1-Mbit (64K x 16) Static RAM

Features

- Temperature Ranges

— Commercial: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

- Industrial: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Automotive-A: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Automotive-E: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- High speed
$-t_{A A}=10 \mathrm{~ns}$ (Commercial)
$-\mathrm{t}_{\mathrm{AA}}=15 \mathrm{~ns}$ (Automotive)
- CMOS for optimum speed/power
- Low active power
- 825 mW (max.)
- Automatic power-down when deselected
- Independent control of upper and lower bits
- Available in Pb free and non Pb free 44-pin TSOP II and 44-pin 400-mil-wide SOJ

Functional Description ${ }^{[1]}$

The CY7C1021BN/CY7C10211BN is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable $(\overline{\mathrm{CE}})$ and Write Enable ($\overline{\mathrm{WE}}$) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins ($1 / \mathrm{O}_{1}$ through $\mathrm{I} / \mathrm{O}_{8}$), is written into the location specified on the address pins (A_{0} through A_{15}). If Byte High Enable ($\left.\overline{\mathrm{BHE}}\right)$ is LOW, then data from I/O pins (I/O O_{9} through $\mathrm{I} / \mathrm{O}_{16}$) is written into the location specified on the address pins (A_{0} through A_{15}).
Reading from the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Output Enable ($\overline{\mathrm{OE})}$ LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on $\mathrm{I} / \mathrm{O}_{1}$ to $\mathrm{I} / \mathrm{O}_{8}$. If Byte High Enable ($\overline{\mathrm{BHE}}$) is LOW , then data from memory will appear on $\mathrm{I} / \mathrm{O}_{9}$ to $\mathrm{I} / \mathrm{O}_{16}$. See the truth table at the back of this data sheet for a complete description of read and write modes.
The input/output pins ($\mathrm{I} / \mathrm{O}_{1}$ through $\mathrm{I} / \mathrm{O}_{16}$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled ($\overline{\mathrm{OE}}$ HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).
The CY7C1021BN/CY7C10211BN is available in standard 44 -pin TSOP Type II and 44-pin 400-mil-wide SOJ packages. Customers should use part number CY7C10211BN when ordering parts with $10 \mathrm{~ns} \mathrm{t}_{\mathrm{AA}}$, and CY7C1021BN when ordering 12 ns and $15 \mathrm{~ns}_{\mathrm{AA}}$.

Logic Block Diagram

PinConfigurations

SOJ / TSOP II Top View		
A_{4}	44	A_{5}
A_{3}	43	$\square A_{6}$
A_{2}	42	$\square \mathrm{A}_{7}$
$\mathrm{A}_{1} 4$	41	\square OE
$\mathrm{A}_{0} 5$	40	\square BHE
CE	39	\square BLE
$1 / \mathrm{O}_{1} \square_{7}$	38	$\square \mathrm{I} / \mathrm{O}_{16}$
$1 / \mathrm{O}_{2}-8$	37] I/O O_{15}
$1 / \mathrm{O}_{3} \square 9$	36	- I/O O_{14}
$1 / \mathrm{O}_{4} 10$	35	$\square \mathrm{l} / \mathrm{O}_{13}$
$\mathrm{V}_{\mathrm{CC}}{ }^{11}$	34	$\square \mathrm{V}_{\text {SS }}$
$\mathrm{V}_{\text {SS }} 12$	33	$\square \mathrm{V}_{\mathrm{CC}}$
$1 / \mathrm{O}_{5}-13$	32	$\square \mathrm{I} / \mathrm{O}_{12}$
$1 / \mathrm{O}_{6} \mathrm{l}_{14}$	31] $\mathrm{I} / \mathrm{O}_{11}$
$1 / \mathrm{O}_{7} \mathrm{O}_{15}$	30	$\square 1 / \mathrm{O}_{10}$
$\underline{1 / \mathrm{O}_{8}-16}$	29	$\square \mathrm{I} / \mathrm{O}_{9}$
WE - $_{17}$	28	$\square \mathrm{NC}$
$\mathrm{A}_{15} 18$	27	\square^{1}
$\mathrm{A}_{14} 19$	26	$\square A_{9}$
$\mathrm{A}_{13} \mathrm{C}_{20}$	25	$\square \mathrm{A}_{10}$
$\mathrm{A}_{12}{ }^{21}$	24	$\square \mathrm{A}_{11}$
NC 22	23	$\square \mathrm{NC}$

Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com

Selection Guide

		7C10211B-10	7C1021B-12	7C1021B-15
Maximum Access Time (ns)		10	12	15
Maximum Operating Current (mA)	Com'I / Ind'I	150	140	130
	Automotive-A			130
	Automotive-E			130
Maximum CMOS Standby Current (mA)	Com'I / Ind'I	10	10	10
	Com'l / Ind'l (L version)	0.5	0.5	0.5
	Automotive-A (L version)			0.5
	Automotive-E			15

Pin Definitions

Pin Name	SOJ, TSOP-Pin Number	I/O Type	Description
$\mathrm{A}_{0}-\mathrm{A}_{15}$	1-5,18-21, 24-27, 42-44	Input	Address Inputs used to select one of the address locations.
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{l} / \mathrm{O}_{16}$	$\begin{gathered} 7-10,13-16,29-32, \\ 35-38 \end{gathered}$	Input/Output	Bidirectional Data I/O lines. Used as input or output lines depending on operation.
NC	22, 23, 28	No Connect	No Connects. Not connected to the die.
WE	17	Input/Control	Write Enable Input, active LOW. When selected LOW, a Write is conducted. When deselected HIGH, a Read is conducted.
$\overline{\mathrm{CE}}$	6	Input/Control	Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
$\overline{\text { BHE, }} \overline{\text { BLE }}$	40, 39	Input/Control	Byte Write Select Inputs, active LOW. $\overline{\mathrm{BHE}}$ controls $\mathrm{I} / \mathrm{O}_{16}-\mathrm{I} / \mathrm{O}_{9}$, BLE controls $\mathrm{I} / \mathrm{O}_{8}-1 / \mathrm{O}_{1}$, .
$\overline{\mathrm{OE}}$	41	Input/Control	Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins.
V_{SS}	12, 34	Ground	Ground for the device. Should be connected to ground of the system.
V_{Cc}	11, 33	Power Supply	Power Supply inputs to the device.

CY7C1021BN
CY7C10211BN

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied. \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[2]} \ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[2]}$ \qquad
\qquad
DC Input Voltage ${ }^{[2]}$ \qquad -0.5 V to $\mathrm{V}_{C c}+0.5 \mathrm{~V}$

Current into Outputs (LOW)
20 mA

Static Discharge Voltage... >2001V (per MIL-STD-883, Method 3015) Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	$\begin{gathered} \text { Ambient } \\ \text { Temperature }\left(\mathrm{T}_{\mathrm{A}}\right)^{[3]} \end{gathered}$	V_{cc}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Automotive-A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Automotive-E	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		-10		-12		-15		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	6.0	2.2	6.0	2.2	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	Com'l / Ind'I	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
			Automotive-A					-1	+1	$\mu \mathrm{A}$
			Automotive-E					-4	+4	$\mu \mathrm{A}$
${ }^{\text {IOZ }}$	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	Com'l / Ind'I	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
			Automotive-A					-1	+1	$\mu \mathrm{A}$
			Automotive-E					-4	+4	$\mu \mathrm{A}$
${ }^{\text {ccc }}$	V_{Cc} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l / Ind'I		150		140		130	mA
			Automotive-A						130	
			Automotive-E						130	
${ }^{\text {SB1 }}$	Automatic CE Power-Down Current-TTL Inputs	$\left\lvert\, \begin{aligned} & \text { Max. } V_{C C}, \\ & C E \\ & V_{\text {IH }} \\ & V_{\text {IN }} \geq V_{I H} \text { or } \\ & V_{\text {IN }} \leq V_{I L}, f=f_{\text {MAX }} \end{aligned}\right.$	Com'l / Ind'I		40		40		40	mA
			Automotive-A						40	
			Automotive-E						50	
${ }^{\text {SB2 }}$	Automatic CE Power-Down CurrentCMOS Inputs	$\begin{array}{\|l} \text { Max. } V_{C C} \\ C E \\ V_{\text {IN }} \geq V_{C C}-0.3 V \\ V_{\text {IN }}-0.3 V, \\ \text { or } V_{\text {IN }} \leq 0.3 V, f=0 \end{array}$	Com'l / Ind'I		10		10		10	mA
			Com'I / Ind'l (L)		0.5		0.5		0.5	
			Automotive-A (L)						0.5	
			Automotive-E						15	

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Notes:

2. $\mathrm{V}_{\mathrm{IL}}(\min)=.-2.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}(\max)=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ for pulse durations of less than 20 ns
3. T_{A} is the "Instant On" case temperature.
4. Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance ${ }^{[4]}$

Parameter	Description	Test Conditions	44-pin SOJ	44-pin TSOP-II	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods and procedures for measuring thermal	64.32	76.89	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Θ_{JC}	Thermal Resistance (Junction to Case)		31.03	14.28

AC Test Loads and Waveforms

Equivalent to: THÉVENIN
 1.73 V EQUIVALENT

Switching Characteristics ${ }^{[5]}$ Over the Operating Range

Parameter	Description	7C10211B-10		7C1021B-12		7C1021B-15		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle								
t_{RC}	Read Cycle Time	10		12		15		ns
t_{AA}	Address to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		5		6		7	ns
tizoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[6]}$	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		5		6		7	ns
tLzCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{z}^{[6,7]}$		5		6		7	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power-Down }}$		10		12		15	ns
$\mathrm{t}_{\text {DBE }}$	Byte Enable to Data Valid		5		6		7	ns
t LzBE	Byte Enable to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZBE }}$	Byte Disable to High Z		5		6		7	ns

Notes:
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance
6. At any given temperature and voltage condition, $t_{H Z C E}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
7. $\mathrm{t}_{\text {HZOE }}, \mathrm{t}_{\text {HZBE }}, \mathrm{t}_{\text {HZCE }}$, and $\mathrm{t}_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.

Switching Characteristics ${ }^{[5]}$ Over the Operating Range (continued)

Parameter	Description	7C10211B-10		7C1021B-12		7C1021B-15		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Write Cycle ${ }^{[8]}$								
t_{wc}	Write Cycle Time	10		12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	8		9		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	7		8		10		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		6		8		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t LzWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		3		3		ns
$t_{\text {Hzw }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$		5		6		7	ns
$\mathrm{t}_{\text {BW }}$	Byte Enable to End of Write	7		8		9		ns

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. $2(\overline{\mathrm{OE}} \text { Controlled })^{[10,11]}$

Notes:
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}} \mathrm{LOW}, \overline{W E}$ LOW and $\overline{\mathrm{BHE}} / \overline{\mathrm{BLE}} \mathrm{LOW} . \overline{\mathrm{CE}}, \overline{W E}$ and $\overline{\mathrm{BHE}} / \overline{\mathrm{BLE}}$ must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
9. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}, \overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BHE}}=\mathrm{V}_{\mathrm{IL}}$.
10. WE is HIGH for read cycle.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text { CE }}$ Controlled) ${ }^{[12,13]}$

Write Cycle No. 2 ($\overline{\mathrm{BLE}}$ or $\overline{\mathrm{BHE}}$ Controlled)

Notes:
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. Data I / O is high impedance if $\overline{\mathrm{OE}}$ or $\overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BLE}}=\mathrm{V}_{\mathrm{IH}}$.
13. If $\overline{C E}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW)

Truth Table

$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{W E}$	$\overline{\text { BLE }}$	$\overline{\mathrm{BHE}}$	$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	$\mathrm{l} / \mathrm{O}_{9}-1 / \mathrm{O}_{16}$	Mode	Power
H	X	X	X	X	High Z	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	L	L	Data Out	Data Out	Read - All bits	Active (ICC)
			L	H	Data Out	High Z	Read - Lower bits only	Active ($\mathrm{ICC}^{\text {) }}$
			H	L	High Z	Data Out	Read - Upper bits only	Active (I_{cc})
L	X	L	L	L	Data In	Data In	Write - All bits	Active (I_{cc})
			L	H	Data In	High Z	Write - Lower bits only	Active (I_{cc})
			H	L	High Z	Data In	Write - Upper bits only	Active (I_{cc})
L	H	H	X	X	High Z	High Z	Selected, Outputs Disabled	Active (I_{cc})
L	X	X	H	H	High Z	High Z	Selected, Outputs Disabled	Active (I_{cc})

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C10211BN-10ZXC	51-85087	44-pin TSOP Type II	Commercial
12	CY7C1021BN-12VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1021BN-12VXC		44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021BN-12ZC	51-85087	44-pin TSOP Type II	
	CY7C1021BN-12ZXC		44-pin TSOP Type II (Pb-Free)	
	CY7C1021BN-12VI	51-85082	44-pin (400-Mil) Molded SOJ	Industrial
	CY7C1021BN-12VXI		44-pin (400-Mil) Molded SOJ (Pb-Free)	
15	CY7C1021BN-15VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1021BN-15VXC		44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021BNL-15VXC		44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021BN-15ZC	51-85087	44-pin TSOP Type II	
	CY7C1021BN-15ZXC		44-pin TSOP Type II (Pb-Free)	
	CY7C1021BNL-15ZC		44-pin TSOP Type II	
	CY7C1021BNL-15ZXC		44-pin TSOP Type II (Pb-Free)	
	CY7C1021BN-15VI	51-85082	44-pin (400-Mil) Molded SOJ	Industrial
	CY7C1021BN-15VXI		44-pin (400-Mil) Molded SOJ (Pb-Free)	
	CY7C1021BN-15ZI	51-85087	44-pin TSOP Type II	
	CY7C1021BNL-15ZI		44-pin TSOP Type II	
	CY7C1021BN-15ZXI		44-pin TSOP Type II (Pb-Free)	
	CY7C1021BNL-15ZXI		44-pin TSOP Type II (Pb-Free)	
	CY7C1021BNL-15ZSXA	51-85087	44-pin TSOP Type II (Pb-Free)	Automotive-A
	CY7C1021BN-15VXE	51-85082	44-pin (400-Mil) Molded SOJ (Pb-Free)	Automotive-E
	CY7C1021BN-15ZSXE	51-85087	44-pin TSOP Type II (Pb-Free)	

Package Diagrams

44-pin (400-Mil) Molded SOJ (51-85082)

Package Diagrams (continued)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1021BN/CY7C10211BN (64K x 16) Static RAM Document Number: 001-06494				
REV.	ECN NO.	Issue Date	Orig. of Change	
$* *$	423877	See ECN	NXR	New Data Sheet
${ }^{*}$ A	505726	See ECN	NXR	Removed IOs parameter from DC Electrical Characteristics table. Added Automotive products Updated ordering Information table

