}$
0000	Q0 : Q7 $\rightarrow \overline{\text { PAF0 }}: \overline{\text { PAF7 }}$
0001	Q8: Q15 \rightarrow Р $\overline{\text { AF0 }}:$: $\overline{\text { PAF7 }}$
0010	Q16: Q23 \rightarrow Р $\overline{\text { AF }} 0: \overline{\text { PAF7 }}$
0011	Q24 : Q31 \rightarrow Р $\overline{\text { AF }} 0: \overline{\text { PAF7 }}$
0100	Q32 : Q39 \rightarrow Р $\overline{\text { AFF }}: \overline{\text { PAF7 }}$
0101	Q40 : Q47 \rightarrow Р $\overline{\text { AF }} 0: \overline{\text { PAF7 }}$
0110	Q48 : Q55 \rightarrow ¢ $\overline{\text { PAF0 }}: \overline{\text { PAF7 }}$
0111	Q56 : Q63 \rightarrow ¢ $\overline{\text { AF }} 0: \overline{\text { PAF7 }}$
1000	Q64 : Q71 \rightarrow ¢ $\overline{\text { PAF0 }}: \overline{\text { PAF7 }}$
1001	Q72 : Q79 \rightarrow ¢ $\overline{\text { AFF }} 0: \overline{\text { PAF7 }}$
1010	Q80 : Q87 \rightarrow ¢ $\overline{\text { AFF }}: \overline{\text { PAF7 }}$
1011	Q88 : Q95 \rightarrow ¢ $\overline{\text { AFF }} 0$: $\overline{\text { PAF7 }}$
1100	Q96 : Q103 \rightarrow PAF0 : $\overline{\text { PAF7 }}$
1101	Q104: Q111 \rightarrow Р $\overline{\text { PFF }}: \overline{\text { PAF7 }}$
1110	Q112: Q119 \rightarrow Р $\overline{\text { PFF }}: \overline{\text { PAF7 }}$
1111	Q120 : Q127 \rightarrow Р $\overline{\text { AF0 }}: \overline{\text { PAF7 }}$

6724 drw12

SWITCHING QUEUES ON THE WRITE PORT

The IDT72P51767/72P51777 multi-queue flow-control devices can be configured up to a maximum of 128 queues. Data is written into a queue using the Datalnput(Din) bus, WriteClock (WCLK) andWrite Enable (WEN) signals. Selecting a queue occurs by placing the queue address on the Write Address
bus (WRADD) during a rising edge of WCLK while Write Address Enable (WADEN) is HIGH. For reference, the state of Write Enable ($\overline{\mathrm{WEN}}$) is a "Don't Care" during a queue selection. $\bar{W} E N$ has significance during the queue mark operation. Selecting aqueue requires 4WCLK cycles. Referto Figure 11, Write PortSwitching Queues Signal Sequence.

Figure 11. Write Port Switching Queues Signal Sequence

The IDT72P51767/72P51777 multi-queue flow-control device supports changing (switching) queues every four (4) clock cycles. To switch from the Present Queue (PQ) to another queue requires a queue address to be placed on the Write Address Bus (WRADD) bus and a rising edge of Write Clock (WCLK) andWrite AddressEnable(WADEN) isHIGH. There are no restrictions as to the order to which queues are selected or switched into or out of.

Formaximum efficiency, during the 4 clock cycles required to switch queues the IDT72P51767/72P51777 multi-queue flow-control device can continue to write intothePresent Queue(PQ). ThePresentQueue is definedas the current selected queue. Refer to Figure 12, Switching Queues Bus Efficiency.
Din

NOTES:

1. $P Q=$ Present Queue
$N Q=$ Next Queue

* Requires 4 clock cycles to switch queues.

Figure 12. Switching Queues Bus Efficiency

The IDT72P51767/72P51777 multi-queue flow-control device supports writing and reading from either the same queue of from different queues. The devicealso supports simultaneous queue switching on the write and read ports.

The simultaneous queue switching may occur with either the WriteClock and ReadClock synchronous or asynchronous to each other. For reference refer to Figure 13, Simultaneous Queue Switching.

Figure 13. Simultaneous Queue Switching

Themulti-queueflow-control device requires 4 clock cycles to switch queues onthewrite port. Referto Table 10, Write QueueSwitchOperationforadetailed description of each queue switch clock cycle.

TABLE 10 - WRITE QUEUE SWITCH OPERATION

Queue Switch Cycle	IDT Mode
QS-1	Queue Switch Initiated, Rewrite/No Rewrite selection
QS0	Queue MARK/Un-MARK
QS1	-
QS2	• $\overline{\text { PAF signal updated for Next Queue (NQ) }}$- Full Flag (FFF) updated for NQ QS3Start ofWrite Data Operation

OUTPUT DATA DURING A QUEUE SWITCH

During this cycle the 10G MQ device detects the assertion of $\overline{R E N}$

$$
\text { Data latency }=\text { cycle }+3.6 \text { ns }(\max)
$$

NOTE:

1. Application specific.

Figure 14. Application: Reading words from the MQ using the EOP bit to end the read operation

Figure 15. Output Data during a Queue Switch (SDR w/o PLL)

Parameters: SDR Mode, PLL=ON, 1 read operation, centered aligned data/clock pause, 1 word read operation

Figure 16. Output Data during a Queue Switch (SDR w/ PLL)

Parameters: DDR Mode, PLL=ON, 1 word read operation, centered aligned data/clock pause with No queue switch, 1 word read operation

Figure 17. Output Data during a Queue Switch (DDR w/ PLL)

Parameters: DDR Mode, PLL=OFF, 1 word read operation, edge aligned data/clock pause with No queue switch, 1 word read operation

Figure 18. Output Data during a Queue Switch (DDR w/o PLL)

Parameters: DDR Mode, PLL=ON, 2 word read operation, WITH QUEUE SWITCH to NQ and QUEUE SWITCH BACK TO ORIGINAL QUEUE, 2 word read operation
 device detects the assertion of $\overline{\text { REN }}$ and addresses memory word=0 \& 1 .

Figure 19. Output Data during two Queue Switches (DDR w/ PLL)

Parameters: SDR Mode, PLL=OFF, 3 word read operation, edge aligned data/clock, pause with No queue switch.

NOTE:

1. Application specific.

Figure 20. Output Data during two Queue Switches (DDR w/o PLL)

TABLE 11 - BACKUP USAGE WHEN RE-ENTERING A QUEUE

Operating Frequency Range	Mode of Operation	Clock used by receiving device to latch data	Method to Stop Read Port operation	$\begin{aligned} & -1 \text { word MQ } \\ & \text { backup } \\ & \text { required } \\ & \hline \end{aligned}$
1Mhz to 166Mhz	$\begin{gathered} \text { SDR } \\ \text { PLL=OFF } \end{gathered}$	Read Clock	Word Count	N
1Mhz to 166Mhz	$\begin{gathered} \text { SDR } \\ \text { PLL=OFF } \end{gathered}$	Read Clock	EOP Processing	Y (BOI)
$\begin{aligned} & \text { 83.33Mhz to } \\ & \text { 166Mhz } \end{aligned}$	$\begin{gathered} \text { SDR } \\ \text { PLL=ON } \end{gathered}$	/ERCLK	Word Count	N
$\begin{aligned} & \text { 83.33Mhz to } \\ & \text { 166Mhz } \end{aligned}$	$\begin{gathered} \text { DDR } \\ \text { PLL=ON } \end{gathered}$	/ERCLK	EOP Processing	Y (BOI)
1Mhz to 100Mhz	$\begin{gathered} \text { DDR } \\ \text { PLL }=\text { OFF } \end{gathered}$	Read Clock	Word Count	N
1Mhz to 100Mhz	$\begin{gathered} \text { SDR } \\ \text { PLL=OFF } \end{gathered}$	Read Clock	EOP Process	Y (BOI)
$\begin{aligned} & \text { 90Mhz to } \\ & \text { 100Mhz } \end{aligned}$	$\begin{gathered} \text { SDR } \\ \text { PLL=OFF } \end{gathered}$	ERCLK	Word Count	N
$\begin{aligned} & \text { 90Mhz to } \\ & \text { 100Mhz } \end{aligned}$	$\begin{gathered} \text { SDR } \\ \text { PLL=OFF } \end{gathered}$	ERCLK	EOP Process	Y (BOI)

SWITCHING QUEUES ON THE READ PORT

The IDT72P51767/72P51777 multi-queue flow-control devices can be configured up to a maximum of 128 queues. Data is read from a queue using the Data Output (Qout) bus, Read Clock (RCLK) and Read Enable ($\overline{\mathrm{REN}}$) signals. Selecting aqueue on the read portoccurs by placing the queue address on the Read Address bus (RDADD) during a rising edge of RCLK while Read

Address Enable (RADEN) is HIGH. For reference, the state of Read Enable ($\overline{\mathrm{REN}})$ is a "Don't Care" during a read port queue selection. $\overline{\mathrm{REN}}$ has significance during the queue mark operation. Selecting a queue requires 4 RCLK cycles. Refer to Figure 21, Read Port Switching Queues Signal Sequence.

Figure 21. Read Port Switching Queues Signal Sequence

The IDT72P51767/72P51777 multi-queue flow-control device supports changing (switching) queues every four (4) clock cycles. To switch from the Present Queue (PQ) to anotherqueue requires a queue address to be placed on the Read Address Bus (RDADD) bus and a rising edge of Read Clock (RCLK) and Read Address Enable (RADEN) is HIGH. There are no restrictions as tothe orderto which queues are selected or switched into or out of.

NOTE:

$P Q=$ Present Queue $N Q=$ Next Queue

Figure 22. Switching Queues Bus Efficiency

SIMULTANEOUS QUEUE SWITCHING

The IDT72P51767/72P51777 multi-queue flow-control device supports reading and writing from either the same queue or from different queues. The devicealso supports simultaneousqueue switching on the read and writeports. The simultaneous queue switching may occur with either the Read Clock and

Write Clocksynchronous or asynchronous to each other. For reference refer to Figure 23, Simultaneous Queue Switching.
Themulti-queueflow-control device requires 4 clock cyclestoswitch queues onthe read port, referto Table 12, Read QueueSwitch Operationfor a detailed description of each queue switch clock cycles.

Figure 23. Simultaneous Queue Switching

TABLE 12 - READ QUEUE SWITCH OPERATION

Queue Switch Cycle	IDT Mode
QS-1	Queue Switch Initiated, Re-read/No Re-read selection
QS0	Queue MARK / Un-MARK
QS1	-
QS2	- $\overline{\text { PAE }}$ signal updated for Next Queue (NQ) - Empty Flag ($\overline{\mathrm{EF}}$) updated for NQ
QS3	Start of Read Data Operation

TABLE 13 - SAME QUEUE SWITCH

PQ	NQ	Supported	Comment
Not Marked	NotMarked	Yes	Queue Switch is ignored
Not Marked	Marked	Yes	Add Mark to current queue
Marked	Not Marked, No Reread	NotAllowed	
Marked	Not Marked, Reread	Yes	Remove Mark
Marked	Marked, No Reread	NotAllowed	
Marked	Marked, Reread	Yes	Keep Mark

QUEUE MARKing

The overall intent of the MARK function is to provide the ability to either rewrite and/or re-read information that is stored into a queue.

A queue canbeMARKed by either the write portor the read port. TheMARK operation is portindependent. The samequeue canbe marked by the writeport and the read port simultaneously. Only the active queue can be MARKed, multiplequeues canNOTbeMARKed by a port. A port (write or read) may only designate onequeueMARKed atatime. Uponaqueue switch adecision must bemadeasto whetherto returntotheMarkedlocationorthelastaccessaddress.

MARK AND REWRITE/ MARK AND REREAD

TheMARK functionality operates in any mode combination (BOI mode, IDT Standard Mode). Queues on the Write Port are MARKed using the WCLK \& WADEN signals. Queues on the Read Portare MARKed using the RCLKand RADEN signals. Refer to the following timing diagrams for additional queue MARK details. Refer to Figure 24 and 25 for further information.

- @QS-1, if $\overline{W E N}=0$ and WADEN=1, PQ will be updated in QSO, 1 , and 2 , and $N Q$ data will be written in QS3.
- @QS-1, if WEN_N=1 and WADEN=1, there is no update for PQ during QSO-QS2. Next time PQ is switched back, data will be written into last update location (rewrite).
- @ QSO, WADEN status is used to determine if a "mark" is requested for NQ. If WADEN=1 in QS0, NQ will be marked. In IDT mode, the first NQ position after QS is marked (latch WFCR values before QS3), data can't be read out beyond this location.
- @QSO, ifWADEN=0, NQ is not marked.

Figure 24. MARK and Re-Write Sequence

- @ QS-1, if $\overline{R E N}=0$ and RADEN=1, Present Queue will be updated in QS0, QS1, and QS2, and the data from the Next Queue (NQ) will be available in QS4.
- @QS-1, if $\overline{R E N}=1$ and RADEN=1, Present Queue will not be updated QS0-QS2. The NexttimePQ is selected, the data will be from the lastupdated location.
- @ QSO, RADEN status is used to determine if a "mark" is requested for NQ. If RADEN=1 in QS0, NQ will be marked. In IDT mode, first NQ position after QS is marked (latch RFCR values before QS3), data can't overwrite this location.

Figure 25. MARK and Re-Read Sequence

6724 drw36
Figure 26. MARKing a Queue - Write Queue MARK

Figure 27. MARKing a Queue - Read Queue MARK

MARK Operational Notes:

WritePort

- MARKing can only occur during a Queue switch cycle
- The entire Queue is MARKed at a time.
- MARK is used to mark the firstlocation of the Queue.
- MARK can NOT be moved within the queue.

Read Port

- MARKing can only occur during a Queue switch cycle
- Only the first location of the Queue can be MARKed.
- TheMARK can NOT be moved location to location within the queue.

Un-MARKing a Queue

UN-MARKing a Queue

6724 drw38
Figure 28. UN-MARKing a Queue - Write Queue UN-MARK

Figure 29. UN-MARKing a Queue - Read Queue UN-MARK

UN-MARK Operational Notes:

WritePort

- Un-MARKing can only occur during a Queue switch cycle.
- UN-MARKing a Queue can be accomplished by either switching to the same queue or switching to another queue.
- Note only 1 queue can be marked at any given time.
- The MARK can NOT be moved location to location within the queue.

Read Port

- Un-MARKing can only occur during a Queue switch cycle.
- UN-MARKingaQueue can beaccomplished by either switching to the same queue or switching to another queue.
- Note only 1 queue can be marked at any given time.
- The MARK can NOT be moved location to location within the queue.

Leaving a MARK Active

During a Queue switch the value of $\overline{W E N}$ for the write port and $\overline{R E N}$ for the read port determines whether the MARK remains active or is de-activated.

Leaving a MARK active on the Write Port

Figure 30. Leaving a MARK active on the Write Port

Leaving a MARK active on the Read Port

Figure 31. Leaving a MARK active on the Read Port

Inactivating a MARK

During a Queue switch the value of $\overline{W E N}$ for the write port and $\overline{R E N}$ for the read port determines whether the MARK remains active or is de-activated.

Inactivating a MARK on the Write Port

Figure 32. Inactivating a MARK on the Write Port Active

Inactivating a MARK on the Read Port

Figure 33. Inactivating a MARK on the Read Port Active

Write Cycle

Action	$\overline{\text { WEN }}$ (active LOW)	WADEN (active HIGH)	$\overline{\text { WEN }}$ (active LOW)	WADEN (active HIGH)
NO Operation	0	0	0	0
Selects a Queue	0	1	0	1
NO Operation	1	0	1	0
NO Operation	1	1	1	1

Read Cycle

Action	$\overline{\text { REN }}$ (active LOW)	RADEN (active HIGH)	$\overline{\text { REN }}$ (active LOW)	RADEN (active HIGH)
NO Operation	0	0	0	0
Selects a Queue	0	1	0	1
NO Operation	1	0	1	0
NO Operation	1	1	1	1

FLAG DESCRIPTION

PAFn FLAG BUS OPERATION

The IDT72P51767/72P51777 multi-queue flow-control device can be configured for up to 128 queues, each queue having its own almostfull status. An active queue has its flag status outputto the discrete flags, $\overline{\mathrm{FF}}$ and $\overline{\mathrm{PAF}}$, on the write port. Queues thatare notselected for a write operation canhave their $\overline{\mathrm{PAF}}$ status monitored via the $\overline{\mathrm{PAF}}$ bus. The $\overline{\mathrm{PAF}} n$ flag bus is 8 bits wide, so that8queues atatime canhavetheirstatusoutputtothebus. If9ormorequeues are setup within adevice thenthereare2 methodsby whichthe device canshare the bus between queues, "Direct" mode and "Polled" mode depending on the state of the FM (Flag Mode) input during a Master Reset. If 8 or less queues are setup within a device then each will have its own dedicated outputfrom the bus. If 8 or less queues are setup in single device mode, itis recommended to configure the $\overline{\text { PAFn }}$ bus to polled mode as it does not require using the write address (WRADD).

FULL FLAG OPERATION

The multi-queue flow-control device provides a single Full Flag output, $\overline{\mathrm{FF}}$. The $\overline{F F}$ flag output provides a full status of the queue currently selected onthe write port for write operations. Internally the multi-queue flow-control device monitors andmaintains astatus ofthe full condition ofall queues withinit, however only the queue thatis selectedforwriteoperations has itsfull status outputtothe FF flag. This dedicated flag is often referred to as the "active queue full flag".

When queue switches are being made on the write port, the $\overline{F F}$ flag output will switch to the new queue and provide the user with the new queue status, on the 3rd cycle after a new queue selection is made. The user then has a full status for the new queue one cycle ahead of the WCLK rising edge that data can be written into the new queue. That is, a new queue can be selected on the write portviatheWRADD bus, WADEN enable and a rising edge ofWCLK. Onthe 4th rising edge of WCLK, the $\overline{F F}$ flag output will show thefull status of the newly selected queue. On the forth rising edge of WCLK following the queue selection, data can be written into the newly selected queue provided that data and enable setup \& hold times are met.

Note, the $\overline{F F}$ flag will provide status of a newly selected queue three WCLK cycleafterqueueselection, which is one cyclebefore data can be written to that queue. This prevents the userfrom writing datatoaqueue that isfull, (assuming that a queue switch has been made to a queue that is actually full).

The FF flagis synchronous totheWCLKandalltransitions of the FF flagoccur basedonarising edge ofWCLK. Internally the multi-queue device monitors and keeps a record of the full status for all queues. It is possible that the status of a $\overline{F F}$ flag maybechanging internally eventhoughthatflag is not the active queue flag (selected on the write port). A queue selected on the read port may experience a change of its internal full flag status based on read operations.

See Figure 42, SDR Write Queue Select, Write Operation and Full Flag Operationand Figure 45, Full Flag Timing in Expansion Configurationfortiming information.

EXPANSION CONFIGURATION - FULL FLAG OPERATION

When multi-queue devicesare connected in Expansionconfigurationthe $\overline{F F}$ flags of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices write port only looks at a single $\overline{F F}$ flag (as opposed to a discrete $\overline{F F}$ flag for each device). This $\overline{F F}$ flag is only pertinent to the queue being selected for write operations at that time. Remember, that when in expansion configuration only one multi-queue device can be writtento at any moment in time, thus the $\overline{F F}$ flag provides status of the active queue on the write port.

This connection offlag outputs to createasingleflag requires that the $\overline{\mathrm{FF}}$ flag outputhave aHigh-Impedance capability, such that when aqueue selection is made only a single device drives the $\overline{\mathrm{FF}}$ flag bus and all other $\overline{\mathrm{FF}}$ flag outputs connected to the $\overline{\mathrm{FF}}$ flag bus are placed into High-Impedance. The user does nothave to select this High-Impedance state, a given multi-queueflow-control device willautomatically placeits $\overline{F F}$ flagoutputinto High-Impedance whennone of its queues are selected for write operations.

When queues within a single device are selectedforwrite operations, the $\overline{F F}$ flag output of that device will maintain control of the $\overline{F F}$ flag bus. Its $\overline{F F}$ flag will simply updatebetweenqueue switchestoshowthe respectivequeuefull status.

Themulti-queue deviceplacesits $\overline{\mathrm{FF}}$ flag outputintoHigh-Impedancebased onthe1-3bitIDcode(1 iftwo multi-queue are configured with a maximumtotal of 256 queues, 2 iffour devices are used totalling a maximum of 256 queues, and 3 ifthere are up to eight devices with a maximum total of 256 queues) found in the 1-3 most significant bits of the write queue address bus, WRADD. If the 1-3 mostsignificantbits ofWRADD matchthe 1-3bitID code setup on the static inputs, ID0, ID1 and ID2 then the $\overline{F F}$ flag output of the respective device will be in a Low-Impedance state. If they do not match, then the $\overline{F F}$ flag output of the respective device will be in aHigh-Impedance state. SeeFigure 45, Full Flag Timing in ExpansionConfigurationfor details offlag operation, including when more than one device is connected in expansion.

EMPTY FLAG OPERATION(立)

Themulti-queueflow-control device provides a single Empty flag output, $\overline{\mathrm{EF}}$. The rising edge of an RCLK cycle that places new data onto the output register of the read port. Internally the multi-queue flow-control device monitors and maintains a status of the empty condition of all queues within it.

See Figure 46, SDRRead Queue Select, Read Operation for details of the timing.

EXPANSION-EMPTY FLAG OPERATION

When multi-queue devices areconnectedin Expansionconfiguration, the $\overline{\mathrm{EF}}$ flags of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices read port only looks at a single $\overline{\mathrm{EF}}$ flag (as opposed to a discrete $\overline{\mathrm{EF}}$ flag for each device). This $\overline{\mathrm{EF}}$ flag is only pertinent to the queue being selected for read operations at that time. Remember, thatwhen in expansionconfiguration only one multi-queue device can be read fromatany momentintime, thus the $\overline{\mathrm{EF}}$ flag provides status of the active queue on the read port.

Thisconnection of flag outputsto create a single flag requires that the $\overline{\mathrm{EF}}$ flag outputhave aHigh-Impedance capability, suchthat when aqueue selection is made only a single device drives the $\overline{\mathrm{EF}}$ flag bus and all other $\overline{\mathrm{EF}}$ flag outputs connected to the $\overline{E F}$ flag bus are placed into High-Impedance. The user does nothave to selectthis High-Impedance state, a given multi-queueflow-control device willautomatically placeits $\overline{\mathrm{EF}}$ flagoutputintoHigh-Impedancewhennone of its queues are selected for read operations.

When queues within a single device are selected for read operations, the $\overline{E F}$ flag output of that device will maintain control of the $\overline{\mathrm{EF}}$ flag bus. Its $\overline{\mathrm{EF}}$ flag will simply update between queue switches to show the respective queue status.

Themulti-queue device placesits $\overline{\mathrm{EF}}$ flag outputinto High-Impedancebased onthe 1-3bitID code(1 iftwo multi-queue are configured with a maximum total of 256 queues, 2 if four devices are used totalling a maximum of 256 queues, and 3 ifthere are up to eight devices with a maximum total of 256 queues) found inthe3mostsignificantbits of the readqueueaddressbus, RDADD. Ifthe3most significantbits of RDADD matchthe1-3bitID code setup onthestatic inputs, ID0, ID1 and ID2 then the $\overline{E F}$ flag output of the respective device will be in a LowImpedancestate. If they do not match, thenthe $\overline{\mathrm{EF}}$ flag output of the respective device will be in a High-Impedance state.

ALMOST FULL FLAG

As previously mentioned the multi-queue flow-control device provides a singleProgrammable AlmostFullflagoutput, $\overline{\mathrm{PAF}}$. The $\overline{\mathrm{PAF}}$ flagoutputprovides astatus of the almostfull condition for the active queue currently selected onthe write port for write operations. Internally the multi-queue flow-control device monitors and maintains a status of the almost full condition of all queues within it, however only the queue that is selected for write operations has its full status outputtothe $\overline{\text { PAF }}$ flag. This dedicatedflagis often referredto asthe "activequeue almost full flag". The position of the $\overline{\mathrm{PAF}}$ flag boundary within a queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected if the userhas performed default programming.

As mentioned, every queue within a multi-queue device has its own almost full status, when a queue is selected on the write port, this status is outputviathe $\overline{\text { PAF }}$ flag. The $\overline{\text { PAF }}$ flag valueforeachqueue is programmed during multi-queue device programming (along with the number of queues, queue depths and almostempty values). The $\overline{\text { PAF }}$ offset value, m, for a respective queue can be programmed to be anywhere between '0' and ' D ', where ' D ' is the total memory depthfor that queue. The $\overline{P A F}$ value of differentqueues withinthe samedevice can be different values.

When queue switches are being made on the write port, the $\overline{\text { PAF flag output }}$ will switch to the new queue and provide the user with the new queue status, onthethird cycle after anew queue selection is made, onthe sameWCLK cycle that data can actually be written to the new queue. That is, a new queue can be selected on the write portviatheWRADD bus, WADEN enable and a rising edge of WCLK. On the third rising edge of WCLK following a queue selection, the $\overline{\mathrm{PAF}}$ flagoutput will show the full status ofthenewly selectedqueue. The $\overline{\mathrm{PAF}}$ is flag output is double register buffered, so when a write operation occurs at the almostfull boundary causing the selected queue status to goalmostfull the $\overline{\mathrm{PAF}}$ will go LOW3 WCLK cycles after the write. The same is true when a read occurs, there will be a 3 WCLK cycle delay after the read operation.

So the $\overline{\text { PAF }}$ flag delay from a write operation to $\overline{\text { PAF }}$ flag LOW is $3 W C L K+$ tWAF. The delay from a read operation to $\overline{\text { PAF }}$ flag HIGH is tSKEW2 + WCLK + tWAF.

Note, if tSKEW is violated there will be one added WCLK cycle delay.
The $\overline{\text { PAF }}$ flag is synchronous to the WCLK and all transitions of the $\overline{\text { PAF }}$ flag occur based on a rising edge of WCLK. Internally the multi-queue device monitors and keeps a record of the almostfull status for all queues. It is possible that the status of a $\overline{P A F}$ flag maybe changing internally even thoughthat flag is notthe active queue flag (selected on the write port). A queue selected onthe read port may experience a change of its internal almost full flag status based on read operations. The multi-queue flow-control device also provides a duplicate of the $\overline{\mathrm{PAF}}$ flag on the $\overline{\mathrm{PAF}}[7: 0]$ flag bus, this will be discussed in detail in a later section of the data sheet.

See Figures 23 and 24 for Almost Full flag timing and queue switching.

ALMOSTEMPTY FLAG

As previously mentioned the multi-queue flow-control device provides a single Programmable Almost Empty flag output, $\overline{\mathrm{PAE}}$. The $\overline{\mathrm{PAE}}$ flag output provides a status of the almost empty condition for the active queue currently selected on the read port for read operations. Internally the multi-queue flowcontrol device monitors and maintains a status of the almostempty condition of all queues withinit, however only the queue that is selected for read operations has its empty status outputto the $\overline{\mathrm{PAE}}$ flag. This dedicated flag is often referred toasthe "activequeuealmostempty flag". Theposition of the $\overline{\text { PAE flagboundary }}$ within a queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected ifthe user has performed default programming.

As mentioned, every queue within a multi-queue device has its own almost empty status, when a queue is selected on the read port, this status is outputvia the $\overline{\mathrm{PAE}}$ flag. The $\overline{\mathrm{PAE}}$ flag value for each queue is programmed during multiqueue device programming (along with the number of queues, queue depths and almostfull values). The $\overline{\text { PAE }}$ offsetvalue, n, for a respective queue can be programmed to be anywhere between '0' and ' D ', where ' D ' is the total memory depthfor that queue. The $\overline{\text { PAE }}$ value of different queues withinthe same device can be different values.

When queue switches are being made onthe read port, the $\overline{\text { PAE flag output }}$ will switch to the new queue and provide the user with the new queue status, on the third cycle after a new queue selection is made, on the same RCLK cycle that data actually falls through to the output register from the new queue. That is, a new queue can be selected on the read port via the RDADD bus, RADEN enable and a rising edge of RCLK. On the third rising edge of RCLK following a queue selection, the data word from the new queue will be available at the output register and the $\overline{\text { PAE }}$ flag output will show the empty status of the newly selected queue. The $\overline{\mathrm{PAE}}$ is flag output is double register buffered, so when a read operationoccurs atthealmostempty boundary causing the selected queue status to go almostempty the $\overline{\mathrm{PAE}}$ will go LOW 3 RCLK cycles after the read. The same is true when a write occurs, there will be a 3RCLK cycle delay after the write operation.

So the $\overline{\text { PAE }}$ flag delay from a read operation to $\overline{\text { PAE }}$ flag LOW is 3 RCLK + tRAE. The delay from a write operation to $\overline{\text { PAE }}$ flag HIGH is tSKEW2 + RCLK + traE.

Note, if tSKEW is violated there will be one added RCLK cycle delay.
The $\overline{\text { PAE }}$ flag is synchronous to the RCLK and all transitions of the $\overline{\text { PAE }}$ flag occur based on a rising edge of RCLK. Internally the multi-queue device monitors and keepsarecordofthealmostempty statusforall queues. Itispossible that the status of $\overline{\mathrm{PAE}}$ flag maybechanging internally even thoughthatflagis not the active queue flag (selected on the read port). A queue selected on the write portmay experienceachange of itsinternalalmostempty flagstatus based on write operations. The multi-queue flow-control device also provides a duplicate of the $\overline{\mathrm{PAE}}$ flag on the $\overline{\mathrm{PAE}}[7: 0]$ flag bus, this will be discussed in detail in a later section of the data sheet.

See Figures 25 and 26 for Almost Empty flag timing and queue switching.

$\overline{\text { PAFn }}$ - DIRECT BUS

IfFMisLOW atmaster resetthenthe $\overline{\text { PAF }}$ nbus operates in Direct(addressed) mode. In direct mode the user can address the status word of queues they require and it will be placed on to the $\overline{\mathrm{PAF}} n$ bus. For example, consider the operation of the $\overline{\text { PAF }}$ bus when 26 queues have been setup. To outputstatus of the firststatus word, Queue[0:7]theWRADD bus is used in conjunction with the FSTR ($\overline{\mathrm{PAF}}$ flag strobe) input and WCLK. The address present on the 4 leastsignificantbits of theWRADD bus withFSTRHIGH will be selected as the status word address on a rising edge of WCLK. To address status word 0 , Queue[0:7] the WRADD bus should be loaded with "0010000", the $\overline{\text { PAF }}$ bus willchangestatustoshowthenewstatuswordselected1WCLKcycleafterstatus word selection. $\overline{\text { PAFn }}[0: 7]$ gets status of queues, Queue[0:7] respectively.

Toaddressstatus word 1, Queue[8:15], theWRADD address is "00100001". $\overline{\text { PAFn }}[0: 7]$ gets status of queues, Queue[8:15] respectively. Toaddressthe2nd status word, Queue[16:23], theWRADD address is "00100010". $\overline{\text { PAF }}[0: 7$]gets status of queues, Queue[16:23] respectively. To address the 3rd status word, Queue[24:31], the WRADD address is "00100011". $\overline{\text { PAF }}[0: 1]$ gets status of queues, Queue[24:25] respectively. Remember, only 26 queues were setup, so when status word 4 is selected the unused outputs $\overline{\mathrm{PAF}}[2: 7]$ will be don't care states.

Note, that if a read or write operation is occurring to a specific queue, say queue ' x ' onthe samecycleas astatus word switch which will include the queue
' x ', thenthere may be an extra WCLK cycle delay before that queues status is correctly shown on the respective outputofthe $\overline{\mathrm{PAF}}$ nbus. However, the active $\overline{\text { PAF }}$ flag will show correct status at all times.

Status words can be selected on consecutive clock cycles, that is the status word on the $\overline{\text { PAFn bus can change every WCLK cycle. Also, data present on }}$ the inputbus, Din, can be written into a Queue on the sameWCLK rising edge that a status word is being selected, the only restriction being that a write queue selection and $\overline{\mathrm{PAF}}$ nstatus word selection cannot be made on the samecycle.

If 8 orless queues are setup then queues, Queue[0:7] have their $\overline{P A F}$ status outputon $\overline{\text { PAF }}[0: 7]$ constantly.

When the multi-queue devices are connected in expansion of morethan one device the $\overline{\text { PAF }}$ n busses of all devices are connected together, when switching between status words of different devices the user must utilize the 1-3 most significant bits of the WRADD address bus (as well as the 2 LSB's). These 13MSb's correspondtothe device ID inputs, which are the static inputs, ID0, ID1 \& ID2.

Please refer to Figure $57 \overline{\text { PAF }} n$ - Direct Mode Status Word Selection for timing information. Also refer to Table 8, Write Address Bus, WRADD.

$\overline{\text { PAF }}$ - POLLED BUS

If FM is HIGH at master reset thenthe $\overline{\text { PAF }}$ bus operates in Polled (looped) mode. In polled mode the $\overline{P A F}$ n bus only cycles through the number of status words required to display the status of the number of queues that have been setup in the part. Every rising edge of the WCLK causes the next status word to be loaded on the $\overline{\text { PAF }}$ n bus. The device configured as the master (MAST inputtiedHIGH), will take control ofthe $\overline{\mathrm{PAF}}$ nafter $\overline{\mathrm{MRS}}$ goesLOW. Forthewhole WCLK cycle that the first status word is on $\overline{\text { PAF }}$ nthe FSYNC ($\overline{\mathrm{PAF}}$ n bus sync) output will be HIGH, for all other status words, this FSYNC output will be LOW. This FSYNC output provides the user with a mark with which they can synchronize to the $\overline{\text { PAF }}$ nbus, FSYNC is always HIGHfortheWCLK cyclethat the first status word of a device is present on the PAFn bus.

When devices are connected in expansion configuration, only one device will be set as the Master (ID = '000'), MAST inputtied HIGH, all other devices will have MAST tied LOW. The master device is the first device to take control of the $\overline{\text { PAF }}$ bus and will place its first status word on the bus on the rising edge of WCLK. For the nextnWCLK cycles ($\mathrm{n}=$ number of queues divided by 8 with n being increased by one for any remainder) the master device will maintain control of the $\overline{\text { PAF }}$ bus and cycle its status words through it, all other devices holdtheir $\overline{\text { PAF }}$ noutputs in High-Impedance. Whenthe masterdevicehas cycled all of its status words it passes a token to the next device in the chain and that device assumes control of the $\overline{\text { PAF }}$ n bus and then cycles its status words and soon, the $\overline{\mathrm{PAF}}$ nbus control token being passed onfrom device to device. This token passing is done viathe FXO outputs and FXI inputs of the devices ("PAF Expansion Out" and "PAF Expansion In"). The FXO outputof themasterdevice connects totheFXI of the second deviceinthechain andtheFXO of the second connects to the FXI of the third and so on. The final device in achainhasitsFXO connected to the FXI of the first device, so that once the $\overline{\text { PAF }}$ n bus has cycled through all status words of all devices, control of the $\overline{\mathrm{PAF}}$ n will pass to the master device again and so on. The FSYNC of each respective device will operate independently and simply indicatewhenthatrespective device has takencontrol of the bus and is placing its first status word on to the $\overline{\text { PAF }}$ bus.

When operating in single device mode the FXI input must be connected to the FXO output of the same device. Insingledevice modeatokenisstill required to be passed into the device for accessing the $\overline{\mathrm{PAF}}$ n bus.

Please refer to Figure 60, $\overline{\text { PAF }} n$ Bus-Polled Modefor timing information.

PAEn FLAG BUS OPERATION

The IDT72P51767/72P51777 multi-queue flow-control device can be configured for up to 128 queues, each queue having its own almost empty/ packetreadystatus. An activequeuehasitsflagstatus outputtothediscreteflag, $\overline{\text { PAE, on the read port. Queues that are not selected for a read operation can }}$ have their $\overline{\text { PAE }}$ status monitored viathe $\overline{\mathrm{PAE}}$ bus. The $\overline{\mathrm{PAE}}$ flagbus is 8 bits wide, so that 8 queues at a time can have their status output to the bus. If 9 or more queues are setup within a device then there are 2 methods by which the device can share the bus between queues, "Direct" mode and "Polled" mode depending on the state of the FM (Flag Mode) input during a Master Reset. If 8 orless queues are setup within a device then each will haveits own dedicated output from the bus. If 8 or less queues are setup in single device mode, it is recommended to configure the $\overline{\mathrm{PAF}}$ nbusto polledmode as it does not require using the write address (WRADD).

PAEn - DIRECT BUS

IfFM isLOW atmaster resetthenthe $\overline{\text { PAE }}$ bus operates inDirect(addressed) mode. In direct mode the user can address the status word of queues they require to be placed on to the $\overline{\text { PAE }}$ bus. For example, consider the operation of the $\overline{\text { PAE }}$ nbus when 26 queues have been setup. To outputstatus of the first status word, Queue[0:7] the RDADD bus is used in conjunction with the ESTR ($\overline{\text { PAE flagstrobe) inputand RCLK. Theaddress presentonthe2 leastsignificant }}$ bits of the RDADD bus with ESTR HIGH will be selected as the status word address on a rising edge of RCLK. So to address status word 1, Queue[0:7] the RDADD bus should be loaded with "xxxx0000", the $\overline{\text { PAE }}$ bus will change status to show the new status word selected 1 RCLK cycle after status word selection. $\overline{\text { PAEn }}[0: 7]$ gets status of queues, Queue[0:7] respectively.

To address the second status word, Queue[8:15], the RDADD address is "xxxx0001". $\overline{\text { PAEn }}[0: 7]$ gets status of queues, Queue[8:15] respectively. To address thethird status word, Queue[16:23], the RDADDaddress is "xxxx0010". $\overline{\text { PAE }}[0: 7]$ gets status of queues, Queue[16:23] respectively. To address the fourth status word, Queue[24:31], the RDADD address is "xxxx0011". $\overline{\text { PAE }[0: 1] ~ g e t s ~ s t a t u s ~ o f ~ q u e u e s, ~ Q u e u e[24: 25] ~ r e s p e c t i v e l y . ~ R e m e m b e r, ~ o n l y ~}$ 26 queues were setup, so when status word 4 is selected the unused outputs PAE[2:7] will be don't care states.

Note, that if a read or write operation is occurring to a specific queue, say queue ' x ' on the samecycle as astatus word switch which will include the queue ' x ', then there may be an extra RCLK cycle delay before that queues status is correctly shown on the respective output of the $\overline{\text { PAEn }}$ bus.
Status words can be selected on consecutive clock cycles, that is the status word on the $\overline{\text { PAEn bus can change every RCLK cycle. Also, data can be read }}$ out of aQueueonthesameRCLKrisingedgethatastatuswordisbeingselected, the only restriction being that a read queue selection and $\overline{\mathrm{PAE}}$ status word selection cannot be made on the same RCLK cycle.

If 8 orless queues are setup then queues, Queue[0:7] have their $\overline{\text { PAE }}$ status output on $\overline{\text { PAE }}[0: 7]$ constantly.

Whenthe multi-queue devices are connected in expansion of morethan one device the $\overline{\text { PAE }}$ busses of all devices are connected together, when switching between status words of different devices the user must utilize the 3 most significant bits of the RDADD address bus (as well as the 2 LSB's). These 3 MSb's correspond to the device ID inputs, which are the static inputs, ID0, ID1 \& ID2.

Please refer to Figure 56, $\overline{\text { PAE }} n$ - Direct Mode Status Word Selection for timing information. Also refer to Table 9, Read Address Bus, RDADD.

TABLE 14 - FLAG OPERATION BOUNDARIES \& TIMING

Empty Flag, $\overline{\text { EF }}$ Flag Boundary	
I/O Set-Up	$\overline{\mathrm{EF}}$ Boundary Condition
In40 to out40 (Almost Empty Mode) (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{EF}}$ Goes HIGH after $1^{\text {st }}$ Write (see note 1 below for timing)
In40 to out20 (Both ports selected for samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{E F}$ Goes HIGH after $1^{\text {st }}$ Write (see note 1 below for timing)
In20 to out40 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{EF}}$ Goes HIGH after $1^{\text {st }}$ Write (see note 1 below fortiming)

Full Flag, FF Boundary	
I/O Set-Up	$\overline{\text { FF }}$ Boundary Condition
In40 to out40 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note below for timing)
In40 to out40 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\bar{F} \bar{F}$ Goes LOW after D Writes (see note below for timing)
In40 to out20 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (seenote belowfortiming)
In40 to out20 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\bar{F} \bar{F}$ Goes LOW after D Writes (see note belowfortiming)
In20 to out40 Both ports selected for samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after ([D] x 2) Writes (see note belowfortiming)
In20 to out40 (Write portonly selectedforqueue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after (D x2) Writes (see note below fortiming)

NOTE:

D = Queue Depth
$\overline{\mathrm{F}} \overline{\mathrm{F}}$ Timing
Assertion:
Write Operation to $\overline{F F}$ LOW: tWFF
De-assertion:
Read to FF HIGH: tSKEW1 + twFF
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF

1. In40 $=$ SDR40 or DDR20

In20 = SDR20

Programmable Almost Full Flag, $\overline{\text { PAF }}$ \& $\overline{\text { PAF }}$ B Bus Boundary	
I/O Set-Up	$\overline{\text { PAF }}$ \& $\overline{\text { PAFn }}$ Boundary
in40 to out40 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF/PAFn }}$ Goes LOW after D-mWrites (see note belowfortiming)
in40 to out40 (Write portonly selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF/PAFn }}$ Goes LOW after D-mWrites (seenote below fortiming)
in40 to out20	$\overline{\text { PAF }} / \overline{\mathrm{PAF}}$ G Goes LOW atter D-mWrites(seebelowfortiming)

NOTE:

D = Queue Depth
$\mathrm{m}=$ Almost Full Offset value.

1. $\operatorname{In} 40=$ SDR40 or DDR20

In20 = SDR20

PAF Timing

Assertion: Write Operation to $\overline{\text { PAF }}$ LOW: 3 WCLK + twaF
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF
If tSKEW2 is violated there may be 1 added clock: tSKEW2 +3 WCLK + twAF

$\overline{\text { PAF }}$ n Timing

Assertion: Write Operation to $\overline{\text { PAFn }}$ LOW: 2 WCLK + tPAF
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF
If tSKEW 3 is violated there may be 1 added clock: tSKEW $3+3$ WCLK* + tPAF

* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion there may be one additional WCLK clock cycle delay.

TABLE 14 - FLAG OPERATION BOUNDARIES \& TIMING (CONTINUED)

Programmable Almost Empty Flag, $\overline{\text { PAE }}$ Boundary	
I/O Set-Up	$\overline{\text { PAE Assertion }}$
in40 to out40 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after } n+1}$ Writes (see note belowfortiming)
in40 to out20 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after } n+1}$ Writes (see note below fortiming)
in20 to out40 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after }}$ ($[n+1] \times 2$) Writes (see note below fortiming)

NOTE

$\mathrm{n}=$ Almost Empty Offset value.

1. $\operatorname{In} 40=$ SDR40 or DDR20

In20 = SDR20

$\overline{\text { PAE Timing }}$

Assertion: Read Operation to $\overline{\text { PAE LOW: } 3 \text { RCLK + tRAE }}$
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE
If tSKEW2 is violated there may be 1 added clock: tSKEW2 +3 RCLK + tRAE

PAEn - POLLED BUS

If FM is HIGH at master reset then the $\overline{\text { PAE }}$ bus operates in Polled (looped) mode. In polled mode the $\overline{\mathrm{PAE}}$ n bus automatically cycles through the 4 status words within the device regardless of how many queues have been setup in the part. Every rising edge of the RCLKcauses the nextstatus word to beloaded onthe $\overline{\text { PAEnbus. The device configured as the master(MAST inputtiedHIGH), }}$ will take control of the $\overline{\text { PAE n after MRS goes LOW. For the whole RCLK cycle }}$ thatthe firststatus word is on $\overline{\text { PAEn }}$ the ESYNC ($\overline{\text { PAEn bus sync) output will be }}$ HIGH, for all other status words, this ESYNC output will be LOW. This ESYNC output provides the user with a mark with which they can synchronize to the PAEn bus, ESYNC is always HIGH for the RCLK cycle that the firststatus word of a device is present on the $\overline{\text { PAEn bus. }}$

When devices are connected in expansion configuration, only one device will be set as the Master (ID='000'), MAST inputtied HIGH, all other devices will have MAST tied LOW. The master device is the first device to take control of the $\overline{\text { PAE }}$ bus and will place its first status word on the bus on the rising edge of RCLKafterthe $\overline{M R S}$ inputgoes LOW. ForthenextnRCLK cycles ($n=$ number of queues divided by 8 withnincrementing by one should there be a remainder)

Programmable Almost Empty Flag Bus, $\overline{\text { PAEn Boundary }}$	
I/O Set-Up	$\overline{\text { PAEn Boundary Condition }}$
in40 to out40 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ $\mathrm{n}+1$ Writes (seenotebelowfortiming)
in40 to out40 (Write portonly selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	PAEn Goes HIGH after $n+1$ Writes (see note below fortiming)
in40 to out20	$\overline{\text { PAEn Goes HIGH after } n+1}$ Writes (see below fortiming)
in20 to out40 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ ([n+1] x 2) Writes (see note below fortiming)
in20 to out40 (Write portonly selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ ([n+1] x 2) Writes (seenotebelowfortiming)

NOTE:

$\mathrm{n}=$ Almost Empty Offset value.

1. In40 = SDR40 or DDR20

In20 = SDR20
$\overline{\text { PAEEn Timing }}$
Assertion: Read Operation to $\overline{\text { PAEn LOW: }} 3$ RCLK ${ }^{*}+$ tPAE
De-assertion: Write to $\overline{\text { PAE }}$ HIGH: tSKEW3 + RCLK* + tPAE
If tSKEW 3 is violated there may be 1 added clock: tSKEW $3+3$ RCLK* + tPAE

* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion there may be one additional RCLK clock cycle delay.
the masterdevice willmaintain control of the $\overline{\text { PAE }}$ nbus and cycleitsstatus words through it, all other devices hold their $\overline{\text { PAE }}$ outputs inHigh-Impedance. When the master device has cycled all of its status words itpasses a tokentothenext device in the chain and that device assumes control of the $\overline{\text { PAE }}$ bus and then cycles its status words and so on, the $\overline{\text { PAE }}$ bus control token being passed on from device to device. This token passing is done viathe EXO outputs and EXI inputs of the devices ("PAE Expansion Out" and "PAE ExpansionIn"). The EXO output of the masterdevice connectstothe EXI ofthe seconddevice inthechain and the EXO of the second connects to the EXI of the third and so on. The final deviceinachainhasits EXO connectedtotheEXI ofthefirstdevice, sothatonce the $\overline{\text { PAE }}$ bus has cycled through all status words of all devices, control of the $\overline{\text { PAEn will pass to the master device again and so on. The ESYNC of each }}$ respective device will operate independently and simply indicate when that respective device has taken control of the bus and is placing its firststatus word on to the $\overline{\text { PAEn bus. }}$
When operating in single device mode the EXI input must be connected to the EXO output of the samedevice. Insingle device modeatokenisstill required to be passed into the device for accessing the $\overline{\text { PAE }}$ bus.

TABLE 15 - INTERFACE DATA RATES

$\left.\begin{array}{|c|c|c|}\hline & & \text { Output Interface }\end{array} \begin{array}{c}\text { Supported Data Transfer Rate } \\ \text { Combination }\end{array}\right]$ Input Interface \quad SDR \quad Yes

INPUT INTERFACE

The inputportwill supporteitherEdge Aligneddata clockingorCenterAligned data clocking. No device configuration is required. For reference XGMII uses center aligned clocking.

The inputinterface will supporteither Single Data Rate(SDR) data transfers or Double Data Rate (DDR) data transfers.

OUTPUTINTERFACE

The output interface will provide a Centered Aligned data clock for Double Data Rate (DDR) operation and Edge Aligned data clock for Single Data Rate (SDR) operation. The output interface will support either Single Data Rate (SDR) data transfers or Double Data Rate (DDR) data transfers.
Note, the sum of (ta max + tsu min) must be less than the cycle time.

Figure 34. DDR Source Synchronous Center Aligned Clocking

Figure 35. SDR Edge Aligned Clocking

BUS MATCHING OPERATION

Bus Matching operation between the input port and output port is available. During a master reset of the multi-queue the state of the three setup pins, BM [3:0] (Bus Matching), determine the input and output port bus widths as shown in Table 16, "Bus Matching Configurations". 20 bitwords and 40 bit words can be written into and read from the Queues. When writing to or reading from the multi-queue in abus matching mode, the device orders dataina "Little Endian" format. See Figure 36, Bus Matching Byte Arrangementfor details.

The Full flag and Almost Full flag operation is always based on writes and reads of data widths determined by the write port width. For example, ifthe input
port is $x 40$ and the output port is $x 20$, then two data reads from a full queue will be required to cause the full flag to go HIGH (queue not full). Conversely, the Empty flag and Almost Empty flag operations are always based on writes and reads of data widths determined by the read port. For example, if the inputport is $\times 20$ and the output port is $\times 40$, two write operations will be required to cause the Empty flag ($\overline{\mathrm{EF}}$) of an empty queue to go HIGH (queue is not empty).

Note, that the input portserves all queues within a device, as does the output port, therefore the inputbus widthto all queues is equal (determined by the input portsize) and the output bus width from all queues is equal (determined by the outputportsize).

TABLE 16 - BUS-MATCHING CONFIGURATIONS

BM3 (IDR)	BM2 (ODR)	BM1	BM0	Write Port	Read Port	PAE Default	PAF Default
0	0	0	0	DDR $\times 40$	DDR $\times 40$	16	D-16
0	0	0	1	DDR $\times 40$	DDR $\times 20$	16	D-16
0	0	1	0	DDR $\times 40$	SDR $\times 40$	16	D-16
0	0	1	1	DDR $\times 40$	SDR $\times 20$	16	D-16
0	1	0	0	DDR $\times 20$	DDR $\times 40$	16	D-16
0	1	0	1	DDR $\times 20$	DDR $\times 20$	32	D-32
0	1	1	0	DDR $\times 20$	SDR $\times 40$	32	D-32
0	1	1	1	DDR $\times 20$	SDR $\times 20$	32	D-32
1	0	0	0	SDR $\times 40$	DDR $\times 40$	16	D-16
1	0	0	1	SDR $\times 40$	DDR $\times 20$	32	D-32
1	0	1	0	SDR $\times 40$	SDR $\times 40$	32	D-32
1	0	1	1	SDR $\times 40$	SDR $\times 20$	32	D-32
1	1	0	0	SDR $\times 20$	DDR $\times 40$	16	D-16
1	1	0	1	SDR $\times 20$	DDR $\times 20$	32	D-32
1	1	1	0	SDR $\times 20$	SDR $\times 40$	32	D-32
1	1	1	1	SDR $\times 20$	SDR $\times 20$	64	D-64

BYTE ORDER ON INPUT PORT:

Write to Queue

BYTE ORDER ON OUTPUT PORT:

Read from Queue
(a) $\times 40$ INPUT to $\times 40$ OUTPUT

Write to Queue

2nd: Read from Queue
(b) $x 40$ INPUT to $\times 20$ OUTPUT

BYTE ORDER ON INPUT PORT:

Write to Queue

Read from Queue
(c) x20 INPUT to $\times 20$ OUTPUT

BYTE ORDER ON OUTPUT PORT:

B9-D0 \quad 1st: Write to Queue

2nd: Write to Queue

Read from Queue
(d) $\times 20$ INPUT to $\times 40$ OUTPUT

NOTES:

1. Please refer to Table 16, Bus-Matching set-up for details.
2. Data bits not used in this configuration.

Figure 36. Bus-Matching Byte Arrangement

NOTE:

1. $\overline{O E}$ can toggle during this period.

Figure 37. Master Reset

Figure 40. Serial Port Connection for Serial Programming

${ }^{*} \mathbf{B B}^{\star}$ Current word is kept on the output bus since $\overline{\mathrm{REN}}$ is HIGH.
${ }^{*} \mathbf{C}^{*}$ The $\overline{\mathrm{FF}}$ flag provides status of previous queue.
Word W+1 is read from the previous queue regardless of $\overline{R E} \bar{N}$ due to FWFT.
Word, Wd is written into Qx. This causes Qx to go full.
The next available Word W0 of Qy is read out regardless of $\overline{\text { REN, }} 3$ RCLK c
DD The next available Word W0 of Qy is read out regardless of $\overline{R E N}, 3$ RCLK cycles after queue selection. This is FWFT operation. ${ }^{*} \mathbf{E}^{\star} \quad$ Queue, $Q y$ is selected within the same device as $Q x$. A write to $Q x$ cannot occur on this cycle because it is full, $\overline{F F}$ is LOW.
 ${ }^{*} \mathbf{F}^{\star} \quad$ Again, a write to Qx cannot occur on this cycle because it is full, $\overline{\mathrm{FF}}$ is LOW.
The $\bar{F} \bar{F}$ flag updates after time twFF to show that queue, Qy is not full.
Word, $W d-2$ is written into Qy.
Word, $W d-1$ is written into Qy .
Word, Wd is written into Qy, this causes Qy to go full, $\overline{F F}$ goes LOW.
A write to Qy cannot occur on this cycle because it is full, FF is LOW.
Qy goes "not full" based on reading word W0 from Qy on cycle *FF*.
$\overline{\mathrm{OE}}$ is active LOW.
Cycle:
${ }^{\text {* } \mathbf{A}^{*}}$ Queue, $Q x$ is

Figure 44. Write Queue Select, Mark and Rewrite

$\frac{\text { Cycle }}{{ }^{*} \mathbf{A}^{*}}$
AA Queue, Q5 of device 1 is selected on the read port.
WEN is HIGH so no write occurs. The $\overline{F F}$ flag stays in High-Impedance for 3 WCLK cycles.
*AA Queue, Q5 of device 1 is selected on the read port.
The $\overline{F F}$ flag of device 1 is in High-Impedance, the write port of device 2 was previously selected.
${ }^{*} \mathbf{B B}^{*}$ Word, Wx-1 is held on the outputs for 2 RCLK cycles after a read Queue switch

* \mathbf{C}^{*} The $\overline{F F}$ flag of device 2 goes to High-Impedance and the $\overline{\mathrm{FF}}$ flag of device 1 goes to Low-Impedance, logic HIGH indicating that D1 Q27 is not full. $\overline{\text { WEN }}$ is HIGH so no write occurs.
CC Word, Wx is read from the previously selected queue.
DD The first word from Q5 of D1 selected on cycle *AA* is read out. This read caused Q5 to go not full, therefore the $\overline{\mathrm{F}} \overline{\mathrm{F}}$ flag will go HIGH after: tSkEW1 + twFF.
Note if tsKEW1 is violated the time to $\overline{\mathrm{FF}}$ flag HIGH is tsKEW1 + WLCK + twFF.
Queue, Q5 of device 1 is selected on the write port. No write occurs on th
Word, Wd is written into Q5 of D1. This causes the queue to go full, $\overline{F F}$ goes LOW.
No write occurs regardless of $\overline{W E} \bar{N}$, the $\overline{\mathrm{FF}}$ flag is LOW preventing writes. The $\overline{\mathrm{FF}}$ flag goes HIGH due to the read from Q5 of D1 on cycle *CC*. (This read is not an enabled read).
The $\overline{F F}$ flag of device 1 goes to High-Impedance, this device was deselected on the write port on cycle *।*. The $\overline{\mathrm{FF}}$ flag of device 2 goes to Low-Impedance and provides status of Q9 of D2.

Downloaded from Elcodis.com electronic components distributor

NOTES:

1. On Cycle 2, Queue Y is addressed to read data from.
2. On Cycle 6, Queue Y data is available on the Read bus
3. On Cycle 5, $\overline{E F}$ and $\overline{\text { PAE }}$ flags have updated to give the status for Queue Y
4. Previous Data from Queue X will be read during queue switch until 3 cycle latency from queue switch, plus 1 cycle Read delay of the first word in Queue Y is completed.
5. $\overline{\mathrm{REN}}$ is high for falling edge of cycle 3 and all of cycle 4 which means Words $\mathrm{X} 6-\mathrm{X} 8$ will not be available for read operation

Figure 47. DDR Read Operation, Read Queue Select, $\overline{E F} \& \overline{\text { PAE }}$ Flag Operation

Figure 48. Read Queue Select, Mark and Reread (IDT mode)

Cycle:
\mathbf{A}^{*}.
C^{*} A new queue, Q_{n} is selected for read port operations. $Q_{p} W_{D+1}$ remains on Qout bus.
${ }^{*} \mathrm{E}^{\star} \overline{R E N}$ is not asserted therefore no read operation occurs, Qp WD+1 remains on Qout bus
${ }^{*} \mathbf{F}^{*} \overline{R E N}$ is not asserted therefore no read operation occurs, Qp WD+1 remains on Qout bus.
${ }^{*} \mathbf{G}^{*}$ Read operation is initiated.
Word WD+1 of Qp is read.
I * Word Wo of Qn is read.
\mathbf{K}^{*} Current Word is kept on the output bus since $\overline{\text { REN }}$ is HIGH,
ord $Q_{n} W_{D+2}$ remains on the Qout bus.
Qn W_{D+2} remains on the Qout bus.
.
P* Word $W_{D}+2$ for $Q p$ is read.

[^0]Figure 52. Read Queue Select, Read Operation and OE Timing

Cycle:
A Queue 5 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The $\overline{\text { PAF }}$ output of device 1 is High-Impedance.
B No write occurs, $\overline{\text { WEN }}$ is HIGH.
C No write occurs, $\overline{\text { WEN }}$ is HIGH.
D No write occurs, $\overline{\text { WEN }}$ is HIGH.
E Word, Wd-m is written into Q5 causing the PAF flag to go from HIGH to LOW. The flag latency is 3 WCLK cycles + twaf.
${ }^{*} F^{*}$ Queue 9 in device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 3 WCLK + twaF latency.
G The PAF flag goes LOW based on the write 2 cycles earlier.

* H^{*} No write occurs, $\overline{\text { WEN }}$ is HIGH.
। The PAF flag goes HIGH due to the queue switch to Q9.
Figure 53. Almost Full Flag Timing and Queue Switch

NOTE:

1. The waveform shows the $\overline{P A F}$ flag operation when no queue switch occurs and a queue is selected on both the write and read ports is being written to then read from at the almost full boundary.
2. Flag Latencies:

Assertion: 2*WCLK + twaF
De-assertion: tskew2 + WCLK + twaf
3. If tskew2 is violated there will be one extra WCLK cycle.

Figure 54. Almost Full Flag Timing

NOTE:

1. The waveform here shows the $\overline{\text { PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read }}$ from at the almost empty boundary.
Flag Latencies:
2. Assertion: 2^{*} RCLK + tRAE

De-assertion: tskew2 + RCLK + traE
3. If tskewz is violated there will be one extra RCLK cycle.

Figure 55. Almost Empty Flag Timing

NOTES:

1. Status words can be selected on consecutive cycles.
2. On an RCLK cycle that the ESTR is HIGH, the RADEN input must be LOW.
3. There is a latency of 2 RCLK for the $\overline{\text { PAEn }}$ bus to switch.

Figure 56. $\overline{\text { PAEn }}$ - Direct Mode - Status Word Selection

NOTES:

1. Status words can be selected on consecutive cycles.
2. On a WCLK cycle that the FSTR is HIGH, the WADEN input must be LOW.
3. There is a latency of 2 WCLK for the PAFn bus to switch.

Figure 57. $\overline{\text { PAFn }}$ - Direct Mode - Status Word Selection

Figure 58. $\overline{\text { PAEn }}$ - Direct Mode, Flag Operation

Cycle:
A Queue 31 of device 0 is selected for read operations.
The last word in the output register is available on Qout. $\overline{\mathrm{OE}}$ was previously taken LOW so the output bus is in Low-Impedance.
AA Status word 4 of device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected status word, Quad Y of device X .
B No read operation.
BB Queue 31 of device 0 is selected on the write port.
CC PAFn continues to show status of Quad4 DO.
The $\overline{\text { PAFn }}$ bus is updated with the status word selected on the previous cycle, D0 Quad 4. $\overline{\text { PAF }[7] ~ i s ~ L O W ~ s h o w i n g ~ t h e ~ s t a t u s ~ o f ~ q u e u e ~} 31$
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.
DD No write operation.
E No read operations occur, $\overline{\text { REN }}$ is HIGH.
EE $\overline{\operatorname{PAF}[7] ~ g o e s ~ H I G H ~ t o ~ s h o w ~ t h a t ~ D O ~ Q 31 ~ i s ~ n o t ~ a l m o s t ~ e m p t y ~ d u e ~ t o ~ t h e ~ r e a d ~ o n ~ c y c l e ~}{ }^{*} \mathrm{C}^{*}$.
The active queue $\overline{\text { PAF }}$ flag of device 0 goes from High-Impedance to Low-Impedance.
Word, Wy is written into D0 Q31.
F Queue 2 of Device 6 is selected for read operations.
FF Word, Wy+1 is written into DO Q31.
GG $\overline{\operatorname{PAF}}[7]$ and the discrete $\overline{\mathrm{PAF}}$ flag go LOW to show the write on cycle *DD* causes Q31 of D0 to again go almost full. Word, Wy+2 is written into DO Q31.

* H^{*} No read operation.

Figure 59. $\overline{\text { PAF }}$ - Direct Mode, Flag Operation

6724 drw75
NOTE:

1. ID2 MUST be unique between the devices.

Figure 61. Connecting two 10G MQ 128Q devices in Expansion Mode

Figure 62. Connecting THREE or more 10G MQ 128Q in Expansion Mode Using WADDR bit 7/RDADD bit 7

JTAG INTERFACE

Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. The IDT72P51767/72P51777 incorporates the necessary tap controller and modified pad cells to implement the JTAG facility.

Note thatIDT provides appropriate Boundary Scan Description Language program files for these devices.

The Standard JTAG interface consists of four basic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. For a completedescription refertothe IEEE Standard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture

Figure 63. Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor. Itconsists offour inputports (TCLK, TMS, TDI, TRST) and one output port (TDO).

THETAP CONTROLLER
The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and update of data.

NOTES:

1. Five consecutive TCK cycles with TMS $=1$ will reset the TAP
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).
3. TAP controller must be reset before normal Queue operations can begin.

Figure 64. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram.

All state transitions within the TAP controller occur at the rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controllertakes precedence over the Queue and must be reset after power up of the device. See TRST description for more details on TAP controller reset.

Test-Logic-Reset Alltestlogic is disabled in this controller state enabling the normal operation of the IC. The TAP controller state machine is designed in such a way that, no matter what the initial state of the controller is, the Test-Logic-Resetstate can be entered by holding TMS athigh and pulsingTCK five times. This is the reason why the Test Reset ($\overline{\mathrm{TRST}}$) pin is optional.

Run-Test-Idle In this controller state, the testlogic in the IC is active only if certaininstructions are present. For example, if aninstruction activates the self test, then it will be executed whenthe controller enters this state. The testlogic in the IC is idles otherwise.

Select-DR-Scan This is a controller state where the decision to enter the Data Path orthe Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the InstructionPathis made. TheControllercan returntotheTest-Logic-Resetstate otherwise.

Capture-IR In this controller state, the shift register bank in the Instruction Register parallelloads a pattern of fixed values on the rising edge of TCK. The last two significant bits are always required to be "01".

Shift-IR In this controller state, the instruction register gets connected betweenTDI andTDO, andthe captured patterngets shifted oneach risingedge of TCK. The instructionavailableonthe TDI pinisalso shifted intothe instruction register.

Exit1-IR This is a controllerstate where a decisionto entereither the PauseIR state or Update-IR state is made.

Pause-IR This state is provided in order to allow the shifting of instruction register to betemporarily halted.
Exit2-DRThis is a controller state where a decision to enter either the ShiftIR state or Update-IR state is made.

Update-IR Inthis controller state, the instruction in the instruction register is latched in to the latch bank of the Instruction Register on every falling edge of TCK. This instruction also becomes the current instruction once it is latched.

Capture-DR Inthis controller state, the data is parallelloaded in to the data registers selected by the current instruction on the rising edge of TCK.
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data registerto beaccessed, orboth. The instructionshifted intothe register islatched at the completion of the shifting process whenthe TAP controller is at UpdateIRstate.

The instruction register must contain 4 bit instruction register-based cells which canhold instruction data. These mandatory cells are locatednearest the serial outputs they are the leastsignificantbits.

TESTDATA REGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a completedescription, refertothe IEEE Standard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI to TDO. Itcontains asinglestage shiftregisterfor a minimumlengthinserial path. Whenthe bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI be loaded into or read out of the processor input/outputports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.

IDT JEDEC ID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72P51767/72P51777, the Part Number field contains the following values:

Device	Part\# Field (HEX)
IDT72P51767	048 f
IDT72P51777	048 e

$31(\mathrm{MSb})$	2827		12
Version (4 bits) OX0	Part Number (16-bit)	Manufacturer ID (11-bit) OX33	$0($ LSB

JTAG DEVICE IDENTIFICATION REGISTER

JTAG INSTRUCTION REGISTER

The Instruction register allows instructionto be serially input intothe device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform the following:

- Selecttest data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Definethe serialtestdata registerpaththatisused to shiftdatabetween TDI and TDO during data register scanning.
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IRO) to decode 16 different possible instructions. Instructions are decoded as follows.

Hex Value	Instruction	Function
00	EXTEST	SelectBoundary ScanRegister
01	SAMPLE/PRELOAD	SelectBoundary ScanRegister
02	IDCODE	SelectChipIdentificationdata register
03	HIGH-IMPEDANCE	JTAG
$0 F$	BYPASS	SelectBypassRegister

JTAG INSTRUCTION REGISTER DECODING

The following sections provide a brief description of each instruction. For acompletedescription refertotheIEEEStandardTestAccessPortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the IC into an external boundarytestmodeand selectstheboundary-scan registertobeconnectedbetweenTDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip via the boundary outputs and receive test data off-chip via the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing for probe-lesstesting of solder-jointopens/shorts and of logic clusterfunction.

IDCODE

Theoptional IDCODEinstructionallowsthe ICto remaininitsfunctional mode and selectsthe optional device identification register to be connected between TDI and TDO. The device identification register is a 32-bit shift register containing information regardingthe IC manufacturer, devicetype, and version code. Accessing the device identification register does not interfere with the operation of the IC. Also, access to the device identification register should be immediately available, via a TAP data-scan operation, after power-up of the IC or after the TAP has been resetusing the optional TRST pin or by otherwise moving to the Test-Logic-Resetstate.

SAMPLE/PRELOAD

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normalfunctionalmodeand selectstheboundary-scan registertobeconnected between TDI and TDO. During this instruction, the boundary-scan registercan be accessed via a date scan operation, to take a sample of the functional data entering and leaving the IC. This instruction is also used to preload test data into the boundary-scan register before loading an EXTEST instruction.

HIGH-IMPEDANCE

Theoptional High-Impedance instruction sets all outputs (includingtwo-state as well as three-statetypes) of an IC to a disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. Duringthis instruction, datacanbe shifted throughthe bypass registerfrom TDI to TDO without affecting the condition of the IC outputs.

BYPASS

The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.

Figure 65. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	$\begin{aligned} & \hline \text { IDT72P51767 } \\ & \text { IDT72P51777 } \end{aligned}$		
			Min.	Max.	Units
DataOutput	tDo ${ }^{(1)}$		-	20	ns
Data Output Hold	tDOH ${ }^{(1)}$		0	-	ns
Datalnput	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall=3ns } \end{aligned}$	1010		ns
	tD				

NOTE:

1. 50 pf loading on external output signals.

JTAG

AC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{VDD}=2.5 \mathrm{~V} \pm 5 \%\right.$; Tcase $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	IDT72P51767 IDT72P51777		
			-	100	-
Min.	Max.	Units			
JTAG ClockInputPeriod	tTCK		ns		
JTAG ClockHIGH	tTCKHIGH	-	40	-	ns
JTAG Clock Low	tTCKLOW	-	40	-	ns
JTAG ClockRise Time	tTCKRISE	-	-	$5^{(1)}$	ns
JTAG Clock Fall Time	tTCKFALL	-	-	$5^{(1)}$	ns
JTAG Reset	tRST	-	50	-	ns
JTAG Reset Recovery	tRSR	-	50	-	ns

NOTE:

1. Guaranteed by design.

ORDERING INFORMATION

72P51767 5,898,240 bits - 10G DDR Multi-Queue Flow-Control Device 1.8V
72 P 51777 11,796,480 bits - 10G DDR Multi-Queue Flow-Control Device 1.8V 6724 drw79
NOTES:

1. Industrial temperature range product for the $7-5 \mathrm{~ns}$ is available as a standard device. All other speed grades available by special order.
2. Green parts are available. For specific speeds contact your local sales office.

DATASHEET DOCUMENT HISTORY
01/18/2006
02/11/2009
pgs. 1, 17, 19, 20, 30, and 31.
pg. 88.
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com

[^0]: IOTES:

 1. In expansion configuration the $\overline{O E}$ inputs of all devices should be connected together. This allows the output busses of all devices to be High-Impedance controlled

 Cycle:
 ${ }^{*} \mathbf{A}^{*}$ Queue A is selected for reads. No data will fall through on this cycle, the previous queue was read to empty.
 ${ }^{*} \mathbf{B}^{*}$ No read operation $\overline{\operatorname{REN}}=\mathrm{HIGH}$.
 ${ }^{*}$ © Previous data kept on output bus since there is no read operation.
 ${ }^{*} \mathbf{D}^{*}$ Previous data kept on output bus since there is no read operation.
 E Read from Queue A initiated.
 ${ }^{*} \mathbf{G}^{*}$ Reads are again enabled.
 ${ }^{* *}$ Queue, QB is selected on the read port. This queue is actually empty. Word, W1 is read from QA.
 $* \mathbf{J}^{*}$ Word, W2 is read from QA.
 \mathbf{K}^{*} Word W3 is read from QA.

