

Structure Silicon Monolithic Integrated Circuit

Product High stand voltage 1 Channel Step-down Switching Regulator

Type BD9870FPS

Function - Maximum Switching Current 1.5A include Pch FET

- Possible to adjust output voltage by two external resistor

(SW frequency:900kHz)

· Include softstart function

· Include Over Current Protection & Thermal shut down

• ON/OFF control function with STBY pin

· Small surface-mount TO252S-5 package

○Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Ratings	Unit
Supply Voltage (VCC-GND)	VCC	36	٧
STBY-GND	V _{STBY}	36	٧
OUT-GND	V _{out}	36	٧
INV-GND	V _{INV}	5	٧
Power Dissipation	Pd	800*1	mW
Operating Temperature	Topr	-40∼+85	°C
Storage Temperature	Tstg	−55∼+150	°C
Junction Temperature	Tjmax	150	°C

^{*1} Without external heat sink, the power dissipation reduces by 6.4mW/°C over 25°C.

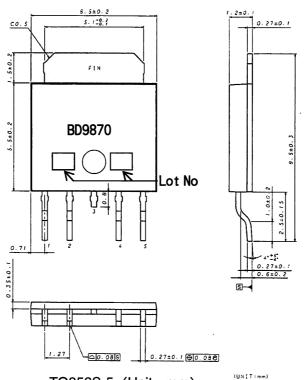
Operating Conditions (Ta=-40~+85℃)

Parameter	Symbol	MIN	TYP	MAX	Unit
Input Voltage	VCC	8.0	_	35.0	٧
Output Voltage	Vo	1.0	_	0.8× (Vcc-lo×Ron)	٧

Status of this document

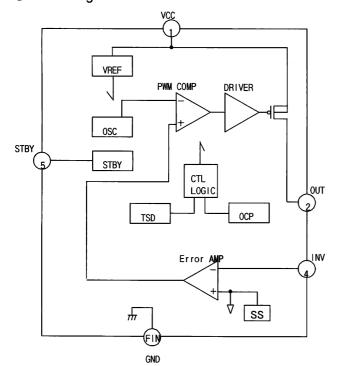
The Japanese language version of this document shall be the official specification.

Any translation of this document shall be for reference only.



○Electrical Characteristics (Unless otherwise noted, Ta=25°C, Vcc=12V, Vo=5V, STBY=3V)

Parameter		Symbol	Symbol Limit		Unit	Conditions	
		Symbol	MIN	TYP	MAX	Offic	Conditions
Output MOS ON Resisto	r	Ron	-	1.0	1.5	Ω	
Efficiency		η	80	88	-	%	Io=0.5A
Switching Frequency		fosc	810	900	990	kHz	
Load Regulation		∆ VOLOAD	1	5	40	mV	Vcc=20V, lo=1~1.5A
Line Regulation		ΔVOLINE	-	5	25	mV	Vcc=10~30V, Io=1.0A
Over Current Protection Limit	1	locp	1.6	-	-	Α	
INV pin Threshold Voltage		VINV	0.99	1.00	1.01	٧	
INV pin input current		LINV	ı	1	2	uA	VINV=1.0V
STBY pin Threshold	ON	VSTBYON	2.0	ı	36	٧	
Voltage	OFF	VSTBY0FF	-0.3	ı	0.3	٧	
SYBY pin input current		Istby	5	15	30	μΑ	STBY=3V
Circuit Current		Icc	1	5	12	mA	
STBY- Current		lst	_	0	5	μΑ	STBY=0V
Softstart time		Tss	1	4	10	ms	STBY=0→3V


[©]This product is not design for normal operation with in a radio active environment.

TO252S-5 (Unit: mm)

OBlock Diagram

OPin Description

Pin No.	Pin Name	Function
1	VCC	Input Power Supply Pin
2	OUT	Internal Pch FET Drain Pin
3*	OUT	Internal Pch FET Drain Pin
FIN	GND	Ground
4	INV	Output Voltage Feedback Pin
5	STBY	ON/OFF Control Pin

%Fundamentally OPEN

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC deterioration or damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.

2) GND potential

Ensure a minimum GND pin potential in all operating conditions. In addition, ensure that no pins other than the GND pin carry a voltage lower than or equal to the GND pin, including during actual transient phenomena.

3) Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

4) Inter-pin shorts and mounting errors

Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC. Shorts between output pins or between output pins and the power supply and GND pin caused by the presence of a foreign object may result in damage to the IC.

5) Operation in a strong electromagnetic field

Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.

6) Thermal shutdown circuit (TSD circuit)

This IC incorporates a built-in thermal shutdown circuit (TSD circuit). The TSD circuit is designed only to shut the IC off to prevent runaway thermal operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of the thermal shutdown circuit is assumed.

7) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step.

Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.

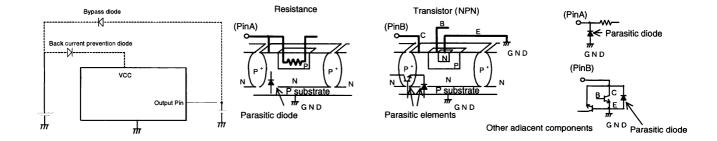
8) Common impedance

Power supply and ground wiring should reflect consideration of the need to lower common impedance and minimize ripple as much as possible (by making wiring as short and thick as possible or rejecting ripple by incorporating inductance and capacitance).

9) Applications with modes that reverse VCC and pin potentials may cause damage to internal IC circuits.

For example, such damage might occur when VCC is shorted with the GND pin while an external capacitor is charged. It is recommended to insert a diode for preventing back current flow in series with VCC or bypass diodes between VCC and each pin.

10) IC pin input


This monolithic IC contains P+ isolation and PCB layers between adjacent elements in order to keep them isolated.

P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements.

For example, when a resistor and transistor are connected to pins as shown in Fig. 10,

- O the P/N junction functions as a parasitic diode when GND > (Pin A) for the resistor or GND > (Pin B) for the transistor (NPN).
- O Similarly, when GND > (Pin B) for the transistor (NPN), the parasitic diode described above combines with the N layer of other adjacent elements to operate as a parasitic NPN transistor.

The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements, such as by the application of voltages lower than the GND (PCB) voltage to input and output pins.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUPOPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2007 ROHM CO.,LTD.

ROHM CO., LTD. 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

PAX:+81-75-315-0172

TEL:+81-75-311-2121

