April 2007

Features

2672 SIMPLE SWITCHER Power Converter High Efficiency 1A Step-Down Voltage Regulator

LM2672 SIMPLE SWITCHER[®] Power Converter High Efficiency 1A Step-Down Voltage Regulator with Features

General Description

The LM2672 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1A load current with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5.0V, 12V, and an adjustable output version.

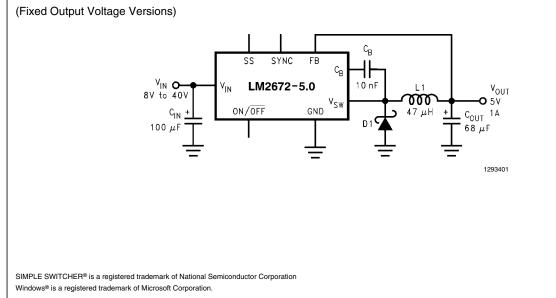
Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and 5,514,947), fixed frequency oscillator, external shutdown, soft-start, and frequency synchronization.

The LM2672 series operates at a switching frequency of 260 kHz, thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency (>90%), the copper traces on the printed circuit board are the only heat sinking needed.

A family of standard inductors for use with the LM2672 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.

Other features include a guaranteed $\pm 1.5\%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10\%$ on the oscillator frequency. External shutdown is included, featuring typically 50 µA stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

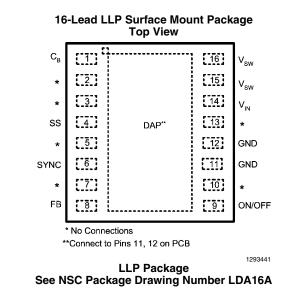
To simplify the LM2672 buck regulator design procedure, there exists computer design software, *LM267X Made Simple* version 6.0.

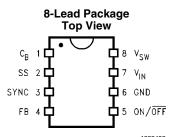

Features

- Efficiency up to 96%
- Available in SO-8, 8-pin DIP and LLP packages
- Computer Design Software LM267X Made Simple version 6.0
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
- 3.3V, 5.0V, 12V, and adjustable output versions
- Adjustable version output voltage range: 1.21V to 37V
- ±1.5% max output voltage tolerance over line and load conditions
- Guaranteed 1A output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8V to 40V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Soft-start and frequency synchronization
- Thermal shutdown and current limit protection

Typical Applications

- Simple High Efficiency (>90%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators


Typical Application



© 2007 National Semiconductor Corporation 12934

Connection Diagrams

LM2672

Output Voltage	Order Information	Package Marking	Supplied as:	
6 Lead LLP				
12	LM2672LD-12	S0001B	1000 Units on Tape and Reel	
12	LM2672LDX-12	S0001B	4500 Units on Tape and Reel	
3.3	LM2672LD-3.3	S0002B	1000 Units on Tape and Reel	
3.3	LM2672LDX-3.3	S0002B	4500 Units on Tape and Reel	
5.0	LM2672LD-5.0	S0003B	1000 Units on Tape and Reel	
5.0	LM2672LDX-5.0	S0003B	4500 Units on Tape and Reel	
ADJ	LM2672LD-ADJ	S0004B	1000 Units on Tape and Reel	
ADJ	LM2672LDX-ADJ	S0004B	4500 Units on Tape and Reel	
60-8				
12	LM2672M-12	2672M-12	Shipped in Anti-Static Rails	
12	LM2672MX-12	2672M-12	2500 Units on Tape and Ree	
3.3	LM2672M-3.3	2672M-3.3	Shipped in Anti-Static Rails	
3.3	LM2672MX-3.3	2672M-3.3	2500 Units on Tape and Reel	
5.0	LM2672M-5.0	2672M-5.0	Shipped in Anti-Static Rails	
5.0	LM2672MX-5.0	2672M-5.0	2500 Units on Tape and Reel	
ADJ	LM2672M-ADJ	2672M-ADJ	Shipped in Anti-Static Rails	
ADJ	LM2672MX-ADJ	2672M-ADJ	2500 Units on Tape and Reel	
DIP				
12	LM2672N-12	LM2672N-12	Shipped in Anti-Static Rails	
3.3	LM2672N-3.3	LM2672N-3.3	Shipped in Anti-Static Rails	
5.0	LM2672N-5.0	LM2672N-5.0	Shipped in Anti-Static Rails	
ADJ	LM2672N-ADJ	LM2672N-ADJ	Shipped in Anti-Static Rails	

TABLE 1. Package Marking and Ordering Information

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	45V
ON/OFF Pin Voltage	$-0.1V \le V_{SH} \le 6V$
Switch Voltage to Ground	-1V
Boost Pin Voltage	$V_{SW} + 8V$
Feedback Pin Voltage	$-0.3V \le V_{FB} \le 14V$
ESD Susceptibility	
Human Body Model (Note 2)	2 kV
Power Dissipation	Internally Limited

Storage Temperature Range-65°C to +150°CLead TemperatureM PackageVapor Phase (60s)+215°CInfrared (15s)+220°CN Package (Soldering, 10s)+260°CLLP Package (see AN-1187)Maximum Junction Temperature+150°C

Operating Ratings

Supply Voltage	6.5V to 40V
Temperature Range	–40°C ≤ T _J ≤ +125°C

Electrical Characteristics

LM2672-3.3 Specifications with standard type face are for $T_J = 25^{\circ}C$, and those in **bold type face** apply over **full Operating Temperature Range**.

Symbol	Parameter	Conditions	Typical	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM	PARAMETERS Te	st Circuit Figure 2 (Note 3)		-	-	
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	3.3	3.251/ 3.201	3.350/ 3.399	V
V _{OUT}	Output Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	3.3	3.251/ 3.201	3.350/ 3.399	V
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	86			%
LM2	672-5.0					
Symbol	Parameter	Conditions	Typical (Note 4)	Min (Note 5)	Max (Note 5)	Units
SYSTEM	PARAMETERS Te	st Circuit <i>Figure 2</i> (Note 3)		•		
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A	5.0	4.925/ 4.850	5.075/ 5.150	V
V _{OUT}	Output Voltage	V_{IN} = 6.5V to 40V, I_{LOAD} = 20 mA to 500 mA	5.0	4.925/ 4.850	5.075/ 5.150	V
η	Efficiency	$V_{IN} = 12V, I_{LOAD} = 1A$	90			%
LM2	672-12			3		
Symbol	Parameter	Conditions	Typical	Min	Max	Units
Symbol	Parameter	Conditions	Typical (Note 4)	Min (Note 5)	Max (Note 5)	Unit
-		Conditions est Circuit <i>Figure 2</i> (Note 3)				Unit
						Units V
SYSTEM V _{OUT}	PARAMETERS Te	est Circuit <i>Figure 2</i> (Note 3)	(Note 4)	(Note 5)	(Note 5)	
SYSTEM V _{OUT} η	PARAMETERS Te Output Voltage	st Circuit <i>Figure 2</i> (Note 3) V _{IN} = 15V to 40V, I _{LOAD} = 20 mA to 1A	(Note 4)	(Note 5)	(Note 5)	-
SYSTEM V _{OUT} η	Definition of the second secon	st Circuit <i>Figure 2</i> (Note 3) V _{IN} = 15V to 40V, I _{LOAD} = 20 mA to 1A	(Note 4)	(Note 5)	(Note 5)	V
SYSTEM V _{OUT} n LM2 Symbol	Definition of the second secon	est Circuit <i>Figure 2</i> (Note 3) $V_{IN} = 15V \text{ to } 40V, I_{LOAD} = 20 \text{ mA to } 1A$ $V_{IN} = 24V, I_{LOAD} = 1A$ Conditions	(Note 4)	(Note 5)	(Note 5)	V %
SYSTEM V _{OUT} n LM2 Symbol	Definition of the second secon	est Circuit <i>Figure 2</i> (Note 3) $V_{IN} = 15V$ to 40V, $I_{LOAD} = 20$ mA to 1A $V_{IN} = 24V$, $I_{LOAD} = 1A$ Conditions est Circuit <i>Figure 3</i> (Note 3)	(Note 4) 12 94 Typ	(Note 5) 11.82/11.64	(Note 5) 12.18/ 12.36 Max	V %
SYSTEM V _{OUT} n LM2 Symbol	Definition of the second secon	est Circuit <i>Figure 2</i> (Note 3) $V_{IN} = 15V \text{ to } 40V, I_{LOAD} = 20 \text{ mA to } 1A$ $V_{IN} = 24V, I_{LOAD} = 1A$ Conditions est Circuit <i>Figure 3</i> (Note 3) $V_{IN} = 8V \text{ to } 40V, I_{LOAD} = 20 \text{ mA to } 1A$	(Note 4) 12 94 Typ	(Note 5) 11.82/11.64	(Note 5) 12.18/ 12.36 Max	V %
SYSTEM V _{OUT} n LM2 Symbol	PARAMETERS Te Output Voltage Efficiency C672-ADJ Parameter	est Circuit <i>Figure 2</i> (Note 3) $V_{IN} = 15V \text{ to } 40V, I_{LOAD} = 20 \text{ mA to } 1A$ $V_{IN} = 24V, I_{LOAD} = 1A$ Conditions est Circuit <i>Figure 3</i> (Note 3) $V_{IN} = 8V \text{ to } 40V, I_{LOAD} = 20 \text{ mA to } 1A$ V_{OUT} Programmed for 5V	(Note 4) 12 94 Typ (Note 4)	(Note 5) 11.82/ 11.64 Min (Note 5)	(Note 5) 12.18/ 12.36 Max (Note 5)	V %
SYSTEM V _{OUT} n LM2 Symbol	PARAMETERS Te Output Voltage Efficiency C672-ADJ Parameter PARAMETERS Tes Feedback Voltage	est Circuit <i>Figure 2</i> (Note 3) $V_{IN} = 15V$ to 40V, $I_{LOAD} = 20$ mA to 1A $V_{IN} = 24V$, $I_{LOAD} = 1A$ Conditions est Circuit <i>Figure 3</i> (Note 3) $V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 1A V_{OUT} Programmed for 5V (see Circuit of <i>Figure 3</i>)	(Note 4) 12 94 Typ (Note 4)	(Note 5) 11.82/ 11.64 Min (Note 5)	(Note 5) 12.18/ 12.36 Max (Note 5)	V %
SYSTEM V _{OUT} n LM2 Symbol	PARAMETERS Te Output Voltage Efficiency C672-ADJ Parameter	est Circuit <i>Figure 2</i> (Note 3) $V_{IN} = 15V \text{ to } 40V, I_{LOAD} = 20 \text{ mA to } 1A$ $V_{IN} = 24V, I_{LOAD} = 1A$ Conditions est Circuit <i>Figure 3</i> (Note 3) $V_{IN} = 8V \text{ to } 40V, I_{LOAD} = 20 \text{ mA to } 1A$ V_{OUT} Programmed for 5V	(Note 4) 12 94 Typ (Note 4)	(Note 5) 11.82/ 11.64 Min (Note 5)	(Note 5) 12.18/ 12.36 Max (Note 5)	V %

Efficiency

η

90

(see Circuit of Figure 3)

 $V_{IN} = 12V, I_{LOAD} = 1A$

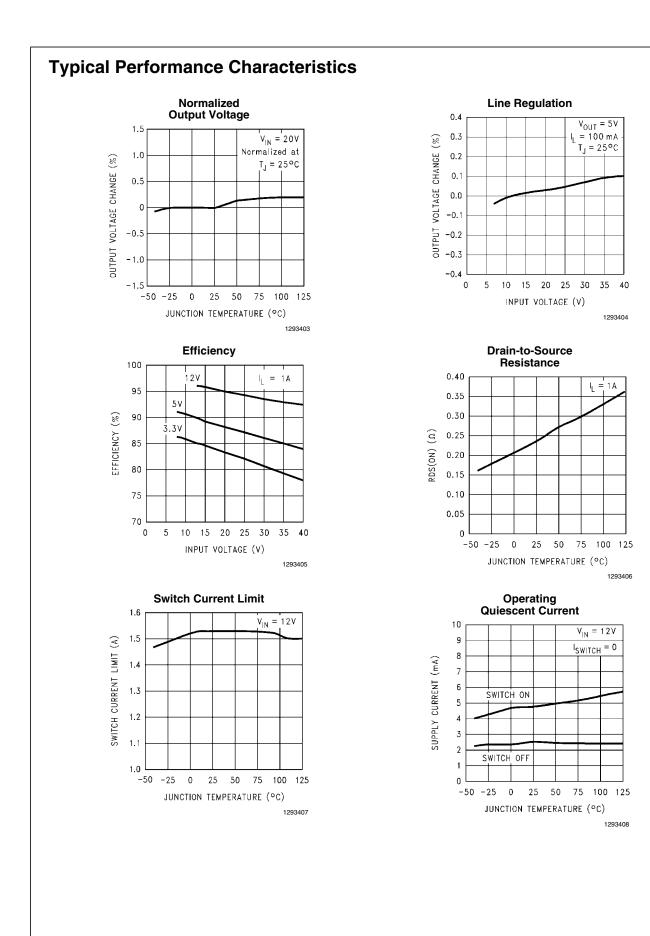
%

All Output Voltage Versions

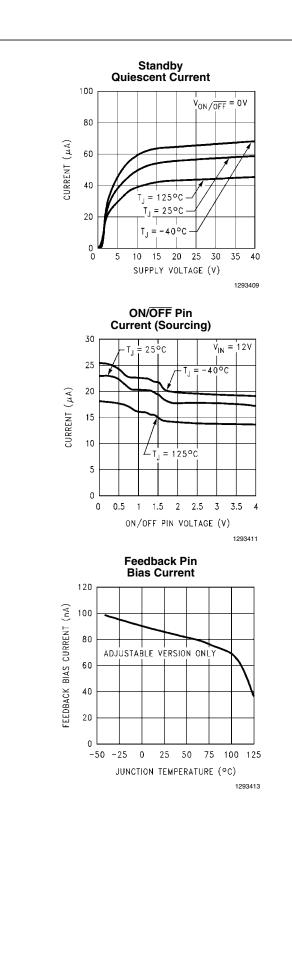
Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those in **bold type face** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = 12$ V for the 3.3V, 5V, and Adjustable versions and $V_{IN} = 24$ V for the 12V version, and $I_{LOAD} = 100$ mA.

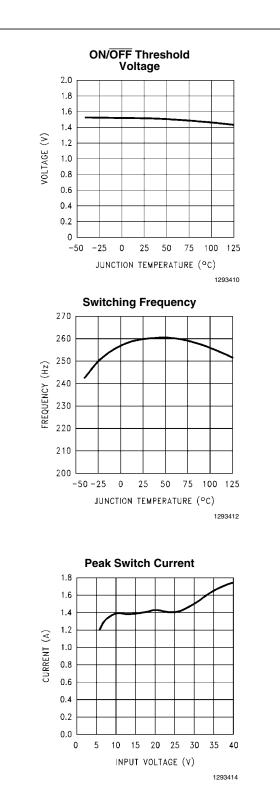
Symbol	Parameters	Conditions	Тур	Min	Max	Units
DEVICE	PARAMETERS	·			•	
Ι _Q	Quiescent Current	V _{FEEDBACK} = 8V For 3.3V, 5.0V, and ADJ Versions	2.5		3.6	mA
		V _{FEEDBACK} = 15V For 12V Versions	2.5			mA
I _{STBY}	Standby Quiescent Current	ON/OFF Pin = 0V	50		100/ 150	μA
I _{CL}	Current Limit		1.55	1.25/ 1.2	2.1/ 2.2	A
I _L	Output Leakage Current	$V_{IN} = 40V, ON/\overline{OFF}$ Pin = 0V $V_{SWITCH} = 0V$	1		25	μA
		$V_{SWITCH} = -1V$, ON/OFF Pin = 0V	6		15	mA
R _{DS(ON)}	Switch On-Resistance	I _{SWITCH} = 1A	0.25		0.30/ 0.50	Ω
f _o	Oscillator Frequency	Measured at Switch Pin	260	225	275	kHz
D	Maximum Duty Cycle		95			%
	Minimum Duty Cycle		0			%
I _{BIAS}	Feedback Bias Current	V _{FEEDBACK} = 1.3V ADJ Version Only	85			nA
V _{S/D}	ON/OFF Pin Voltage Thesholds		1.4	0.8	2.0	V
I _{S/D}	ON/OFF Pin Current	ON/OFF Pin = 0V	20	7	37	μA
F _{SYNC}	Synchronization Frequency	V _{SYNC} = 3.5V, 50% duty cycle	400			kHz
V _{SYNC}	Synchronization Threshold Voltage		1.4			V
V _{SS}	Soft-Start Voltage		0.63	0.53	0.73	V
I _{SS}	Soft-Start Current		4.5	1.5	6.9	μA
θ _{JA}	Thermal Resistance	N Package, Junction to Ambient (Note 6)	95			°C/W
		M Package, Junction to Ambient (Note 6)	105			

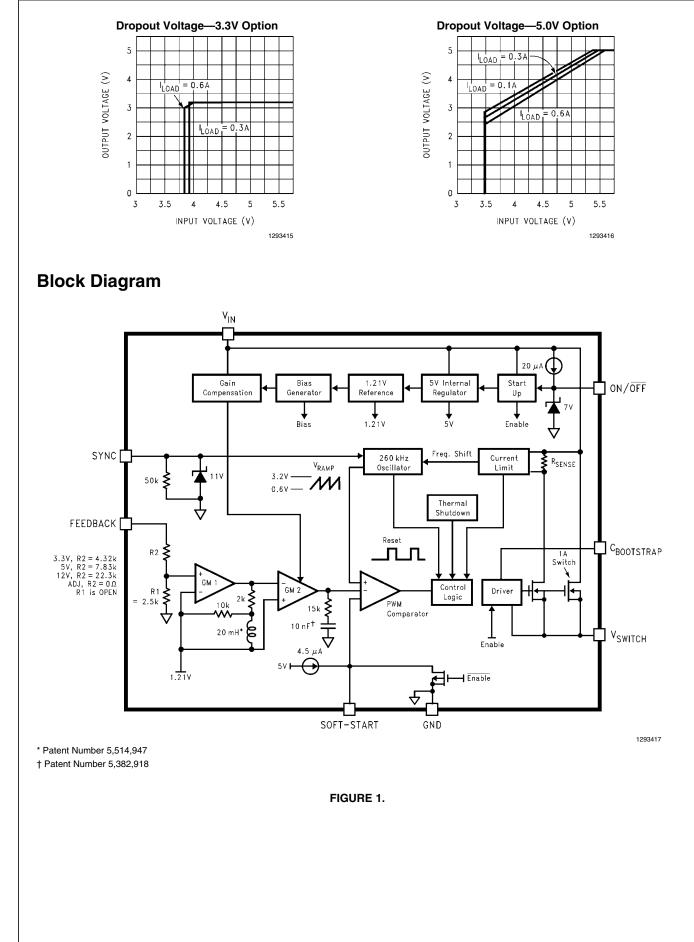
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.

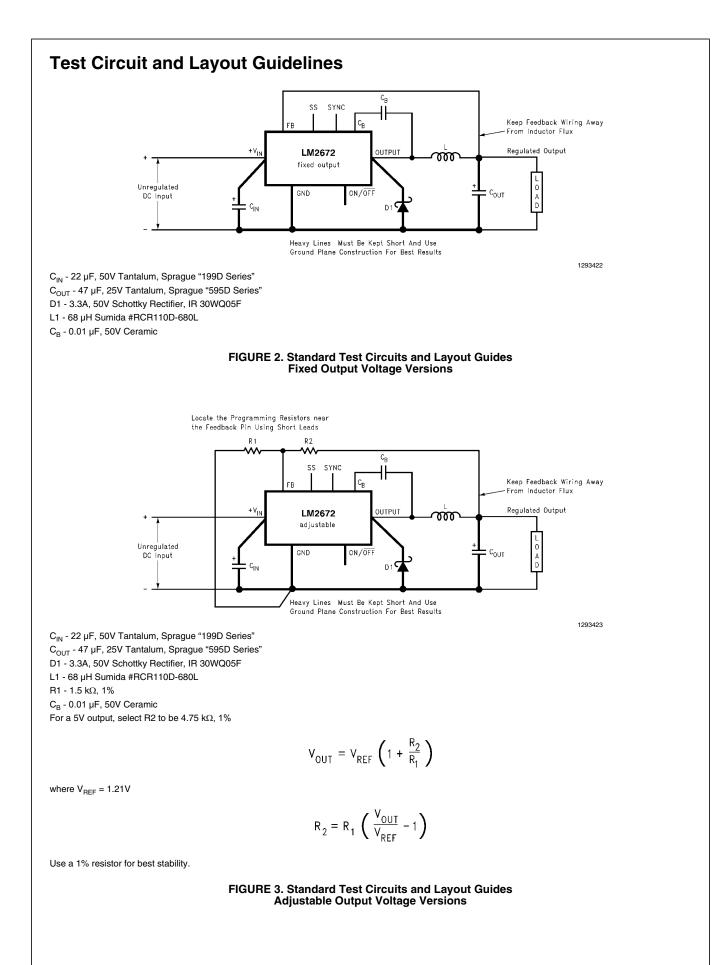

Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.

Note 3: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2672 is used as shown in *Figure 2* and *Figure 3* test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.


Note 4: Typical numbers are at 25°C and represent the most likely norm.


Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).


Note 6: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See Application Information section in the application note accompanying this datasheet and the thermal model in *LM267X Made Simple* version 6.0 software. The value θ_{J-A} for the LLP (LD) package is specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the LLP package, refer to Application Note AN-1187.



Typical Performance Characteristics (Circuit of Figure 2) $\begin{array}{l} \mbox{Continuous Mode Switching Waveforms} \\ V_{\text{IN}} = 20V, \, V_{\text{OUT}} = 5V, \, I_{\text{LOAD}} = 1A \\ L = 47 \ \mu\text{H}, \, C_{\text{OUT}} = 68 \ \mu\text{F}, \, C_{\text{OUT}} \text{ESR} = 50 \ \text{m}\Omega \end{array}$ **Discontinuous Mode Switching Waveforms** $V_{\text{IN}} = 20V, V_{\text{OUT}} = 5V, I_{\text{LOAD}} = 300 \text{ mA}$ L = 15 µH, C_{OUT} = 68 µF (2×), C_{OUT}ESR = 25 mΩ 20V 20V 107 10V ٥٧ 0γ 0.5A 1A 0.5A 0A 0A 20 mV 20 mV AC/Div AC/Div 1293418 A: V_{SW} Pin Voltage, 10 V/div. A: V_{SW} Pin Voltage, 10 V/div. B: Inductor Current, 0.5 A/div B: Inductor Current, 0.5 A/div C: Output Ripple Voltage, 20 mV/div AC-Coupled C: Output Ripple Voltage, 20 mV/div AC-Coupled Horizontal Time Base: 1 µs/div Horizontal Time Base: 1 µs/div Load Transient Response for Continuous Mode $V_{IN} = 20V, V_{OUT} = 5V, I_{LOAD} = 1A$ L = 47 µH, C_{OUT} = 68 µF, C_{OUT}ESR = 50 mΩ Load Transient Response for Discontinuous Mode V_{IN} = 20V, V_{OUT} = 5V, L = 47 µH, C_{OUT} = 68 µF, C_{OUT}ESR = 50 mΩ 100 mV 100 mV AC/Div AC/Div 0.4A 1 A 0.5A 0.2A 0 A 0A 1293420 A: Output Voltage, 100 mV/div, AC-Coupled A: Output Voltage, 100 mV/div, AC-Coupled B: Load Current: 200 mA to 1A Load Pulse B: Load Current: 100 mA to 300 mA Load Pulse Horizontal Time Base: 50 µs/div Horizontal Time Base: 200 µs/div

1293419

1293421

www.national.com

LM2672 Series Buck Regulator Design Procedure (Fixed Output)

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
To simplify the buck regulator design procedure, National Semiconductor is making available computer design software to be used with the SIMPLE SWITCHER line of switching regulators. LM267X Made Simple version 6.0 is available on Windows [®] 3.1,	
NT, or 95 operating systems.	
Given:	Given:
V _{OUT} = Regulated Output Voltage (3.3V, 5V, or 12V)	$V_{OUT} = 5V$
V _{IN} (max) = Maximum DC Input Voltage	$V_{IN}(max) = 12V$
I _{LOAD} (max) = Maximum Load Current	$I_{LOAD}(max) = 1A$
1. Inductor Selection (L1)	1. Inductor Selection (L1)
A. Select the correct inductor value selection guide from Figure 4	A. Use the inductor selection guide for the 5V version shown in
and Figure 5 or Figure 6 (output voltages of 3.3V, 5V, or 12V	Figure 5.
respectively). For all other voltages, see the design procedure for	
the adjustable version.	
B. From the inductor value selection guide, identify the inductance region intersected by the Maximum Input Voltage line and the Maximum Load Current line. Each region is identified by an inductance value and an inductor code (LXX).	B. From the inductor value selection guide shown in <i>Figure 5</i> , the inductance region intersected by the 12V horizontal line and the 1A vertical line is 33μ H, and the inductor code is L23.
	C. The inductance value required is 33μ H. From the table in <i>Figure</i> 8, go to the L23 line and choose an inductor part number from any of the four manufacturers shown. (In most instances, both through hole and surface mount inductors are available.)
<i>Schott:</i> ferrite EP core inductors; these have very low leakage magnetic fields to reduce electro-magnetic interference (EMI) and are the lowest power loss inductors	
<i>Renco:</i> ferrite stick core inductors; benefits are typically lowest cost inductors and can withstand E•T and transient peak currents above rated value. Be aware that these inductors have an external magnetic field which may generate more EMI than other types of inductors.	
<i>Pulse:</i> powered iron toroid core inductors; these can also be low cost and can withstand larger than normal E•T and transient peak currents. Toroid inductors have low EMI.	
<i>Coilcraft:</i> ferrite drum core inductors; these are the smallest physical size inductors, available only as SMT components. Be aware that these inductors also generate EMI—but less than stick inductors.	
Complete specifications for these inductors are available from the respective manufacturers. A table listing the manufacturers' phone numbers is located in <i>Figure 9</i> .	
2. Output Capacitor Selection (C _{OUT})	2. Output Capacitor Selection (C _{OUT})
A. Select an output capacitor from the output capacitor table in <i>Figure 10.</i> Using the output voltage and the inductance value found	A. Use the 5.0V section in the output capacitor table in <i>Figure 10</i> . Choose a capacitor value and voltage rating from the line that contains the inductance value of 33 μ H. The capacitance and

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
The capacitor list contains through-hole electrolytic capacitors from	
four different capacitor manufacturers and surface mount tantalum	68 μF/10V Sprague 594D Series.
capacitors from two different capacitor manufacturers. It is	100 µF/10V AVX TPS Series.
recommended that both the manufacturers and the manufacturer's	Through Hole:
series that are listed in the table be used. A table listing the	68 μF/10V Sanyo OS-CON SA Series.
manufacturers' phone numbers is located in Figure 11.	220 µF/35V Sanyo MV-GX Series.
	220 µF/35V Nichicon PL Series.
	220 μF/35V Panasonic HFQ Series.
3. Catch Diode Selection (D1)	3. Catch Diode Selection (D1)
A. In normal operation, the average current of the catch diode is	A. Refer to the table shown in <i>Figure 12</i> . In this example, a 1A,
the load current times the catch diode duty cycle, 1-D (D is the	20V Schottky diode will provide the best performance. If the circuit
switch duty cycle, which is approximately the output voltage divided	must withstand a continuous shorted output, a higher current
by the input voltage). The largest value of the catch diode average	Schottky diode is recommended.
current occurs at the maximum load current and maximum input	
voltage (minimum D). For normal operation, the catch diode current	
rating must be at least 1.3 times greater than its maximum average	
current. However, if the power supply design must withstand a	
continuous output short, the diode should have a current rating	
equal to the maximum current limit of the LM2672. The most	
stressful condition for this diode is a shorted output condition.	
B. The reverse voltage rating of the diode should be at least 1.25	
times the maximum input voltage.	
$\ensuremath{\textbf{C}}\xspace.$ Because of their fast switching speed and low forward voltage	
drop, Schottky diodes provide the best performance and efficiency.	
This Schottky diode must be located close to the LM2672 using	
short leads and short printed circuit traces.	
4. Input Capacitor (C _{IN})	4. Input Capacitor (C _{IN})
A low ESR aluminum or tantalum bypass capacitor is needed	The important parameters for the input capacitor are the input
between the input pin and ground to prevent large voltage	voltage rating and the RMS current rating. With a maximum input
transients from appearing at the input. This capacitor should be	voltage of 12V, an aluminum electrolytic capacitor with a voltage
located close to the IC using short leads. In addition, the RMS	rating greater than 15V (1.25 \times V _{IN}) would be needed. The next
current rating of the input capacitor should be selected to be at least ½ the DC load current. The capacitor manufacturer data sheet must	higher capacitor voltage rating is 16V.
be checked to assure that this current rating is not exceeded. The	The RMS current rating requirement for the input capacitor in a buck regulator is approximately ½ the DC load current. In this
curves shown in <i>Figure 14</i> show typical RMS current ratings for	example, with a 1A load, a capacitor with a RMS current rating of
several different aluminum electrolytic capacitor values. A parallel	at least 500 mA is needed. The curves shown in <i>Figure 14</i> can be
connection of two or more capacitors may be required to increase	used to select an appropriate input capacitor. From the curves,
the total minimum RMS current rating to suit the application	locate the 16V line and note which capacitor values have RMS
requirements.	current ratings greater than 500 mA.
For an aluminum electrolytic capacitor, the voltage rating should be	For a through hole design, a 330 μ F/16V electrolytic capacitor
at least 1.25 times the maximum input voltage. Caution must be	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or
exercised if solid tantalum capacitors are used. The tantalum	equivalent) would be adequate. Other types or other
capacitor voltage rating should be twice the maximum input	manufacturers' capacitors can be used provided the RMS ripple
voltage. The tables in Figure 15 show the recommended	current ratings are adequate. Additionally, for a complete surface
application voltage for AVX TPS and Sprague 594D tantalum	mount design, electrolytic capacitors such as the Sanyo CV-C or
capacitors. It is also recommended that they be surge current	CV-BS and the Nichicon WF or UR and the NIC Components NACZ
tested by the manufacturer. The TPS series available from AVX,	series could be considered.
and the 593D and 594D series from Sprague are all surge current	For surface mount designs, solid tantalum capacitors can be used,
tested. Another approach to minimize the surge current stresses	but caution must be exercised with regard to the capacitor surge
on the input capacitor is to add a small inductor in series with the	current rating and voltage rating. In this example, checking Figure
input supply line.	15, and the Sprague 594D series datasheet, a Sprague 594D 15
Use caution when using ceramic capacitors for input bypassing,	μ F, 25V capacitor is adequate.
because it may cause severe ringing at the $\rm V_{\rm IN}$ pin.	

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
5. Boost Capacitor (C _B)	5. Boost Capacitor (C _B)
This capacitor develops the necessary voltage to turn the switch gate on fully. All applications should use a 0.01 μ F, 50V ceramic	For this application, and all applications, use a 0.01 μ F, 50V ceramic capacitor.
capacitor.	
6. Soft-Start Capacitor (C_{SS} - optional) This capacitor controls the rate at which the device starts up. The formula for the soft-start capacitor C_{SS} is:	6. Soft-Start Capacitor (C _{SS} - optional) For this application, selecting a start-up time of 10 ms and using the formula for C_{SS} results in a value of:
$C_{SS} \approx (_{SS} \cdot t_{SS}) / [V_{SSTH} + 2.6V \cdot (\frac{V_{OUT} + V_{SCHOTTKY}}{V_{UV}})]$	C _{SS} ≈ (4.5 μ A • 10 ms) / [0.63V + 2.6V • ($\frac{5V + 0.4V}{12V}$)]
IN	= 25 nF ≈ 0.022 μF.
where: I_{SS} = Soft-Start Current :4.5 µA typical.	
t _{ss} = Soft-Start Time :Selected.	
V _{SSTH} = Soft-Start Threshold Voltage :0.63V typical.	
V _{OUT} = Output Voltage :Selected.	
V _{SCHOTTKY} = Schottky Diode Voltage Drop :0.4V typical.	
V _{IN} = Input Voltage :Selected.	
If this feature is not desired, leave this pin open. With certain	
softstart capacitor values and operating conditions, the LM2672	
can exhibit an overshoot on the output voltage during turn on.	
Especially when starting up into no load or low load, the softstart	
function may not be effective in preventing a larger voltage	
overshoot on the output. With larger loads or lower input voltages	
during startup this effect is minimized. In particular, avoid using	
softstart capacitors between 0.033µF and 1µF.	
7. Frequency Synchronization (optional)	7. Frequency Synchronization (optional)
The LM2672 (oscillator) can be synchronized to run with an	For all applications, use a 1 k Ω resistor and a 100 pF capacitor
external oscillator, using the sync pin (pin 3). By doing so, the	the RC filter.
LM2672 can be operated at higher frequencies than the standard	
frequency of 260 kHz. This allows for a reduction in the size of the	
inductor and output capacitor.	
As shown in the drawing below, a signal applied to a RC filter at the	
sync pin causes the device to synchronize to the frequency of that	
signal. For a signal with a peak-to-peak amplitude of 3V or greater,	
a 1 k Ω resistor and a 100 pF capacitor are suitable values.	
¹ ^K	
<u> </u>	
=	

Inductor Value Selection Guides

(For Continuous Mode Operation)

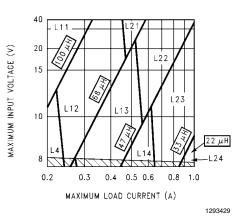
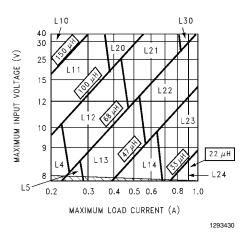



FIGURE 4. LM2672-3.3

FIGURE 5. LM2672-5.0

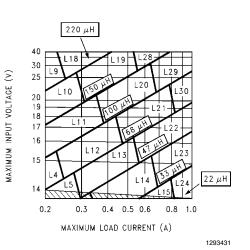
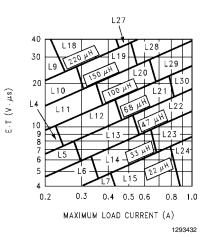



FIGURE 6. LM2672-12

FIGURE 7. LM2672-ADJ

Ind.	Inductanc	Current	Sch	nott	Rend	0	Pulse E	ngineering	Coilcraft
Ref.	е	Current	Through	Surface	Through	Surface	Through	Surface	Surface
Desg.	(µH)	(A)	Hole	Mount	Hole	Mount	Hole	Mount	Mount
L4	68	0.32	67143940	67144310	RL-1284-68-43	RL1500-68	PE-53804	PE-53804-S	DO1608-683
L5	47	0.37	67148310	67148420	RL-1284-47-43	RL1500-47	PE-53805	PE-53805-S	DO1608-473
L6	33	0.44	67148320	67148430	RL-1284-33-43	RL1500-33	PE-53806	PE-53806-S	DO1608-333
L7	22	0.52	67148330	67148440	RL-1284-22-43	RL1500-22	PE-53807	PE-53807-S	DO1608-223
L9	220	0.32	67143960	67144330	RL-5470-3	RL1500-220	PE-53809	PE-53809-S	DO3308-224
L10	150	0.39	67143970	67144340	RL-5470-4	RL1500-150	PE-53810	PE-53810-S	DO3308-154
L11	100	0.48	67143980	67144350	RL-5470-5	RL1500-100	PE-53811	PE-53811-S	DO3308-104
L12	68	0.58	67143990	67144360	RL-5470-6	RL1500-68	PE-53812	PE-53812-S	DO3308-683
L13	47	0.70	67144000	67144380	RL-5470-7	RL1500-47	PE-53813	PE-53813-S	DO3308-473
L14	33	0.83	67148340	67148450	RL-1284-33-43	RL1500-33	PE-53814	PE-53814-S	DO3308-333
L15	22	0.99	67148350	67148460	RL-1284-22-43	RL1500-22	PE-53815	PE-53815-S	DO3308-223
L18	220	0.55	67144040	67144420	RL-5471-2	RL1500-220	PE-53818	PE-53818-S	DO3316-224
L19	150	0.66	67144050	67144430	RL-5471-3	RL1500-150	PE-53819	PE-53819-S	DO3316-154
L20	100	0.82	67144060	67144440	RL-5471-4	RL1500-100	PE-53820	PE-53820-S	DO3316-104
L21	68	0.99	67144070	67144450	RL-5471-5	RL1500-68	PE-53821	PE-53821-S	DO3316-683
L22	47	1.17	67144080	67144460	RL-5471-6	_	PE-53822	PE-53822-S	DO3316-473
L23	33	1.40	67144090	67144470	RL-5471-7	_	PE-53823	PE-53823-S	DO3316-333

Downloaded from Elcodis.com electronic components distributor

Ind.	Inductanc			Schott Renco		Pulse E	Coilcraft		
Ref.	е	Current (A)	Through	Surface	Through	Surface	Through	Surface	Surface
Desg.	(µH)	(~)	Hole	Mount	Hole	Mount	Hole	Mount	Mount
L24	22	1.70	67148370	67148480	RL-1283-22-43	—	PE-53824	PE-53824-S	DO3316-223
L27	220	1.00	67144110	67144490	RL-5471-2	_	PE-53827	PE-53827-S	DO5022P-224
L28	150	1.20	67144120	67144500	RL-5471-3	_	PE-53828	PE-53828-S	DO5022P-154
L29	100	1.47	67144130	67144510	RL-5471-4	_	PE-53829	PE-53829-S	DO5022P-104
L30	68	1.78	67144140	67144520	RL-5471-5	_	PE-53830	PE-53830-S	DO5022P-683

FIGURE 8. Inductor Manufacturers' Part Numbers

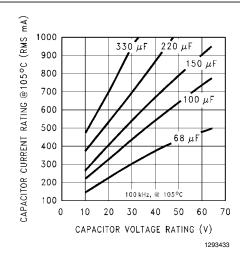
Coilcraft Inc.	Phone	(800) 322-2645
	FAX	(708) 639-1469
Coilcraft Inc., Europe	Phone	+44 1236 730 595
	FAX	+44 1236 730 627
Pulse Engineering Inc.	Phone	(619) 674-8100
	FAX	(619) 674-8262
Pulse Engineering Inc.,	Phone	+353 93 24 107
Europe	FAX	+353 93 24 459
Renco Electronics Inc.	Phone	(800) 645-5828
	FAX	(516) 586-5562
Schott Corp.	Phone	(612) 475-1173
	FAX	(612) 475-1786

FIGURE 9. Inductor Manufacturers' Phone Numbers

		Output Capacitor								
Output	La desta de la composición de	Surface	Mount		Through H	lole				
Voltage (V)		Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic			
	(µH)	594D Series	Series	SA Series	Series	PL Series	HFQ Series			
		(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)			
	22	120/6.3	100/10	100/10	330/35	330/35	330/35			
	33	120/6.3	100/10	68/10	220/35	220/35	220/35			
3.3	47	68/10	100/10	68/10	150/35	150/35	150/35			
3.3	68	120/6.3	100/10	100/10	120/35	120/35	120/35			
	100	120/6.3	100/10	100/10	120/35	120/35	120/35			
	150	120/6.3	100/10	100/10	120/35	120/35	120/35			
	22	100/16	100/10	100/10	330/35	330/35	330/35			
	33	68/10	10010	68/10	220/35	220/35	220/35			
5.0	47	68/10	100/10	68/10	150/35	150/35	150/35			
5.0	68	100/16	100/10	100/10	120/35	120/35	120/35			
	100	100/16	100/10	100/10	120/35	120/35	120/35			
	150	100/16	100/10	100/10	120/35	120/35	120/35			
	22	120/20	(2×) 68/20	68/20	330/35	330/35	330/35			
	33	68/25	68/20	68/20	220/35	220/35	220/35			
	47	47/20	68/20	47/20	150/35	150/35	150/35			
12	68	47/20	68/20	47/20	120/35	120/35	120/35			
	100	47/20	68/20	47/20	120/35	120/35	120/35			
	150	47/20	68/20	47/20	120/35	120/35	120/35			
	220	47/20	68/20	47/20	120/35	120/35	120/35			

FIGURE 10. Output Capacitor Table

Nichicon Corp.	Phone	(847) 843-7500
	FAX	(847) 843-2798
Panasonic	Phone	(714) 373-7857
	FAX	(714) 373-7102
AVX Corp.	Phone	(803) 448-9411
	FAX	(803) 448-1943
Sprague/Vishay	Phone	(207) 324-4140
	FAX	(207) 324-7223
Sanyo Corp.	Phone	(619) 661-6322
	FAX	(619) 661-1055


FIGURE 11. Capacitor Manufacturers' Phone Numbers

	1A Di	odes	3A Diodes		
V _R	Surface Through		Surface	Through	
	Mount	Hole	Mount	Hole	
20V	SK12	1N5817	SK32	1N5820	
	B120	SR102		SR302	
30V	SK13	1N5818	SK33	1N5821	
	B130	11DQ03	30WQ03F	31DQ03	
	MBRS130	SR103			
40V	SK14	1N5819	SK34	1N5822	
	B140	11DQ04	30BQ040	MBR340	
	MBRS140	SR104	30WQ04F	31DQ04	
	10BQ040		MBRS340	SR304	
	10MQ040		MBRD340		
	15MQ040				
50V	SK15	MBR150	SK35	MBR350	
	B150	11DQ05	30WQ05F	31DQ05	
	10BQ050	SR105		SR305	

FIGURE 12. Schottky Diode Selection Table

International Rectifier Corp.	Phone	(310) 322-3331
	FAX	(310) 322-3332
Motorola, Inc.	Phone	(800) 521-6274
	FAX	(602) 244-6609
General Instruments Corp.	Phone	(516) 847-3000
	FAX	(516) 847-3236
Diodes, Inc.	Phone	(805) 446-4800
	FAX	(805) 446-4850

FIGURE 13. Diode Manufacturers' Phone Numbers

Recommended Application Voltage	Voltage Rating			
+85°C Rating				
3.3	6.3			
5	10			
10	20			
12	25			
15	35			

Sprague 594D

Recommended Application Voltage	Voltage Rating				
+85°C Rating					
2.5	4				
3.3	6.3				
5	10				
8	16				
12	20				
18	25				
24	35				
29	50				

FIGURE 15. Recommended Application Voltage for AVX TPS and Sprague 594D Tantalum Chip Capacitors Derated for 85°C.

www.national.com

LM2672 Series Buck Regulator Design Procedure (Adjustable Output)

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
To simplify the buck regulator design procedure, National	
Semiconductor is making available computer design software to be	
used with the SIMPLE SWITCHER line of switching regulators.	
LM267X Made Simple version 6.0 is available on Windows 3.1,	
NT, or 95 operating systems.	
Given:	Given:
V _{OUT} = Regulated Output Voltage	V _{OUT} = 20V
V _{IN} (max) = Maximum Input Voltage	$V_{IN}(max) = 28V$
I _{LOAD} (max) = Maximum Load Current	$I_{LOAD}(max) = 1A$
F = Switching Frequency (Fixed at a nominal 260 kHz).	F = Switching Frequency (<i>Fixed at a nominal 260 kHz</i>).
	1. Programming Output Voltage (Selecting R_1 and R_2 , as shown
in <i>Figure 3</i>)	in <i>Figure 3</i>)
Use the following formula to select the appropriate resistor values.	
$V_{OUT} = V_{REF} \left(1 + \frac{\kappa_2}{R_1} \right)$	$R_{2} = R_{1} \left(\frac{V_{OUI}}{V_{PTT}} - 1 \right) = 1 k\Omega \left(\frac{20V}{1.23V} - 1 \right)$
where $V_{\text{BEF}} = 1.21 \text{V}$	(1.23)
	P = 1 k 0 (16 52 - 1) = 15 52 k 0 aloggest 1% yellus is 15 4 k 0
Select a value for R_1 between 240 Ω and 1.5 k Ω . The lower resistor	
values minimize noise pickup in the sensitive feedback pin. (For the lowest temperature coefficient and the best stability with time, use	$H_2 = 15.4 \text{ K}\Omega$
1% metal film resistors.)	
, ,	
$R_2 = R_1 \left(\frac{V_{OUT}}{V_{DDT}} - 1 \right)$	
2 1 $\sqrt{v_{REF}}$ J	
2. Inductor Selection (L1)	2. Inductor Selection (L1)
A. Calculate the inductor Volt • microsecond constant E • T	A. Calculate the inductor Volt • microsecond constant (E • T),
(V • μ s), from the following formula:	
$E \cdot T = (V_{IN(MAX)} - V_{OUT} - V_{SAT}) \cdot \frac{V_{OUT} + V_D}{V_{IN(MAX)} - V_{SAT} + V_D} \cdot \frac{1000}{260} (V \cdot \mu s)$	
	$E \cdot T = (7.75) \cdot \frac{20.5}{28.25} \cdot 3.85 (V \cdot \mu s) = 21.6 (V \cdot \mu s)$
where V _{SAT} =internal switch saturation voltage=0.25V and	
V_D = diode forward voltage drop = 0.5V	
B. Use the $E \bullet T$ value from the previous formula and match it with	B. E • T = 21.6 (V • μs)
the $E \bullet T$ number on the vertical axis of the Inductor Value Selection	
Guide shown in <i>Figure 7</i> .	
C. On the horizontal axis, select the maximum load current.	C. $I_{LOAD}(max) = 1A$
D. Identify the inductance region intersected by the $E \bullet T$ value and	D. From the inductor value selection guide shown in <i>Figure 7</i> , the
the Maximum Load Current value. Each region is identified by an	inductance region intersected by the 21.6 (V \cdot µs) horizontal line
inductance value and an inductor code (LXX).	and the 1A vertical line is 68 μ H, and the inductor code is L30.
$\ensuremath{\textbf{E}}.$ Select an appropriate inductor from the four manufacturer's part	E. From the table in Figure 8, locate line L30, and select an inductor
numbers listed in Figure 8. For information on the different types of	part number from the list of manufacturers' part numbers.
inductors, see the inductor selection in the fixed output voltage	
design procedure.	
3. Output Capacitor Selection (C _{OUT})	3. Output Capacitor Selection (C _{OUT})
A. Select an output capacitor from the capacitor code selection	A. Use the appropriate row of the capacitor code selection guide,
guide in Figure 16. Using the inductance value found in the inductor	
selection guide, step 1, locate the appropriate capacitor code	code corresponding to an inductance of 68 μ H is C20.
corresponding to the desired output voltage.	1
oonooponding to the doonod output voltage.	

N
~
ဖ္ထ
2
2

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
B. Select an appropriate capacitor value and voltage rating, using the capacitor code, from the output capacitor selection table in <i>Figure 17</i> . There are two solid tantalum (surface mount) capacitor manufacturers and four electrolytic (through hole) capacitor manufacturers to choose from. It is recommended that both the	B. From the output capacitor selection table in <i>Figure 17</i> , choose a capacitor value (and voltage rating) that intersects the capacitor code(s) selected in section A, C20. The capacitance and voltage rating values corresponding to the capacitor code C20 are the:
manufacturers and the manufacturer's series that are listed in the	Surface Mount:
table be used. A table listing the manufacturers' phone numbers is	
located in Figure 11.	33 µF/25V AVX TPS Series.
	Through Hole:
	33 µF/25V Sanyo OS-CON SC Series.
	120 µF/35V Sanyo MV-GX Series.
	120 µF/35V Nichicon PL Series.
	120 μ F/35V Panasonic HFQ Series. Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the 100 kHz ESR) closely match the characteristics of the capacitors listed in the output capacitor table. Refer to the capacitor manufacturers' data sheet for this information.
4. Catch Diode Selection (D1)	4. Catch Diode Selection (D1)
A. In normal operation, the average current of the catch diode is the load current times the catch diode duty cycle, 1-D (D is the switch duty cycle, which is approximately V_{OUT}/V_{IN}). The largest value of the catch diode average current occurs at the maximum input voltage (minimum D). For normal operation, the catch diode current rating must be at least 1.3 times greater than its maximum average current. However, if the power supply design must withstand a continuous output short, the diode should have a	A. Refer to the table shown in <i>Figure 12</i> . Schottky diodes provide the best performance, and in this example a 1A, 40V Schottky diode would be a good choice. If the circuit must withstand a continuous shorted output, a higher current (at least 2.2A) Schottky diode is recommended.
current rating greater than the maximum current limit of the	

LM2672. The most stressful condition for this diode is a shorted output condition.

B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.

C. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency. The Schottky diode must be located close to the LM2672 using short leads and short printed circuit traces.

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)		
5. Input Capacitor (C _{IN})	5. Input Capacitor (C _{IN})		
A low ESR aluminum or tantalum bypass capacitor is needed	The important parameters for the input capacitor are the input		
between the input pin and ground to prevent large voltage	voltage rating and the RMS current rating. With a maximum input		
transients from appearing at the input. This capacitor should be	voltage of 28V, an aluminum electrolytic capacitor with a voltage		
located close to the IC using short leads. In addition, the RMS	rating of at least 35V (1.25 \times V _{IN}) would be needed.		
current rating of the input capacitor should be selected to be at least	The RMS current rating requirement for the input capacitor in a		
1/2 the DC load current. The capacitor manufacturer data sheet must	buck regulator is approximately 1/2 the DC load current. In this		
be checked to assure that this current rating is not exceeded. The	example, with a 1A load, a capacitor with a RMS current rating of		
curves shown in <i>Figure 14</i> show typical RMS current ratings for	at least 500 mA is needed. The curves shown in <i>Figure 14</i> can be		
several different aluminum electrolytic capacitor values. A parallel	used to select an appropriate input capacitor. From the curves,		
connection of two or more capacitors may be required to increase	locate the 35V line and note which capacitor values have RMS		
the total minimum RMS current rating to suit the application	current ratings greater than 500 mA.		
requirements.	For a through hole design, a 330 µF/35V electrolytic capacitor		
For an aluminum electrolytic capacitor, the voltage rating should be	(Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or		
at least 1.25 times the maximum input voltage. Caution must be	equivalent) would be adequate. Other types or other		
exercised if solid tantalum capacitors are used. The tantalum	manufacturers' capacitors can be used provided the RMS ripple		
capacitor voltage rating should be twice the maximum input	current ratings are adequate. Additionally, for a complete surface		
voltage. The tables in <i>Figure 15</i> show the recommended	mount design, electrolytic capacitors such as the Sanyo CV-C or		
application voltage for AVX TPS and Sprague 594D tantalum	CV-BS and the Nichicon WF or UR and the NIC Components NACZ		
capacitors. It is also recommended that they be surge current	series could be considered.		
tested by the manufacturer. The TPS series available from AVX,	For surface mount designs, solid tantalum capacitors can be used,		
and the 593D and 594D series from Sprague are all surge current	but caution must be exercised with regard to the capacitor surge		
tested. Another approach to minimize the surge current stresses	current rating and voltage rating. In this example, checking Figure		
on the input capacitor is to add a small inductor in series with the	15, and the Sprague 594D series datasheet, a Sprague 594D 15		
input supply line. Use caution when using ceramic capacitors for input bypassing,	μF, 50V capacitor is adequate.		
because it may cause severe ringing at the V_{IN} pin.			
	6 Baast Consultar (C.)		
6. Boost Capacitor (C _B)	6. Boost Capacitor (C _B)		
This capacitor develops the necessary voltage to turn the switch	For this application, and all applications, use a 0.01 μ F, 50V		

This capacitor develops the necessary voltage to turn the switch |For this application, and all applications, use a 0.01 μ F, 50V gate on fully. All applications should use a 0.01 µF, 50V ceramic capacitor.

If the soft-start and frequency synchronization features are desired, look at steps 6 and 7 in the fixed output design procedure.

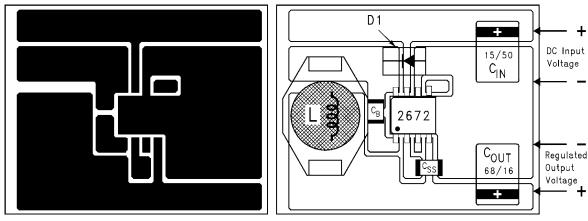
ceramic capacitor.

Case	Output	Inductance (µH)						
Style (Note 7)	Voltage (V)	22	33	47	68	100	150	220
SM and TH	1.21–2.50	—	_	—	_	C1	C2	C3
SM and TH	2.50-3.75	—	_	_	C1	C2	C3	C3
SM and TH	3.75–5.0	_	_	C4	C5	C6	C6	C6
SM and TH	5.0-6.25	_	C4	C7	C6	C6	C6	C6
SM and TH	6.25–7.5	C8	C4	C7	C6	C6	C6	C6
SM and TH	7.5–10.0	C9	C10	C11	C12	C13	C13	C13
SM and TH	10.0–12.5	C14	C11	C12	C12	C13	C13	C13
SM and TH	12.5–15.0	C15	C16	C17	C17	C17	C17	C17
SM and TH	15.0–20.0	C18	C19	C20	C20	C20	C20	C20
SM and TH	20.0–30.0	C21	C22	C22	C22	C22	C22	C22
TH	30.0–37.0	C23	C24	C24	C25	C25	C25	C25

Note 7: SM - Surface Mount, TH - Through Hole

FIGURE 16. Capacitor Code Selection Guide

Output Capacitor								
Cap.	Surface Mount		Through Hole					
Ref.	Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic		
Desg.	594D Series	Series	SA Series	Series	PL Series	HFQ Series		
#	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)		
C1	120/6.3	100/10	100/10	220/35	220/35	220/35		
C2	120/6.3	100/10	100/10	150/35	150/35	150/35		
C3	120/6.3	100/10	100/35	120/35	120/35	120/35		
C4	68/10	100/10	68/10	220/35	220/35	220/35		
C5	100/16	100/10	100/10	150/35	150/35	150/35		
C6	100/16	100/10	100/10	120/35	120/35	120/35		
C7	68/10	100/10	68/10	150/35	150/35	150/35		
C8	100/16	100/10	100/10	330/35 330/35		330/35		
C9	100/16	100/16	100/16	330/35 330/35		330/35		
C10	100/16	100/16	68/16	6 220/35		220/35		
C11	100/16	100/16	68/16	68/16 150/35		150/35		
C12	100/16	100/16	68/16	120/35	120/35	120/35		
C13	100/16	100/16	100/16	120/35	120/35	120/35		
C14	100/16	100/16	100/16	220/35	220/35	220/35		
C15	47/20	68/20	47/20	220/35	220/35	220/35		
C16	47/20	68/20	47/20	150/35	150/35	150/35		
C17	47/20	68/20	47/20	120/35	120/35	120/35		
C18	68/25	(2×) 33/25	47/25 (Note 8)	220/35	220/35	220/35		
C19	33/25	33/25	33/25 (Note 8)	150/35	150/35	150/35		
C20	33/25	33/25	33/25 (Note 8)	120/35	120/35	120/35		
C21	33/35	(2×) 22/25	(Note 9)	150/35	150/35	150/35		
C22	33/35	22/35	(Note 9)	120/35	120/35	120/35		
C23	(Note 9)	(Note 9)	(Note 9)	220/50	100/50	120/50		
C24	(Note 9)	(Note 9)	(Note 9)	150/50	100/50	120/50		
C25	(Note 9)	(Note 9)	(Note 9)	150/50	82/50	82/50		

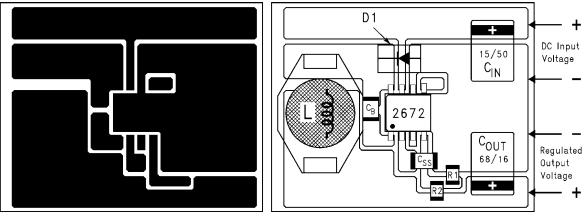

Note 8: The SC series of Os-Con capacitors (others are SA series)

Note 9: The voltage ratings of the surface mount tantalum chip and Os-Con capacitors are too low to work at these voltages.

FIGURE 17. Output Capacitor Selection Table

Application Information

TYPICAL SURFACE MOUNT PC BOARD LAYOUT, FIXD OUTPUT (4X SIZE)



1293439

 $\begin{array}{l} C_{\text{IN}} - 15 \; \mu\text{F}, \; 50\text{V}, \; \text{Solid Tantalum Sprague}, \; "594D \; \text{series}" \\ C_{\text{OUT}} - 68 \; \mu\text{F}, \; 16\text{V}, \; \text{Solid Tantalum Sprague}, \; "594D \; \text{series}" \\ \text{D1} - 1\text{A}, \; 40\text{V} \; \text{Schottky Rectifier}, \; \text{Surface Mount} \end{array}$

L1 - 33 $\mu H,$ L23, Coilcraft DO3316 $C_{\rm B}$ - 0.01 $\mu F,$ 50V, Ceramic

TYPICAL SURFACE MOUNT PC BOARD LAYOUT, ADJUSTABLE OUTPUT (4X SIZE)

1293440

 C_{IN} - 15 $\mu\text{F},$ 50V, Solid Tantalum Sprague, "594D series"

 C_{OUT} - 33 $\mu\text{F},$ 25V, Solid Tantalum Sprague, "594D series"

D1 - 1A, 40V Schottky Rectifier, Surface Mount

L1 - 68 µH, L30, Coilcraft DO3316

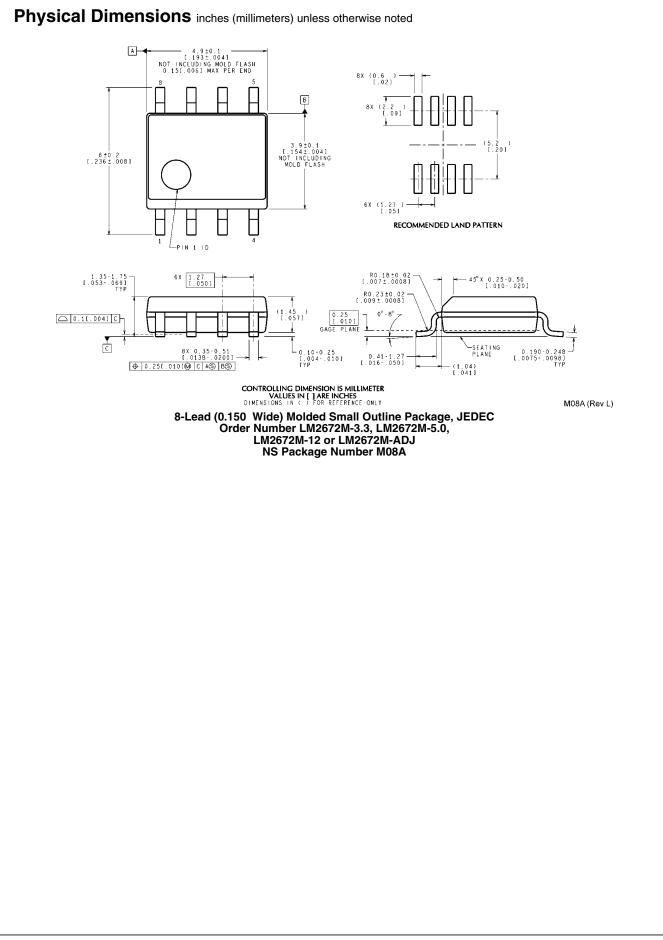
C_B - 0.01 µF, 50V, Ceramic

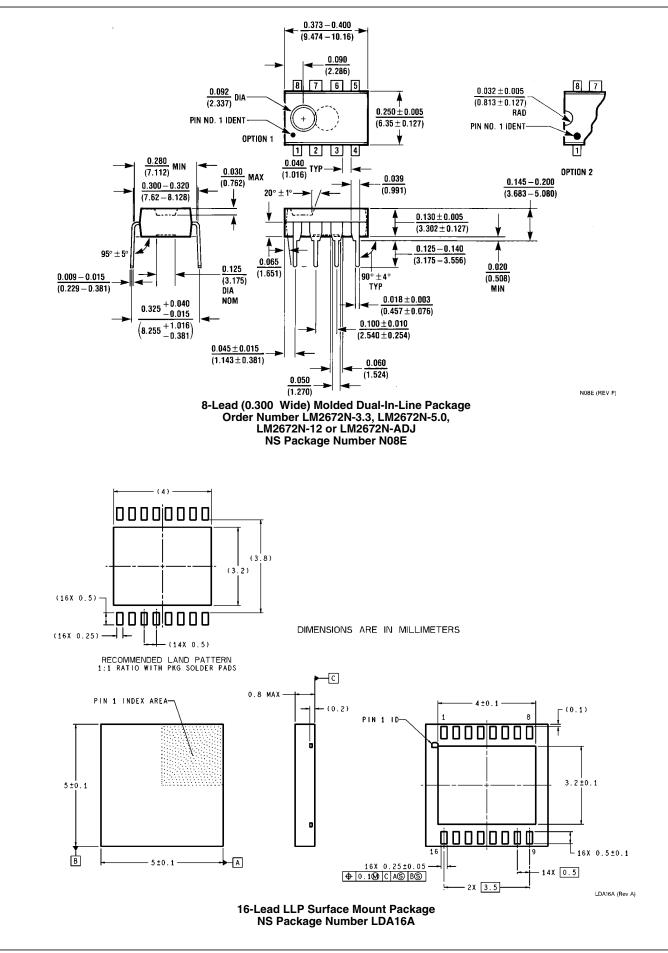
R1 - 1k, 1%

R2 - Use formula in Design Procedure

FIGURE 18. PC Board Layout

Layout is very important in switching regulator designs. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines (in *Figure 2* and *Figure 3*) should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding. If **open core inductors are used**, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC ground path, and C_{OUT} wiring can cause problems.


When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.


21

LLP PACKAGE DEVICES

The LM2672 is offered in the 16 lead LLP surface mount package to allow for increased power dissipation compared to the SO-8 and DIP.

The Die Attach Pad (DAP) can and should be connected to PCB Ground plane/island. For CAD and assembly guidelines refer to Application Note AN-1187 at http:// power.national.com.

Notes

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959
 National Semiconductor Europe

 Customer Support Center

 Fax: +49 (0) 180-530-85-86

 Email: europe.support@nsc.com

 Deutsch Tel: +49 (0) 69 9508 6208

 English Tel: +49 (0) 870 24 0 2171

 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560