FAN5307

High－Efficiency Step－Down DC－DC Converter

Features

－95\％Efficiency，Synchronous Operation
－Adjustable Output Voltage Option： 0.7 V to 0.8 V IN
－ 2.5 V to 5.5 V Input Voltage Range
－Customized Fixed Output Voltage Options
－Up to 300mA Output Current
－Fixed Frequency 1 MHz PWM Operation
－High－Efficiency，Power－Save Mode
－ 100% Duty Cycle Low Dropout Operation
－Soft Start
－Dynamic Output Voltage Positioning
－$\quad 15 \mu \mathrm{~A}$ Quiescent Current
－Excellent Load Transient Response
－5－Lead SOT－23 Package
－6－Lead MLP 3x3mm Package

Applications

－Pocket PCs，PDAs
－Cell Phones
－Battery－Powered Portable Devices
－Digital Cameras
－Low Power DSP Supplies

Description

The FAN5307，a high－efficiency，low－noise synchronous PWM current mode and Pulse Skip（Power－Save）mode DC－DC converter，is designed for battery－powered applications．It provides up to 300 mA of output current over a wide input range from 2.5 V to 5.5 V ．The output voltage can be either internally fixed or externally adjustable over a wide range of 0.7 V to $0.8 \mathrm{~V}_{\text {IN }}$ by an external voltage divider．Custom output voltages are also available．Contact a Fairchild sales representative for customized output voltage options．

At moderate and light loads，pulse skipping modulation is used．Dynamic voltage positioning is applied，and the output voltage is shifted 0.8% above nominal value，for increased headroom during load transients．At higher loads，the system automatically switches to current mode PWM control，operating at 1 MHz ．A current mode control loop with fast transient response ensures excellent line and load regulation．In Power－Save mode， the quiescent current is reduced to $15 \mu \mathrm{~A}$ to achieve high efficiency and ensure long battery life．In shutdown mode，the supply current drops below $1 \mu \mathrm{~A}$ ．
The device is available in 5－lead SOT－23 and 6－lead MLP 3x3mm packages．

Ordering Information

Part Number	Operating Temperature Range	Vout（V）	Package	Eco Status	Packing Method
FAN5307S18X	-40 to $+85^{\circ} \mathrm{C}$	1.8	5－Lead SOT－23	RoHS	Tape and Reel
FAN5307MP18 X	-40 to $+85^{\circ} \mathrm{C}$	1.8	6－lead 3x3mm Molded Leadless Package（MLP）	Green	Tape and Reel
FAN5307S15X	-40 to $+85^{\circ} \mathrm{C}$	1.5	5－Lead SOT－23	RoHS	Tape and Reel
FAN5307MP15 X	-40 to $+85^{\circ} \mathrm{C}$	1.5	6－lead 3x3mm Molded Leadless Package（MLP）	Green	Tape and Reel
FAN5307SX	-40 to $+85^{\circ} \mathrm{C}$	Adjustable	5－Lead SOT－23	RoHS	Tape and Reel
FAN5307MPX	-40 to $+85^{\circ} \mathrm{C}$	Adjustable	6－lead 3x3mm Molded Leadless Package（MLP）	Green	Tape and Reel

[^0]
Typical Applications

Figure 1. 6-Lead 3x3mm (MLP)

Figure 2. 5-Lead SOT-23

Figure 3. Efficiency vs. Load Current (Vout=1.8V)

Pin Configuration

Figure 4. 5-Lead SOT-23

Figure 5. 6-Lead 3x3mm MLP

Pin Definitions

5-Lead SOT-23

Pin \#	Name	Description
1	$V_{\text {IN }}$	Supply Voltage Input.
2	GND	Ground.
3	EN	Enable Input. Logic HIGH enables the chip; logic LOW disables the chip and reduces supply current to $<1 \mu \mathrm{~A}$. Do not float this pin. If the EN pin is tied to $\mathrm{V}_{\text {IN }}, V_{\text {IN }}$ must be ramped up faster than 5V/ms for Vout to enter regulation.
4	FB	Feedback Input. In case of fixed-voltage options, connect this pin directly to the output. For an adjustable voltage option, connect this pin to the resistor divider.
5	Lx 2	Inductor Pin. This pin is connected to the internal MOSFET switches.

6-Lead 3x3mm MLP

Pin \#	Name	Description
1	EN	Enable Input. Logic HIGH enables the chip; logic LOW disables the chip and reduces supply current to <1 $\mu \mathrm{A}$. Do not float this pin. If the EN pin is tied to $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {IN }}$ must be ramped up faster than 5V/ms for $\mathrm{V}_{\text {OUT }}$ to enter regulation.
2	GND	Reference Ground.
3	$\mathrm{~V}_{\text {IN }}$	Supply Voltage Input.
4	LX	Inductor Pin. This pin is connected to the internal MOSFET switches
5	PGND	Power Ground. The internal N-channel MOSFET is connected to this pin.
6	FB	Feedback Input. In case of fixed-voltage options, connect this pin directly to the output. For an adjustable voltage option, connect this pin to the resistor divider.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Supply Voltage		-0.3	6.5	V
	Input Voltage on PVIN and Any Other Pin		GND-0.2	$\mathrm{V}_{\text {IN }}+0.3$	V
$\theta_{\text {Jс }}$	Thermal Resistance ${ }^{(1)}$	Junction-to-Case, SOT-23		130	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Junction-to-Tab, MLP 3x3		8	
T_{L}	Lead Soldering Temperature, 10 Seconds			+260	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$E S D^{(2)}$	Human Body Model, JESD22-A114		4		kV
	Charged Device Model, JESD22-C101		1		

Notes:

1. Junction-to-ambient thermal resistance, θ_{JA}, is a strong function of PCB material, board thickness, thickness and number of copper planes, number of via used, diameter of via used, available copper surface, and attached heat sink characteristics.
2. Using Mil Std. 883E, method 3015.7 (Human Body Model) and EIA/JESD22C101-A (Charged Device Model).

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Supply Voltage Range	2.5		5.5	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage Range, Adjustable Version	0.7		$0.8 \mathrm{~V}_{\text {IN }}$	V
$\mathrm{I}_{\text {OUT }}$	Output Current			300	mA
L	Inductor $^{(3)}$		10		$\mu \mathrm{H}$
$\mathrm{C}_{\text {IN }}$	Input Capacitor $^{(3)}$		4.7		$\mu \mathrm{~F}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitor ${ }^{(3)}$		10		$\mu \mathrm{~F}$
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature Range	-40		+125	${ }^{\circ} \mathrm{C}$

Note:
3. Refer to the Applications section for details.

Electrical Characteristics

$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 5.5 V , l lout $=200 \mathrm{~mA}, \mathrm{EN}=\mathrm{V}_{\text {IN }}, \mathrm{C}_{\operatorname{IN}}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=22 \mu \mathrm{~F}, \mathrm{~L}_{\mathrm{x}}=10 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions	Min.	Typ.	Max.	Units
VIN	Input Voltage			2.5		5.5	V
l_{Q}	Quiescent Current		Iout $=0 \mathrm{~mA}$, Device is not switching		15	30	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD }}$	Shutdown Supply Current		EN=GND		0.1	1.0	$\mu \mathrm{A}$
$V_{\text {ENH }}$	Enable High Input Voltage			1.3			V
$\mathrm{V}_{\text {ENL }}$	Enable Low Input Voltage					0.5	V
$\mathrm{I}_{\text {EN }}$	En Input Bias Current		$E N=V_{\text {IN }}$ or GND		0.01	0.10	$\mu \mathrm{A}$
$\mathrm{R}_{\text {DS-ON }}$	PMOS On Resistance		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{GS}}=3.6 \mathrm{~V}$		530	690	$\mathrm{m} \Omega$
			$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}$		670	850	
	NMOS On Resistance		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{GS}}=3.6 \mathrm{~V}$		430	540	$\mathrm{m} \Omega$
			$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}$		530	660	
ILIM	P-channel Current Limit		$2.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<5.5 \mathrm{~V}$	400	520	700	mA
$\mathrm{l}_{\text {Ikg_(N) }}$	N-channel Leakage Current		$\mathrm{V}_{\mathrm{DS}}=5.5 \mathrm{~V}$		0.1	1.0	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{lkg}}^{\text {_(P) }}$	P-channel Leakage Current		$\mathrm{V}_{\mathrm{DS}}=5.5 \mathrm{~V}$		0.1	1.0	$\mu \mathrm{A}$
	Switching Frequency			800	1000	1200	kHz
$\mathrm{R}_{\text {line }}$	Line Regulation		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.5 \text { to } 5.5, \\ & \mathrm{l}_{\text {OUT }}=10 \mathrm{~mA} \end{aligned}$		0.16		\% / V
$\mathrm{R}_{\text {LoAd }}$	Load Regulation	6-Lead MLP	$\begin{aligned} & 100 \mathrm{~mA} \leq \text { IOUT } \\ & \leq 300 \mathrm{~mA} \end{aligned}$		0.0014		\% / mA
		5-Lead SOT-23	$\begin{aligned} & 100 \mathrm{~mA} \leq \text { IOUT } \\ & \leq 300 \mathrm{~mA} \end{aligned}$		0.0022		\% / mA
Vout	Output Voltage Accuracy	6-Lead MLP	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.5 \text { to } 5.5 \mathrm{~V}, \\ & 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 300 \mathrm{~mA} \end{aligned}$	-4		4	\%
		5-Lead SOT-23	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.5 \text { to } 4.5 \mathrm{~V}, \\ & 0 \mathrm{~mA} \leq \text { lout } \leq 300 \mathrm{~mA} \end{aligned}$	-4		4	
			$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.5 \text { to } 5.5 \mathrm{~V}, \\ & 0 \mathrm{~mA} \leq \text { Iout } \leq 300 \mathrm{~mA} \end{aligned}$	-5		4	
$I_{\text {LEAK }}$	Leakage Current into Pin SW		$\begin{aligned} & \mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OUT }}, \\ & \mathrm{OV} \leq \mathrm{V}_{\text {SW }} \leq \mathrm{V}_{\text {IN }} \end{aligned}$		0.1	1.0	$\mu \mathrm{A}$
ILEAK_R	Reverse Leakage Current into Pin SW		$\begin{aligned} & \mathrm{V}_{\text {IN }}=\text { Open, } \mathrm{EN}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{sw}}=5.5 \end{aligned}$		0.1	1.0	$\mu \mathrm{A}$

Electrical Characteristics for Adjustable Version

$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 5.5 V , $\mathrm{I}_{\text {IUut }}=200 \mathrm{~mA}, \mathrm{EN}=\mathrm{V}_{\text {IN }}, \mathrm{C}_{\text {IN }}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=22 \mu \mathrm{~F}, \mathrm{Lx}_{\mathrm{x}}=10 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Min.	Typ.	Max.	Units
$V_{F B}$	Feedback Voltage		0.5		V

Electrical Characteristics for Fixed Vout=1.8 Version

$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V , $\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{EN}=\mathrm{V}_{\mathbb{I N}}, \mathrm{C}_{\mathbb{I N}}=4.7 \mu \mathrm{~F}$, $\mathrm{C}_{\text {out }}=22 \mu \mathrm{~F}, \mathrm{~L}_{\mathrm{x}}=10 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VPFM_PWM	PFM to PWM Transition Voltage ${ }^{(4)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq 300 \mathrm{~mA} \end{aligned}$			72	mV
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=4.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq 300 \mathrm{~mA} \end{aligned}$				
Vout_trans	Output Voltage During Mode Transition ${ }^{(5,6)}$		1.70		1.93	V
Vout_clamp	Over-Voltage Clamp Threshold	Includes Line, Load, Load Transients, and Temperature		1.878	1.930	V

Note:
4. Transition voltage is defined as the difference between the output voltage measured at 0.1 mA (PFM mode) and 300 mA (PWM mode), respectively.
5. See Figure 6.
6. These limits also apply to any mode transition caused by any kind of load transition within specified output current range.

Figure 6. Load Transient Response Test Waveform

Typical Performance Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{~L}=10 \mu \mathrm{H}, \mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$, unless otherwise noted.

Figure 7. Line Transient Response

Figure 9. Load Transient Response

Figure 11. Efficiency vs. Load Current (Vout=1.8V)

Figure 13. Frequency vs. Temperature

Figure 8. Startup

Figure 10. Load Transient Response

Figure 12. No-Load Quiescent Current vs. V_{IN}

Figure 14. Power Save (PRM) Mode Operation

Block Diagram

Figure 15. Block Diagram

Detailed Operation Description

The FAN5307 is a step-down converter operating in a current-mode PFM/PWM architecture with a typical switching frequency of 1 MHz . At moderate to heavy loads, the converter operates in pulse-width-modulation (PWM) mode. At light loads, the converter enters a power-save mode (PFM pulse skipping) to keep the efficiency high.

PWM Mode

In PWM mode, the device operates at a fixed frequency of 1 MHz . At the beginning of each clock cycle, the P channel transistor is turned on. The inductor current ramps up and is monitored via an internal circuit. The Pchannel switch is turned off when the sensed current causes the PWM comparator to trip when the output voltage is in regulation or when the inductor current reaches the current limit (set internally to typically 520 mA). After a minimum dead time, the N -channel transistor is turned on and the inductor current ramps down. As the clock cycle is completed, the N-channel switch is turned off and the next clock cycle starts.

FM (Power-Save) Mode

As the load current decreases and the peak inductor current no longer reaches the typical threshold of 80 mA , the converter enters pulse-frequency-modulation (PFM) mode. In PFM mode, the device operates with a variable frequency and constant peak current, reducing the quiescent current to a minimum and maintaining high efficiency at light loads. As soon as the output voltage falls below a threshold, set at 0.8% above the nominal value, the P-channel transistor is turned on and the inductor current ramps up. The P-channel switch turns off and the N -channel turns on as the peak inductor current is reached (typical 140mA).

The N-channel transistor is turned off before the inductor current becomes negative. At this time, the P channel is switched on again, starting the next pulse. The converter continues these pulses until the high threshold is reached (typically 1.6% above nominal value). A higher output voltage in PFM mode gives additional headroom for the voltage drop during a load transient from light to full load. The voltage overshoot during this load transient is minimized due to active regulation during turning on the N -channel rectifier switch. The device stays in sleep mode until the output voltage falls below the low threshold. FAN5307 enters PWM mode as soon as the output voltage can no longer be regulated in PFM with constant peak current.

100\% Duty Cycle Operation

As the input voltage approaches the output voltage and the duty cycle exceeds the typical 90%, the converter turns the P-channel transistor continuously on. In this mode, the output voltage is equal to the input voltage minus, the voltage drop across the P-channel transistor:
$V_{\text {OUT }}=V_{\text {IN }}-I_{\text {LOAD }} \times\left(R_{\text {DSON }}+R_{\text {L }}\right)$, where
$\mathrm{R}_{\mathrm{DSON}}=$ P-channel switch on resistance
ILOAD $=$ Output current
$\mathrm{R}_{\mathrm{L}}=$ Inductor DC resistance

Soft Start

The FAN5307 has an internal soft-start circuit that limits the inrush current during start-up. This prevents possible voltage drops of the input voltage and eliminates the output voltage overshoot. The soft-start is implemented as a digital circuit, increasing the switch current in four steps to the P-channel current limit (520 mA). Typical start-up time for a $10 \mu \mathrm{~F}$ output capacitor and a load current of 200 mA is $500 \mu \mathrm{~s}$.

Short-Circuit Protection

Switch peak current is limited, cycle by cycle, to a typical value of 520 mA . In an output voltage short circuit, the device operates at minimum duty cycle; therefore, the average input current is typically 100 mA .

Application Information

Adjustable Output Voltage Version

The output voltage for the adjustable version is set by the external resistor divider, as shown below:

Figure 16. External Resistor Divider
calculated as:
$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \times\left[1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right]$

To reduce noise sensitivity, R1 + R2 should not exceed $1 \mathrm{M} \Omega$.

Inductor Selection

The inductor parameters directly related to device performance are saturation current and DC resistance. The FAN5307 operates with a typical inductor value of $10 \mu \mathrm{H}$. The lower the DC resistance, the higher the efficiency. For saturation current, the inductor should be rated higher than the maximum load current, plus half of the inductor ripple current, calculated as:

$$
\begin{equation*}
\Delta \mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{OUT}} \times \frac{1-\left(\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}\right)}{\mathrm{L} \times \mathrm{f}} \tag{3}
\end{equation*}
$$

where:
$\mathrm{f}=$ Switching frequency
L = Inductor value
$\Delta \mathrm{I}_{\mathrm{L}}=$ Inductor ripple current
Table 1. Recommended Inductors

Inductor Value	Vendor	Part Number	Performance
10 $\mu \mathrm{H}$	Sumida	CDRH5D28-100	Highest Efficiency
		CDRH5D18-100	
		CDRH4D28-100	
	Murata	LQH66SN100M01L	
$6.8 \mu \mathrm{H}$	Sumida	CDRH3D16-6R8	Smallest Solution
$10 \mu \mathrm{H}$		CDRH4D18-100	
		CR32-100	
		CR43-100	
	Murata	LQH4C100K04	
	Cooper Bussmann	CTX01-17327	

Input Capacitor Selection

For best performances, a low-ESR input capacitor is required. A ceramic capacitor of at least $4.7 \mu \mathrm{~F}$, placed as close to the input pin of the device, is recommended.

Output Capacitor Selection

The FAN5307's switching frequency of 1 MHz allows the use of a low-ESR ceramic capacitor with a value of $10 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$. This provides low output voltage ripple. In power-save mode, the output voltage ripple is independent of the output capacitor value and the ripple is determined by the internal comparator thresholds. The typical output voltage ripple at light load is 1% of the nominal output voltage.
Table 2. Recommended Capacitors

Capacitor Value	Vendor	Part Number
$4.7 \mu \mathrm{~F}$		JMK212BY475MG
		JMK212BJ106MG
$10 \mu \mathrm{~F}$		JMK316BJ106KL
	TDK	$\mathrm{C} 12012 X 5 R O J 106 \mathrm{~K}$
		C3216X5ROJ106M
$22 \mu \mathrm{~F}$	Murata	GRM32DR60J226K

PCB Layout Recommendations

The inherently high peak currents and switching frequency of the power supplies require careful PCB layout design. Use wide traces for the high-current path and place the input capacitor, the inductor, and the output capacitor as close as possible to the integrated circuit terminals. For the adjustable version, the resistor divider should be routed away from the inductor to avoid electromagnetic interference.

The 6-lead MLP version of the FAN5307 separates the high-current ground from the reference ground; therefore, it is more tolerant to the PCB layout design and shows better performance.

Figure 17. Possible Layout

Physical Dimensions

RECOMMENDED LAND PATTERN

Figure 18. $3 x 3 m m 6$-Lead Molded Leadless Package (MLP)
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Physical Dimensions

Figure 19. 5-Lead SOT-23 Package
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.

FAIRCHILD

SEMICONDUCTORe

TRADEMARKS

The following indudes registered and unregistered trademarks and serviœ marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowertm	FPS ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$
Auto-SPM ${ }^{\text {™ }}$	F-PFS ${ }^{\text {™ }}$	Power S $^{\text {TM }}$	㠰 Mem
Build it Now ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$	Programmable Active Droop ${ }^{\text {™ }}$	Pranchisa
CorePLUS ${ }^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	QFET ${ }^{\text {® }}$	TinyBoost ${ }^{\text {m }}$
CorePONER ${ }^{\text {Tm }}$	Green FPS ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {mm }}$
CROSSVOLT ${ }^{\text {Tm }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {m }}$
	Gmax ${ }^{\text {Tm }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
Current Transfer Logic ${ }^{\text {TM }}$	GTOTM	$\bigcirc)_{\text {tM }}$	TINYOPTOTM
Ecospark ${ }_{\text {EfficientMax }}$ (m	IntelliMAX'TM	Saving our world, $1 \mathrm{mW/W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyPowertm
EZSMMTCH ${ }^{\text {ma }}$	ISOPLANAR ${ }^{\text {TM }}$	SignalWise ${ }^{\text {Tm }}$	Tiny PMM $^{\text {™ }}$
	Megrock ${ }^{\text {M }}$ M ${ }^{\text {a }}$	SmartMax ${ }^{\text {TM }}$	TinyMire ${ }^{\text {™ }}$
E7	MicroFET ${ }^{\text {Tm }}$	SMART STARTTM	TriFault Detect ${ }^{\text {™ }}$
${ }^{\text {F }}$	MicroPak ${ }^{\text {™ }}$	SPM ${ }^{\text {® }}$	TRUECURRENTTM*
	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
Fairchild ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	SuperFET'M	M
Fairchild Semiconductor ${ }^{\text {® }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOTTM-3	SerDes
FACT Quiet Series ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {a }}$	SuperSOTTM-6	$\mathrm{UHC}^{\text {® }}$
FACT ${ }^{\circ}$	OPTOPLANAR ${ }^{\text {® }}$	SuperSOTTM-8	Ultra FRFET ${ }^{\text {tm }}$
FAST ${ }^{\text {- }}$	®***	SupreMOS ${ }^{\text {TM }}$	UniFET ${ }^{\text {m }}$
FastvCore ${ }^{\text {m }}$		SyncFET ${ }^{\text {TM }}$	VCX ${ }^{\text {тM }}$
FETBench ${ }^{\text {TM }}$	PDP SPM ${ }^{\text {TM }}$	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {™ }}$
FlashWriter ${ }^{\text {®** }}$	Power-SPM ${ }^{\text {™ }}$	GGENERAL	X $S^{\text {TM }}$

DISCLAIMER

FAIRCHILDSEMICONDUCTORRESERVES THE RIGHT TO MAKE CHANGES WTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TOIMPROVE REUABIUTY, FUNCTON, OR DESIGN. FAIRCHILDDOES NOT ASSUME ANY LIABIUTY ARISING OUTOF THEAPPLICATON OR USE OF ANY PRODUCT OR CIRCUIT DESCFBED HEREIN; NEITHER DOES IT CONVEY ANY UCENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DONOT EXPAND THE TERMS OF FAIRCHID'S WORLDMDE TERMS AND CONDITIONS, SPEGFICALY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESSWRITEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITNG POLICY

Fairchild Semiconductor Comporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, whw.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiending counterfeiting of their parts Customers who inadvertently purchase counterfeit parts experience mary problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directy or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identifi cation	Product Status	\quad Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

[^0]: For Fairchild＇s definition of Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html．

